首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleus accumbens (NAc) is a component of the mesolimbic system involved in drug dependence. Activity of nucleus accumbens neurons is modulated by glutamatergic afferents from the prefrontal cortex and by dopaminergic afferents from the ventral tegmental area (VTA). In the present study, we reconstructed the mesolimbic system using organotypic slice cultures and examined the effects of dopaminergic agents on synaptic activity in the prefrontal cortex-nucleus accumbens synapses. A slice of each of the prefrontal cortex, nucleus accumbens and ventral tegmental area in newborn rat, was arranged on a multi-electrode dish (MED) filled with culture medium so that they contacted each other, termed a 'triple culture'. Extracellular recording using microelectrodes on the multi-electrode dish showed that a single electrical stimulation of the prefrontal cortex slice evoked field excitatory postsynaptic potential, and that population spikes occurred spontaneously in the nucleus accumbens area of the triple culture. The amplitude of evoked field excitatory postsynaptic potentials and the frequency of spontaneous population spikes were decreased by glutamatergic antagonists, D(-)-2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. The D1-like receptor agonist SKF38393, but not the D2-like receptor agonist quinpirole, reduced both the amplitude of field excitatory postsynaptic potential and frequency of spontaneous population spikes. Cocaine depressed field excitatory postsynaptic potential and this depression was reversed by D1-like receptor antagonist SCH23390, but not by D2-like receptor antagonist sulpiride. These results suggest that evoked field excitatory postsynaptic potentials and spontaneous population spikes were driven by glutamatergic neurons and were subject to exogenous and endogenous dopaminergic modulation in the triple culture that was similar to that shown in in vivo.  相似文献   

2.
Using extracellular single-unit recordings in rats, the effects of chronic intermittent injections and continuous infusion of cocaine on single dopamine neurons were directly compared in the substantia nigra and ventral tegmental area. After 1-day withdrawal we determined: (1) the neuronal sensitivity to the mixed D1/D2 agonist apomorphine and (2) its modulation by the D1 antagonist SCH 23390. The nigral dopamine neurons exhibited subsensitivity to the impulse-inhibiting effects of apomorphine following both intermittent and continuous regimens. SCH 23390 selectively reversed the apomorphine subsensitivity in the intermittent group, while having minimal effects in the other group. Dopamine neurons in the ventral tegmental area, on the other hand, were sub- and normosensitive to apomorphine following intermittent and continuous dosing regimens, respectively. In contrast to the substantia nigra, SCH 23390 failed to alter the apomorphine sensitivity in either of the pretreatment groups. Possible mechanisms underlying these distinctive changes in the substantia nigra and ventral tegmental area following intermittent and continuous cocaine pretreatment regimens are discussed.  相似文献   

3.
Opioids increase the firing of dopamine cells in the ventral tegmental area by presynaptic inhibition of GABA release. This report describes an acute presynaptic inhibition of GABAB-mediated IPSPs by mu- and kappa-opioid receptors and the effects of withdrawal from chronic morphine treatment on the release of GABA at this synapse. In slices taken from morphine-treated guinea pigs after washing out the morphine (withdrawn slices), a low concentration of a mu receptor agonist increased, rather than decreased, the amplitude of the GABAB IPSP. In withdrawn slices, after blocking A1-adenosine receptors with 8-cyclopentyl-1, 3-dipropylxantine, mu-opioid receptor activation inhibited the IPSP at all concentrations and increased the maximal inhibition. In addition, during withdrawal, there was a tonic increase in adenosine tone that was further increased by forskolin or D1-dopamine receptor activation, suggesting that metabolism of cAMP was the source of adenosine. The results indicate that during acute morphine withdrawal, there was an upregulation of the basal level of an opioid-sensitive adenylyl cyclase. Inhibition of this basal activity by opioids had two effects. First, a decrease in the formation of cAMP that decreased adenosine tone. This effect predominated at low mu receptor occupancy and increased the amplitude of the IPSP. Higher agonist concentrations inhibited transmitter release by both kinase-dependent and -independent pathways. This study indicates that the consequences of the morphine-induced upregulation of the cAMP cascade on synaptic transmission are dependent on the makeup of receptors and second messenger pathways present on any given terminal.  相似文献   

4.
We have previously reported that mesolimbic dopamine (DA) substrates are critically involved in the rewarding effects of opiates only during states of opiate-dependence and withdrawal. However, in previously drug-naive animals, opiate reward is mediated through a DA-independent neural system. In the present study, we report that bilateral microinjections of a DA receptor antagonist, alpha-flupenthixol (0.3-3 microg/0.5 microl) into the nucleus accumbens (NAc), blocks morphine reward (10 mg/kg, i.p.) in opiate-withdrawn animals, but not in opiate-naive animals, suggesting that accumbal dopamine receptors are required for opiate reward signaling in drug-deprived motivational states. Next, the role of dopamine was examined in the development of opiate dependence and somatic withdrawal, and expression of withdrawal aversions. Pretreatment with alpha-flupenthixol (0.8 mg/kg, i.p.) before morphine injections during the development of opiate dependence did not effect expression of withdrawal aversions or the expression of somatic withdrawal. We have previously reported that pretreatment with a dopamine receptor antagonist, alpha-flupenthixol, blocks the aversive effects of opiate withdrawal. We now report that pretreatment with a direct dopamine receptor agonist, apomorphine (1.0-5.0 mg/kg, i.p.) before conditioning in a state of withdrawal, also blocks the aversive effects of opiate withdrawal. We propose that the aversive motivational effects of opiate withdrawal may be mediated by a specific dopaminergic neuronal signal.  相似文献   

5.
Dopamine (DA) D2 and γ-aminobutyric acid (GABA)A somatodendritic receptors tonically inhibit mesolimbic projection neurons in the A10 DA cell grouping of the ventral tegmentum. In the present study we determined the contribution of the ventral tegmental area (VTA) to the expression of a classically conditioned fear-induced increase in the acoustic startle reflex. Saline applied to VTA neurons did not modify the capacity of a light previously associated with footshock to potentiate acoustic startle amplitudes; conversely, bilateral administration of the DA D2/3 agonist quinpirole or the GABAA receptor agonist muscimol into the ventral tegmentum blocked fear-potentiated startle without altering baseline acoustic startle responding. It was suggested that DA VTA neurons regulate the excitatory aspects of fear expression by gating levels of aversive emotional arousal within the amygdala-based fear system.  相似文献   

6.
The basolateral amygdala (BLA), ventral tegmental area and nucleus accumbens (NAc) form a functionally connected neural circuit involved in the processing of opiate-related reward and memory. Dopamine (DA) projections from the ventral tegmental area to the BLA modulate associative plasticity mechanisms within the BLA. However, the role of DA receptor signaling in the BLA and its functional outputs to the NAc during opiate reward processing is not currently understood. Using an unbiased place conditioning procedure, we measured the rewarding effects of morphine following intra-BLA microinfusions of specific DA D1 or D2 receptor agonists in either opiate-naive or opiate-dependent/withdrawn rats. Activation of intra-BLA D1 receptors strongly potentiated the behaviorally rewarding effects of opiates, only in the opiate-naive state. However, once opiate dependence and withdrawal occurred, the intra-BLA DA-mediated potentiation of opiate reward salience switched to a D2 receptor-dependent substrate. We next performed single-unit, in-vivo extracellular neuronal recordings in the NAc shell (NA shell), to determine if intra-BLA D1/D2 receptor activation may modulate the NA shell neuronal response patterns to morphine. Consistent with our behavioral results, intra-BLA D1 or D2 receptor activation potentiated NAc 'shell' (NA shell) neuronal responses to sub-reward threshold opiate administration, following the same functional boundary between the opiate-naive and opiate-dependent/withdrawn states. Finally, blockade of N-methyl-d-aspartate transmission within the NA shell blocked intra-BLA DA D1 or D2 receptor-mediated opiate reward potentiation. Our findings demonstrate a novel and functional DA D1/D2 receptor-mediated opiate reward memory switch within the BLA→NA shell circuit that controls opiate reward magnitude as a function of opiate exposure state.  相似文献   

7.
Nociceptin/orphanin FQ (N/OFQ) peptide and its receptor (NOP receptor) have been implicated in a host of brain functions and diseases, but the contribution of this neuropeptide system to behavioral processes of relevance to psychosis has not been investigated. We examined the effect of the NOP receptor antagonists, Compound 24 and J-113397, and the synthetic agonist, Ro64-6198, on time function (2-2000?ms prepulse-pulse intervals) of acoustic (80?dB/10?ms prepulse) and visual (1000?Lux/20?ms prepulse) prepulse inhibition of startle reflex (PPI), a preattentive sensory filtering mechanism that is central to perceptual and mental integration. The effects of the dopamine D1-like receptor agonist, SKF-81297, the D2-like receptor agonist, quinelorane, and the mixed D1/D2 agonist, apomorphine, were studied for comparison. When acoustic stimulus was used as prepulse, BALB/cByJ mice displayed a monotonic time function of PPI, and consistent with previous studies, apomorphine and SKF-81279 induced PPI impairment, whereas quinelorane had no effect. None of the NOP receptor ligands was effective on acoustic PPI. When flash light was used as prepulse, BALB/cByJ mice displayed a bell-shaped time function of PPI and all dopamine agonists were active. Ro64-6198 was also effective in reducing visual PPI. NOP receptor antagonists showed no activity but blocked disruptive effect of Ro64-6198. Finally, coadministration of the typical antipsychotic, haloperidol, attenuated PPI impairment induced by Ro64-6198, revealing involvement of a dopaminergic component. These findings show that pharmacological stimulation of NOP or dopamine D2-like receptors is more potent in disrupting visual than acoustic PPI in mice, whereas D1-like receptor activation disrupts both. They further suggest that dysfunction of N/OFQ transmission may be implicated in the pathogenesis of psychotic manifestations.  相似文献   

8.
The mesotelencephalic dopamine (DA) system is heterogeneous with respect to nuclei, terminal loci, DA receptor subtypes, electrophysiological characteristics and response patterns, and neuropharmacological response to a range of agents. The majority of mesocortical and mesolimbic DA neurons originate in the ventral tegmental area. Mesostriatal DA neurons originate in substantia nigra pars compacta. DA neurons originating from the retrorubal field primarily innervate subcortical limbic and neostriatal loci. Mesostriatal terminal loci have relatively low densities of D3 and D4 receptors, compared to mesolimbic and mesocortical loci. The D1 and D2 receptors appear more homogeneously distributed. Electrophysiologically, mesostriatal DA neurons show more regularity in firing pattern (fewer bursting events), and a lower basal firing rate than mesolimbic or mesocortical neurons. Neuropharmacologically, mesocortical DA neurons are less responsive to intravenous d-amphetamine, (+)apomorphine, and chronic antipsychotic drug treatment. Mesocortical DA neurons are also relatively insensitive to iontophoretically applied DA, a finding congruent with their reported relative lack of somatodendritic autoreceptors. Neurochemically, mesoaccumbens DA neurons are more sensitive to systemic administration of drugs with addictive liability.  相似文献   

9.
Extraretinal projections onto neurons in the dorsal lateral geniculate nucleus (dLGN) play an important role in modifying sensory information as it is relayed from the visual thalamus to neocortex. The dLGN receives dopaminergic innervation from the ventral tegmental area; however, the role of dopamine in synaptic transmission in dLGN has not been explored. In the present study, whole cell recordings were obtained to examine the actions of dopamine on glutamatergic synaptic transmission. Dopamine (2-100 microm) strongly suppressed excitatory synaptic transmission in dLGN relay neurons that was evoked by optic tract stimulation and mediated by both N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors. In contrast, dopamine did not alter inhibitory synaptic transmission arising from either dLGN interneurons or thalamic reticular nucleus neurons. The suppressive action of dopamine on excitatory synaptic transmission was mimicked by the D(2)-like dopamine receptor agonist bromocriptine (2-25 microm) but not by the D(1)-like receptor agonist SKF38393 (10-25 microm). In addition, the dopamine-mediated suppression was antagonized by the D(2)-like receptor antagonist sulpiride (10-20 microm) but not by the D(1)-like receptor antagonist SCH23390 (5-25 microm). The dopamine-mediated decrease in evoked excitatory postsynaptic current amplitude was accompanied by an increase in the magnitude of paired-pulse depression. Furthermore, dopamine also reduced the frequency but not the amplitude of miniature excitatory postsynaptic currents. Taken together, these data suggest that dopamine may act presynaptically to regulate the release of glutamate at the retinogeniculate synapse and modify transmission of visual information in the dLGN.  相似文献   

10.
Neurotensin and cholecystokinin, neuropeptides which coexist with dopamine in many ventral tegmental neurons, were microinjected into the ventral tegmental area during in vivo microdialysis in the posterior nucleus accumbens. Neurotensin significantly elevated concentrations of dopamine and its metabolites at doses of 10 pmol, 1 nmol, and 10 nmol, while cholecystokinin significantly elevated dopamine metabolite concentrations only at a dose of 10 nmol. These data suggest that neurotensin potently mediates the release of dopamine from the mesolimbic pathway via direct actions on the cell body.  相似文献   

11.
We examined the electrophysiologic and pharmacologic properties of dopamine-containing ventral tegmental area neurons in the mouse using extracellular single-unit recording techniques in both chloral hydrate-anesthetized mice and in vitro mouse midbrain slices. In vivo the ventral tegmental area neurons had long-duration action potentials (2 to 5 ms) and discharged at 1 to 9 spikes/s with either a decremental burst pattern or a regular pattern. Systemic administration of the dopamine agonist, apomorphine, decreased their firing rate, and the dopamine receptor blocker, haloperidol, reversed this effect. Similarly, systemic administration of the dopamine-releasing agent, d-amphetamine, suppressed their discharge rate, an effect blocked by pretreatment of the animals with alpha-methyl-p-tyrosine. When recorded in vitro from midbrain slices, ventral tegmental area neurons showed electrophysiologic properties similar to those found in vivo; however, the neurons recorded in vitro fired at a significantly faster rate and their firing pattern tended to be more pacemaker-like, especially when recordings were made in an incubation medium that blocked synaptic transmission (i.e., low calcium/high magnesium). The activity of most of these neurons was suppressed by addition of apomorphine to the incubation medium, an effect reversed by haloperidol. Pretreatment with alpha-methyl-p-tyrosine produced no significant change in the discharge pattern or rate for cells recorded in vitro. These data indicate that mouse ventral tegmental area dopamine neurons in vivo exhibit the same electrophysiologic and pharmacologic properties as do rat and cat dopamine-containing neurons and that in vitro they fire with pacemaker regularity in a low-calcium/high-magnesium medium. The in vitro preparation offers an approach to examining the fundamental properties of ventral tegmental area dopamine-containing neurons in the absence of afferent inputs.  相似文献   

12.
The effect of chronic neuroleptic drug treatment on self-stimulation of the mesolimbic dopamine system was tested. Rats with electrodes implanted into the ventral tegmental nucleus (A10 cell body area) were treated with haloperidol for three weeks. Afterwards, the rats showed a 35% increase in self-stimulation rate, as compared to pre-drug control rates. This increase persisted for three weeks after drug withdrawal before returning to baseline rates. Rats treated for three weeks with the atypical neuroleptic, clozapine, also showed an increase, the duration and magnitude of which was similar to that seen in the haloperidol group. In addition, four rhesus monkeys with electrodes in the nucleus accumbens (one of the terminal projection areas of the A10 mesolimbic dopamine system) were given a three week treatment with haloperidol, after which all animals showed a significant, long-lasting decrease in self-stimulation threshold, as measured by a rate-independent reward paradigm. Taken together, these results suggest the induction of receptor supersensitivity in the mesolimbic dopamine system by long-term treatment with neuroleptic drugs.  相似文献   

13.
Based on a number of neuroanatomical and behavioural similarities, recent evidence suggests that heterozygous reeler mice, haploinsufficient for reelin expression, represent a useful model of psychosis vulnerability. As brain mesolimbic dopamine pathways have been proposed to be associated with the pathophysiology of psychotic disorders, we thought it would be of interest to examine whether these animals present disturbances in the mesolimbic dopamine system. To this end we studied by immunocytochemical, in situ hybridization procedures and receptor autoradiography, several markers of the mesotelencephalic dopamine pathway in heterozygous reeler mice and controls. We report that heterozygous reeler mice exhibit a reduction in the number of tyrosine hydroxylase-immunoreactive cell bodies and tyrosine hydroxylase mRNA levels in the ventral tegmental area, as well as a reduction of tyrosine hydroxylase and dopamine transporter immunoreactivity in the dopamine terminal fields of the limbic striatum. In these areas we also observed a reduction of dopamine D2 receptor mRNA. Finally, a marked increase in D3 receptor mRNA levels was observed concomitant with a significant increase in D3 binding sites. On the contrary, the nigrostriatal pathway did not show any significant alteration in heterozygous reeler mice with regards to the dopaminergic markers examined in substantia nigra cell bodies and dorsal striatum dopamine terminal fields. These results suggest a specific link between reelin-related neuronal pathology and dopamine involvement in the pathophysiology of psychotic disorders.  相似文献   

14.
Several recent reports have demonstrated that opiate action in both the ventral tegmental area (VTA) and the nucleus accumbens (N.Acc.) produces an increase in locomotor activity. In the present experiments, the effect of repeated bilateral injections into these sites of either morphine or the mu opioid receptor agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol (DAGO) was investigated. As previously reported with morphine and other opioids, repeated injections of either morphine or DAGO into the VTA produced a progressive enhancement or sensitization of their locomotor activating effects. On the other hand, although both substances injected into the N.Acc. elicited increased locomotion, repeated injections did not lead to sensitization. It has been suggested that the increased locomotor activity produced by opiate injection into the VTA is dopamine-dependent while that produced by intra-N.Acc. injections is not. The present findings provide neuroanatomical support for the view that sensitization to the locomotor activating effects of opiates and opioids brought about by repeated drug exposure involves the mesolimbic dopamine system.  相似文献   

15.
Several recent reports have demonstrated that opiate action in both the ventral tegmental area (VTA) and the nucleus accumbens (N.Acc.) produces an increase in locomotor activity. In the present experiments, the effect of repeated bilateral injections into these sites of either morphine or the mu opioid receptor agonist Tyr-d-Ala-Gly-NMe-Phe-Gly-ol (DAGO) was investigated. As previously reported with morphine and other opioids, repeated injections of either morphine or DAGO into the VTA produced a progressive enhancement or sensitization of their locomotor activating effects. On the other hand, although both substances injected into the N.Acc. elicited increased locomotion, repeated injections did not lead to sensitization. It has been suggested that the increased locomotor activity produced by opiate injection into the VTA is dopamine-dependent while that produced by intra-N.Acc. injections is not15. The present findings provide neuroanatomical support for the view thatsensitization to the locomotor activating effects of opiates and opioids brought about by repeated drug exposure involves the mesolimbic dopamine system.  相似文献   

16.
The neuropeptide oxytocin (20-100 ng), induces penile erection when injected unilaterally into the caudal but not rostral mesencephalic ventral tegmental area (VTA) of male Sprague-Dawley rats. Such pro-erectile effect started 30 min after treatment and was abolished by the prior injection of d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin (1 microg), an oxytocin receptor antagonist injected into the same caudal ventral tegmental area or of haloperidol (1 microg), a dopamine receptor antagonist, injected either into the nucleus accumbens shell (NAs) or into the paraventricular nucleus of the hypothalamus (PVN) ipsilateral to the injected ventral tegmental area. Penile erection was seen 15 min after the occurrence of, or concomitantly to, an increase in extracellular dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysate obtained from the nucleus accumbens or the paraventricular nucleus, which was also abolished by d(CH2)5Tyr(Me)(2)-Orn(8)-vasotocin (1 microg), injected into the ventral tegmental area before oxytocin. In the caudal ventral tegmental area oxytocin-containing axons/fibres (originating from the paraventricular nucleus) appeared to closely contact cell bodies of mesolimbic dopaminergic neurons retrogradely labelled with Fluorogold injected into the nucleus accumbens shell, suggesting that oxytocin effects are mediated by the activation of mesolimbic dopaminergic neurons, followed in turn by that of incerto-hypothalamic dopaminergic neurons impinging on oxytocinergic neurons mediating penile erection. As the stimulation of paraventricular dopamine receptors not only induces penile erection, but also increases mesolimbic dopamine neurotransmission by activating oxytocinergic neurons, these results provide further support for the existence of a neural circuit in which dopamine and oxytocin influence both the consummatory and motivational/rewarding aspects of sexual behaviour.  相似文献   

17.
Chronoamperometry was used in combination with monoamine-selective electrodes to monitor, in nucleus accumbens (NAcc) and prefrontal cortex (PFC) of freely behaving rats, changes in dopamine (DA)-like electrochemical signals elicited by unilateral ventral tegmental microinjections of the selective μ-opioid receptor agonist D-Ma, N-Me-Phe-Gly-01-Enkephalin (DAMGO; 0.01, 0.1, and 1.0 nmol). The results show that DAMGO dose-dependently increased electrochemical signals both in NAcc and PFC within a few minutes of injection. While DAMGO elicited signal increases of comparable amplitudes in both regions, the increases recorded in PFC were significantly longer lasting than those in NAcc; at the highest dose tested (1.0 nmol), DAMGO produced signal increases that lasted (mean ± sem) 129 ± 7.3 min in PFC and 96 ± 12.5 min in NAcc. Pretreatment with the opioid receptor antagonist, naloxone (2 mgkg, sc), significantly attenuated the peak amplitude and reduced the duration of DAMGO-in- duced (0.1 nmol) signal increases both in PFC and NAcc. In contrast, pretreatment with apomorphine (50 μg/kg, sc), a D1/D2 DA receptor agonist, significantly reduced the duration and the rate of rise of the signal increases in both regions but had little effect on the peak increases in signal. Unilateral ventral tegmental DAMGO administration (0.01, 0.1, and 1.0 nmol) also caused dose-dependent increases in contraversive circling the duration of which approximated that of the signal increases recorded in NAcc. However, differences in the time courses of DAMGO-induced contraversive circling and signal increases in NAcc suggest that the behavioral stimulant effect of ventral tegmental μ-opioid receptor activation may not be mediated exclusively by meso-NAcc DA neurons. The results of this study suggest that enkephalins modulate the activity of meso-PFC DA neurons and that behaviorally relevant activation of μ-opioid receptors in the ventral tegmental area increases DA transmission in PFC to a same, if not to a greater extent as in NAcc. These findings are discussed in relation to evidence indicating that the response of meso-NAcc DA neurons to a variety of stimuli, including drugs of abuse, is indirectly regulated by a DA-sensitive neurons in PFC. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Opioids induce rewarding and locomotor effects by inhibiting rostromedial tegmental GABA neurons that express μ‐opioid and nociceptin receptors. These GABA neurons then strongly inhibit dopamine neurons. Opioid‐induced reward, locomotion and dopamine release also depend on pedunculopontine and laterodorsal tegmental cholinergic and glutamate neurons, many of which project to and activate ventral tegmental area dopamine neurons. Here we show that laterodorsal tegmental and pedunculopontine cholinergic neurons project to both rostromedial tegmental nucleus and ventral tegmental area, and that M4 muscarinic receptors are co‐localized with μ‐opioid receptors associated with rostromedial tegmental GABA neurons. To inhibit or excite rostromedial tegmental GABA neurons, we utilized adeno‐associated viral vectors and DREADDs to express designed muscarinic receptors (M4D or M3D respectively) in GAD2::Cre mice. In M4D‐expressing mice, clozapine‐N‐oxide increased morphine‐induced, but not vehicle‐induced, locomotion. In M3D‐expressing mice, clozapine‐N‐oxide blocked morphine‐induced, but not vehicle‐induced, locomotion. We propose that cholinergic inhibition of rostromedial tegmental GABA neurons via M4 muscarinic receptors facilitates opioid inhibition of the same neurons. This model explains how mesopontine cholinergic systems and muscarinic receptors in the rostromedial tegmental nucleus and ventral tegmental area are important for dopamine‐dependent and dopamine‐independent opioid‐induced rewards and locomotion.  相似文献   

19.
Orexin/hypocretin neurons in the lateral hypothalamus and adjacent perifornical area (LH/PFA) innervate midbrain dopamine (DA) neurons that project to corticolimbic sites and subserve psychostimulant-induced locomotor activity. However, it is not known whether dopamine neurons in turn regulate the activity of orexin cells. We examined the ability of dopamine agonists to activate orexin neurons in the rat, as reflected by induction of Fos. The mixed dopamine agonist apomorphine increased Fos expression in orexin cells, with a greater effect on orexin neurons located medial to the fornix. Both the selective D1-like agonist, A-77636, and the D2-like agonist, quinpirole, also induced Fos in orexin cells, suggesting that stimulation of either receptor subtype is sufficient to activate orexin neurons. Consistent with this finding, combined SCH 23390 (D1 antagonist)-haloperidol (D2 antagonist) pretreatment blocked apomorphine-induced activation of medial as well as lateral orexin neurons; in contrast, pretreatment with either the D1-like or D2-like antagonists alone did not attenuate apomorphine-induced activation of medial orexin cells. In situ hybridization histochemistry revealed that LH/PFA cells rarely express mRNAs encoding dopamine receptors, suggesting that orexin cells are transsynaptically activated by apomorphine. We therefore lesioned the nucleus accumbens, a site known to regulate orexin cells, but this treatment did not alter apomorphine-elicited activation of medial or lateral orexin neurons. Interestingly, apomorphine failed to activate orexin cells in isoflurane-anaesthetized animals. These data suggest that apomorphine-induced arousal but not accumbens-mediated hyperactivity is required for dopamine to transsynaptically activate orexin neurons.  相似文献   

20.
Prepulse inhibition (PPI) of the acoustic startle reflex is an operational measure of sensorimotor gating. Both locomotor activity and PPI are regulated by mesolimbic dopamine activity. Neurotensin is a neuropeptide, which coexists with dopamine in mesolimbic neurons. Neurotensin receptors have been identified in the nucleus accumbens (NAC) and ventral tegmental area (VTA). Previous studies have shown that neurotensin administered into the NAC differentially modulates PPI and locomotor activity. In this study we tested the effects of neurotensin administered into the VTA on PPI and locomotor activity. Consistent with previous studies, intra-VTA administered neurotensin significantly increased spontaneous locomotor activity. However, intra-VTA administered neurotensin did not have any significant effect on PPI. These results suggest that PPI and locomotor activity may have dissociable mesolimbic substrates and that neurotensin in the VTA does not play an important role in regulating PPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号