首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular matrix (ECM) of the normal artery wall is a collection of fibrous proteins and associated glycoproteins embedded in a hydrated ground substance of glycosaminoglycans and proteoglycans. These distinct molecules are organized into a highly ordered network that are closely associated with the vascular cells that produce them. In addition to providing the architectural framework for the artery wall that imparts mechanical support and viscoelasticity, the ECM can regulate the behaviour of vascular cells, including their ability to migrate, proliferate and survive injury. The composition of the ECM is different within intimal lesions of atherosclerosis, which are composed of monocytes and lymphocytes from the circulation and smooth muscle cells (SMC) that migrate from the media to the intima (Ross 1993, 1999), and these differences may contribute to the altered phenotype of vascular cells within lesions. This review will briefly outline the ECM changes observed in atherosclerosis and restenosis and the potential relationship of these changes to altered vascular cell functions.  相似文献   

2.
We recently developed a scaffold-free patch of human myocardium with human embryonic stem cell-derived cardiomyocytes and showed that stromal and endothelial cells form vascular networks in vitro and improve cardiomyocyte engraftment. Here, we hypothesize that stromal cells regulate the angiogenic phenotype by modulating the extracellular matrix (ECM). Human marrow stromal cells (hMSCs) support the greatest degree of endothelial cell organization, at 1.3- to 2.4-fold higher than other stromal cells tested. Stromal cells produce abundant ECM components in patches, including fibrillar collagen, hyaluronan, and versican. We identified two clonal hMSC lines that supported endothelial networks poorly and robustly. Interestingly, the pro-angiogenic hMSCs express high levels of versican, a chondroitin sulfate proteglycan that modulates angiogenesis and wound healing, whereas poorly angiogenic hMSCs produce little versican. When transplanted onto uninjured athymic rat hearts, patches with proangiogenic hMSCs develop ~ 50-fold more human vessels and form anastomoses with the host circulation, resulting in chimeric vessels containing erythrocytes. Thus, stromal cells play a key role in supporting vascularization of engineered human myocardium. Different stromal cell types vary widely in their proangiogenic ability, likely due in part to differences in ECM synthesis. Comparison of these cells defines an in vitro predictive platform for studying vascular development.  相似文献   

3.
4.
Cephalic neural crest (NC) cells enter a cell-free space (CFS) that contains an abundant extracellular matrix (ECM). Numerous in vitro investigations have shown that extracellular matrices can influence cellular activities including NC cell migration. However, little is known about the actual ECM composition of the CFS in vivo, how the components are distributed, or the nature of NC cell interactions with the CFS matrix. Using ultrastructural, autoradiographic, and histochemical techniques we analyzed the composition and spatial organization of the ECM found in the CFS and its interaction with mesencephalic NC cells. We have found that a specific distribution of glycoproteins and sulfated polyanions existed within the CFS prior to the translocation of NC cells and that this ECM was modified in areas occupied by NC. The interaction between the ECM components and the NC cells was not the same for all NC cells in the population. Subpopulations of the NC cell sheet became associated with ECM of the ectoderm (basal lamina) while other NC cells became associated with the ECM of the CFS. Trailing NC cells (NC cells that emerge after the initial appearance of NC cells) encountered a modified ECM due to extensive matrix modifications by the passage of the initial NC cell population.  相似文献   

5.
Decellularized placental matrices for adipose tissue engineering   总被引:2,自引:0,他引:2  
A tissue-engineered adipose substitute would be invaluable to plastic surgeons for reconstructive, corrective, and cosmetic procedures. This work involves the design of a scaffold for soft tissue augmentation incorporating the decellularized extracellular matrix (ECM) of human placenta. We have developed a protocol to decellularize an intact, large segment (8 cm by 8 cm) of the human placenta. To facilitate the complete decellularization of the dense matrix, a system was designed to perfuse the required chemicals into the placenta via the existing vasculature. Following processing, the original architecture of the placental ECM was preserved, including an intact vascular network. Histological, immunohistochemical, and scanning electron microscopic analyses confirmed the removal of the cells and cellular debris and characterized the composition and structure of the matrix. In vitro cell culture experimentation showed that the placental decellular matrix (PDM) could facilitate the adhesion of primary human adipose precursor cells at early time points. The PDM has great potential for use as a scaffold for adipose tissue engineering, as the placenta is a rich source of human ECM components that can be readily harvested without harm to the donor.  相似文献   

6.
7.
The decellularization of porcine heart tissue offers many opportunities for the production of physiologically relevant myocardial mimetic scaffolds. Earlier, we reported the successful isolation of a thin porcine cardiac extracellular matrix (pcECM) exhibiting relevant bio-mechanical properties for myocardial tissue engineering. Nevertheless, since native cardiac tissue is much thicker, such thin scaffolds may offer limited regeneration capacity. However, generation of thicker myocardial mimetic tissue constructs is hindered by diffusion limitations (~100?μm), and the lack of a proper vascular-like network within these constructs. In our present work, we focused on optimizing the decellularization procedure for thicker tissue slabs (10-15?mm), while retaining their inherent vasculature, and on characterizing the resulting pcECM. The trypsin/Triton-based perfusion procedure that resulted in a nonimmunogenic and cell-supportive pcECM was found to be more effective in cell removal and in the preservation of fiber morphology and structural characteristics than stirring, sonication, or sodium dodecyl sulfate/Triton-based procedures. Mass spectroscopy revealed that the pcECM is mainly composed of ECM proteins with no apparent cellular protein remains. Mechanical testing indicated that the obtained pcECM is viscoelastic in nature and possesses the typical stress-strain profile of biological materials. It is stiffer than native tissue yet exhibits matched mechanical properties in terms of energy dissipation, toughness, and ultimate stress behavior. Vascular network functionality was maintained to the first three-four branches from the main coronary vessels. Taken together, these results reaffirm the efficiency of the decellularization procedure reported herein for yielding thick nonimmunogenic cell-supportive pcECM scaffolds, preserving both native tissue ultra-structural properties and an inherent vascular network. When reseeded with the appropriate progenitor cells, these scaffolds can potentially serve as ex vivo screening platforms for new therapeutics, as models for human cardiac ECM, or as biomedical constructs for patch or transmural transplantation strategies.  相似文献   

8.
动物血管脱细胞方法及细胞外基质材料评价研究   总被引:2,自引:1,他引:2  
采用独立设计的反复冻融方法,去除兔颈总动脉中的血管细胞,对所获得的细胞外基质进行组织、生化、力学等分析。在分离兔颈总动脉后,首先用低渗缓冲液处理,然后经低温反复冻融,最后用非离子型去污剂处理。所得的支架行组织染色和扫描电镜分析,显示基质的微观结构;荧光染色和基因组DNAPCR分析,检测细胞DNA残留;分别行羟脯氨酸定量分析和轴向拉伸强度分析,检测胶原蛋白和血管生物力学性能的变化;支架没有明显的细胞毒性,溶血率低于医用材料的标准;支架随时间缓慢降解。种植兔的骨髓干细胞,研究细胞在支架上的粘附生长能力。应用本方法能彻底去除血管细胞,没有细胞碎片和DNA的残留,并保留了较完整的细胞外基质和力学性能,具有开放的大孔径结构,细胞生物相容性好,是一种理想的组织工程血管支架材料。  相似文献   

9.
Ong SM  He L  Thuy Linh NT  Tee YH  Arooz T  Tang G  Tan CH  Yu H 《Biomaterials》2007,28(25):3656-3667
Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.  相似文献   

10.
Biological scaffolds exhibit advantageous properties for tissue engineering of small diameter vessels. The influence of their extracellular matrix (ECM) components during in vivo repopulation is unknown. We implanted different xenogenic vascular matrices in a rat model to determine the influence of scaffold-thickness and ECM composition on in vivo repopulation. Decellularized ovine jugular vein (JV, n=42), carotid artery (CA, n=42) and aorta (AO, n=42) were implanted subcutaneously in the neck of adult male rats. Animals were sacrificed 2, 4 and 8 weeks after implantation. Cell and matrix morphology of explanted scaffolds were characterized by hematoxylin-eosin and pentachrome staining. Monoclonal anti-rat-CD31 was used to identify revascularization. Quantification of cell density was done by DNA-isolation.THICKNESS OF IMPLANTED XENOGENIC SCAFFOLDS VARIED ACCORDING TO THE MATERIAL USED (AO: 3.0-3.8mm; CA: 0.7-0.88mm; JV: 0.35-0.61mm). Immunohistology revealed complete repopulation of AO, CA, and JV scaffolds with endothelial cells and myofibroblasts within 2 weeks. After 8 weeks of implantation, AO scaffolds were completely covered by an endothelial monolayer and showed signs of a central matrix degeneration. JV scaffolds were completely degenerated at this stage. In contrast, CA scaffolds showed preserved ECM with a normal myofibroblast population and endothelial cell coverage.  相似文献   

11.
We have developed a new method of preparing acellular vascular grafts. Cellular components, including cell membranes and proteins in cytosol, were efficiently extracted from the vessels in a concentrated aqueous solution of poly(ethylene glycol), an amphiphilic biocompatible polymer. The residual DNA was digested by deoxyribonuclease I treatment after extraction with poly(ethylene glycol). The two-step extraction process proved quite effective at removing the cellular components while causing little damage to the extracellular matrices. We did not use any detergent that would damage the extracellular matrices. Therefore, vascular endothelial cells grew well on the acellular vessels after recellularization, promising longi-patent cardiovascular grafts.  相似文献   

12.
Matrix metalloproteinase control of capillary morphogenesis   总被引:1,自引:0,他引:1  
Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g., blood vessel formation, bone development) and pathophysiological (e.g., wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and antiangiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. Although it was initially thought that MMPs were strictly proangiogenic, new functions for this proteolytic family, such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities, have been discovered in the last decade. These findings cast MMPs as multifaceted pro- and antiangiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane, proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules, maturation of these nascent vessels, and the pruning and regression of the vascular network.  相似文献   

13.
Tumor progression ensues within a three-dimensional microenvironment that consists of cellular and non-cellular components. The extracellular matrix (ECM) and hypoxia are two non-cellular components that potently influence metastasis. ECM remodeling and collagen cross-linking stiffen the tissue stroma to promote transformation, tumor growth, motility and invasion, enhance cancer cell survival, enable metastatic dissemination, and facilitate the establishment of tumor cells at distant sites. Matrix degradation can additionally promote malignant progression and metastasis. Tumor hypoxia is functionally linked to altered stromal-epithelial interactions. Hypoxia additionally induces the expression of pro-migratory, survival and invasion genes, and up-regulates expression of ECM components and modifying enzymes, to enhance tumor progression and metastasis. Synergistic interactions between matrix remodeling and tumor hypoxia influence common mechanisms that maximize tumor progression and cooperate to drive metastasis. Thus, clarifying the molecular pathways by which ECM remodeling and tumor hypoxia intersect to promote tumor progression should identify novel therapeutic targets.  相似文献   

14.
Inflammation is a response of the immune system to foreign insult or physical damage. Various cellular and humoral components of the immune system are recruited from the vascular system and are translocated through endothelium, and into extracellular matrix (ECM) compartments of inflamed tissues. This translocation is orchestrated by various types of accessory signals, in the form of soluble or complexed molecules, which evoke remarkable transitions in leukocyte activities. Recruited inflammatory cells give rise to mechanisms of migration, including the secretion of enzymes and other pro-inflammatory mediators and the alteration of their adhesive contacts with the ECM. Hence, migrating cells secrete enzymes, chemokines, and cytokines which interact with the ECM, and thereby, provide the cells with intrinsic signals for coordinating their responses. Resultant products of enzymatic modifications to the ECM microenvironment, such as cytokine- and ECM-derived molecules, may be also part of a cell-signaling mechanism that provides leukocytes with information about the nature of their inflammatory activity; such a mechanism may give the immune system data that can be cognitively interpreted for consequential activities. This article reviews the findings that support this notion and describe the dynamic interactions between participants of the inflammatory processes.  相似文献   

15.
In a previous study using state-of-the-art proteomic techniques, we identified colligin 2 (HSP47) as a glioma blood vessel-specific protein. In the present study we precisely localized the expression of colligin 2 in the blood vessels of diffusely infiltrating gliomas and relate the expression to the distinct cellular components of the vessels by using multiple immunolabeling and confocal microscopy. We grouped the glioma blood vessels into morphological categories ranging from normal looking capillaries to vessels with hypertrophic and sclerotic changes. The expression patterns of various markers of endothelial and pericytic differentiation were correlated with the position of the cells in the vessels and the expression of colligin 2. We found that colligin 2 is expressed in all categories of glioma blood vessels in cells with endothelial and pericytic lineage. Expression of colligin 2 was also found in cells scattered around blood vessels and in few glial fibrillary acidic protein-positive cells within the blood vessels. There is overlap in the expression of colligin 2 and the collagens type I and IV for which colligin 2 is a chaperon. We conclude that colligin 2 is expressed in all cellular components of glioma blood vessels and may serve as a general marker for active angiogenesis.  相似文献   

16.
We developed artificial extracellular matrix proteins designed to have collagen-binding activity and active functional units that promote network formation of vascular endothelial cells. We engineered a laminin-derived IKVAV sequence, which stimulates capillary network formation of vascular endothelial cells, to incorporate into an elastin-derived structural unit. The designed fusion protein also had a cell-adhesive RGD sequence and a collagen-binding domain derived from fibronectin. The resultant fusion protein could bind to collagen type I and promote angiogenic activity of collagen gel. The collagen-binding domain also had slight angiogenic activity; however, the designed fusion protein also enhanced cellular migration activity. The engineering strategy of designing multi-functional ECM proteins has a possibility for supporting current tissue engineering techniques.  相似文献   

17.
In response to an angiogenic stimulus, ECs initiate programs of gene expression that result in the quantitative alteration of gene products within nuclear, cytoplasmic, cell surface, and extracellular compartments. During the formation of new microvasculature, patterns of molecular expression among individual ECs must direct the creation of complex, multicellular morphologies in two and three dimensions. Studies in vitro indicate that cell-generated forces of tension can organize ECM into structures that direct the behavior of single cells (via influences on cellular elongation, alignment, and migration) and that provide positional information for the creation of multicellular patterns. Significantly, the formation of organized matrical structures is controlled by gene products (of ECs or other cell types that populate the ECM) that influence the balance between the forces of cellular tension and the viscoelastic resistance of the ECM. Regulation of relevant genes could be accomplished by soluble molecular signals (eg, growth factors) and/or solid-state signals arising from specific arrangements of cytoskeletal structure that, in turn, are a function of the equilibrium between cellular tension and matrical resistance. Within cells, information for the construction of complex organelles is encoded in the shapes of the constituent molecules. Similarly, the creation of complex vascular architecture must be mediated by molecular shapes, a fact that is readily apparent in simple receptor-ligand interactions such as the binding of growth factors to ECs or the attachment of ECs to one another. However, between molecules and morphology also exists a set of multilayered, interactive, multimolecular systems that establish vascular form at unicellular and multicellular levels. Characterization of these systems is an elusive target that resides at the frontier of vascular biology; the identification of models in vitro that accurately reproduce macroscale events of vascular morphogenesis should advance considerably our understanding of vascular development and lead to an elucidation of its regulation in vivo.  相似文献   

18.
This investigation was designed to describe the morphological events in embryonic development of peripheral blood vessels (vasculogenesis) and to relate this process to the appearance of extracellular matrix (ECM) during growth and maturation of these tissues. Extraembryonic vitelline vessels of the early chick embryo were chosen for this study and light, transmission, and scanning electron microscopy were carried out on vessels excised from chick embryos (Hamburger-Hamilton stages 8 through 23). Our data show that early (stage 10) vessels are composed of two distinct epithelial layers, an inner layer of presumptive endothelium surrounded by a layer of splanchnopleuric mesoderm. During development, the inner layer gives rise to mature vascular endothelium while splanchnopleuric mesoderm differentiates to form primitive vascular smooth muscle. Ultrastructural studies show the presence of collagen and basal lamina in the extracellular space between these two layers during initiation of endothelial and smooth muscle cytodifferentiation. Furthermore, ruthenium red-positive material is present on basal surfaces of developing vascular endothelium at this time, indicating possible glycosaminoglycans (GAG) or other polyanionic components of the ECM. These data suggest that the sequential production of basal lamina, collagen(s), and/or GAG's by developing peripheral vessel wall epithelia may be critical to their final differentiation.  相似文献   

19.
Extracellular matrix (ECM) scaffolds derived from cultured cells have drawn increasing attention for use in tissue engineering. We have developed a method to prepare cultured cell-derived ECM scaffolds by combining three-dimensional cell culture, decellularization, and selective template removal. Cell-ECM-template complexes were first formed by culture of cells in a poly(lactic-co-glycolic acid) (PLGA) mesh template to deposit their own ECM. The complexes were subsequently decellularized to remove cellular components. Finally, the PLGA template was selectively removed to obtain the ECM scaffolds. Seven decellularization methods were compared for their decellularization effects during scaffold preparation. They were: freeze-thaw cycling (-80°C, six times) with ammonia water (25 mM); 0.1% Triton? X-100 (TX100) with 1.5M KCl aqueous solution; freeze-thaw cycling alone; ammonia water alone; TX100 extraction; osmotic shock with 1.5M KCl; and freeze-thaw cycling with 3M NaCl. Among these methods, the methods of freeze-thaw cycling with NH(4) OH and TX100 with 1.5M KCl showed the best effect on the removal of cellular components from the complexes, while the other five methods could only partially remove cellular components. The ECM scaffolds prepared by these two methods had similar gross appearances and microstructures. In vivo implantation of the ECM scaffolds prepared by these two methods induced mild host responses. The two decellularization methods were demonstrated to be effective for preparation of cultured cell-derived ECM scaffolds.  相似文献   

20.
Heparin and related molecules influence vascular wall structure by their ability to inhibit smooth muscle cell (smc) proliferation and migration. However, little is known as to whether heparin has an effect on the extracellular matrix. In the present study, the effect of heparin on the content and regional distribution of elastin, collagen, and proteoglycans (PGs) in blood vessels following experimental injury was determined. Two groups of rats were subjected to left common carotid balloon injury and were infused with either 0.9% saline or heparin in a saline solution, for 2 weeks. Using a new morphometric method of analysis, the authors determined changes in volumes of elastin, collagen, and PGs contained within an 'extracellular matrix domain (ECM domain),' the average envelope of connective tissue surrounding each smc. Heparin treatment inhibited intimal thickening and decreased the elastin content in the ECM domain in the upper and lower arterial intima. Collagen also was found to be significantly decreased 5.0-fold and 7.6-fold in the ECM domains of upper and lower intima, respectively, of heparin-treated animals. The decrease in both elastin and collagen was balanced by a significant increase in amorphous and filamentous electron-dense material. Heparin also caused a significant 1.8-fold and 1.9-fold increase in the PG content in the ECM domain in the upper and lower intima, respectively. Immunohistochemical analysis, using antibodies to elastin and PG subclasses, supported the morphometric observations. This study has shown that heparin administered in vivo can alter the accumulation and distribution of each of the major vascular ECM components in a specific and differential manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号