首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Electroconvulsion therapy is likely to serve as an effective preconditioning stimulus for inducing tolerance to ischemic brain injury. The current study examines whether electrical stimuli on the spinal cord is also capable of inducing tolerance to ischemic spinal cord injury by transient aortic occlusion. METHODS: Spinal cord ischemia was induced by occlusion of the descending thoracic aorta in combination with maintaining systemic hypotension (40 mmHg) during the procedure. Animals implanted with epidural electrodes were divided into four groups according to electrical stimulation and sham. Two groups consisted of rapid preconditioning (RE group, n = 8) and sham procedure (RC group, n = 8) 30 min before 9 min of spinal cord ischemia. In the two groups that underwent delayed preconditioning, rats were exposed to 9 min of aortic occlusion 24 h after either pretreatment with epidural electrical stimulation (DE group, n = 8) or sham (DC group, n = 8). In addition, rats were exposed to 6-11 min of spinal cord ischemia at 30 min or 24 h after epidural electrical stimulation or sham stimulation. The group P50 represents the duration of spinal cord ischemia associated with 50% probability of resultant paraplegia. RESULTS: Pretreatment with electrical stimulation in the DE group but not the RE group protected the spinal cord against ischemia, and this stimulation prolonged the P50 by approximately 15.0% in the DE group compared with the DC group. CONCLUSIONS: Although the optimal setting for this electrical preconditioning should be determined in future studies, the results suggest that epidural electrical stimulation will be a useful approach to provide spinal protection against ischemia.  相似文献   

2.
OBJECTIVE: We previously showed that ischemic preconditioning significantly reduced spinal cord injury caused by 35-minute aortic occlusion. In this study we investigated the effect of ischemic preconditioning on spinal cord injury after 45-minute aortic occlusion. METHODS: Thirty-two pigs were divided as follows: group 1 (n = 6) underwent sham operation, group 2 (n = 6) underwent 20 minutes of aortic occlusion, group 3 (n = 6) underwent 45 minutes of occlusion, group 4 (n = 6) underwent 20 minutes of occlusion and 48 hours later underwent an additional 45 minutes, and group 5 (n = 8) underwent 20 minutes of occlusion and 80 minutes later underwent an additional 45 minutes. Aortic occlusion was accomplished with two balloon occlusion catheters placed fluoroscopically after the origin of the left subclavian artery and at the aortic bifurcation. Neurologic evaluation was by Tarlov score. The lower thoracic and lumbar spinal cords were harvested at 120 hours and examined histologically with hematoxylin-eosin staining. The number of neurons was counted, and the inflammation was scored (0-4). Statistical analysis was by Kruskal-Wallis and 1-way analysis of variance tests. RESULTS: Group 5 (early ischemic preconditioning) had better Tarlov scores than group 3 ( P < .001) and group 4 (late ischemic preconditioning, P < .001). The histologic changes were proportional to the Tarlov scores, with the least histologic damage in the animals of group 5 relative to group 3 (number of neurons P < .001, inflammation P = .004) and group 4 (number of neurons P < .001, inflammation P = .006). CONCLUSION: Early ischemic preconditioning is superior to late ischemic preconditioning in reducing spinal cord injury caused by the extreme ischemia of 45 minutes of descending thoracic aortic occlusion.  相似文献   

3.
缺血预处理对脊髓缺血损伤细胞内Ca2+变化的影响   总被引:1,自引:1,他引:0  
目的 观察缺血预处理对脊髓缺血损伤细胞内 Ca2 变化的影响。 方法 将 44只健康新西兰大白兔随机分为三组 :缺血组 2 0只 ,缺血预处理组 2 0只 ,假手术组 4只。缺血组于左肾动脉下夹闭腹主动脉 40分钟后开放灌注 ;缺血预处理组夹闭腹主动脉 5分钟 ,开放 15分钟 ,再次夹闭 40分钟后开放再灌注 ;假手术组动物手术操作同缺血组 ,但不夹闭腹主动脉。分别于夹闭 40分钟后即刻、开放再灌注 2小时、8小时、2 4小时和 72小时各时相点测定脊髓组织 Ca2 含量 ,并评定、记录动物后肢神经功能。 结果 缺血预处理组脊髓组织 Ca2 显著低于缺血组各时相值 ;再灌注 8小时后神经功能评分缺血预处理组明显高于缺血组 (P<0 .0 1)。 结论 缺血预处理具有降低神经元胞浆游离 Ca2 浓度 ,防止Ca2 超载 ,稳定细胞内环境的能力 ,对主动脉阻断所致的脊髓缺血损伤有良好的保护作用。其表现为明显降低瘫痪发生率 ,增加术后神经评分  相似文献   

4.
目的 探讨缺血预处理 (IPC)对缺血预处理对兔主动脉阻断后脊髓功能和一氧化氮(NO)的影响。方法  2 4只日本大白兔随机分为假手术组 (A组 )、缺血再灌注组 (B组 )和IPC保护组 (C组 ) ,每组 8只。分别于首次预处理即刻 (C 40 )、缺血即刻 (I0 )、缺血 45min(I45)、再灌注后 60min(R60 )和术后 7d处死动物前即刻 (R7d)采血检测血清和R7d脊髓组织NO的浓度。术后观察后肢神经功能的评分、后肢针电极肌电图 (EMG)和脊髓组织病理学的改变。结果 缺血再灌注损伤后B组血清NO浓度较缺血前和A、C组对应时点值显著升高 (P <0 .0 1)。C组R7d血清NO浓度明显低于其他时点及A组R7d测定值 (P <0 .0 5或 0 .0 1)。B组脊髓组织NO浓度显著高于A、C组(P <0 .0 1)。B组后肢神经功能和脊髓病理学评分均显著性低于A、C组 (P <0 .0 5或 0 .0 1) ,其后肢EMG亦较C组有显著性病理改变 (P <0 .0 1)。结论 IPC对家兔主动脉阻断后脊髓缺血再灌注损伤有良好的保护作用 ,其保护作用机制与抑制NO的生成有关。  相似文献   

5.
OBJECTIve: Delayed ischemic preconditioning has demonstrated neuroprotective effects in spinal cord ischemia. We investigated the effects of immediate ischemic preconditioning based on somatosensory evoked potentials monitoring in a model of spinal cord injury due descending thoracic aorta occlusion in dogs. METHODS: Twenty-one dogs were submitted to spinal cord ischemia induced by descending thoracic aorta cross-clamping for 45 min. Control group underwent only the aortic cross-clamping (n=7), group A underwent one cycle of ischemic preconditioning (n=7) and group B underwent three equal cycles of ischemic preconditioning (n=7), immediately before the aortic cross-clamping. Ischemic preconditioning cycles were determined by somatosensory evoked potentials monitoring. Neurologic evaluation was performed according to the Tarlov score at 72 h of follow-up. The animals were then sacrificed and the spinal cord harvested for histopathology. RESULTS: Aortic pressures before and after the occluded segment were similar in the three groups. Ischemic preconditioning periods corresponded to a mean ischemic time of 3+/-1 min and a mean recovery time of 7+/-2 min. Severe paraplegia was observed in three animals in Control group, in four in group A and in none in group B. Tarlov scores of group B were significantly better in comparison to the Control group (P=0.036). Histopathologic examination showed severe neuronal necrosis in the thoracic and lumbar gray matter in animals who presented paraplegia. CONCLUSIONS: Immediate repetitive ischemic preconditioning based on somatosensory evoked potentials monitoring seems to protect spinal cord during descending aorta cross-clamping, reducing paraplegia incidence.  相似文献   

6.
OBJECTIVE: Postoperative neurologic deficits after thoracic aortic reconstruction vary widely. Our previous study showed that delayed ischemic preconditioning could prevent spinal cord injury caused by occlusion of the descending thoracic aorta in pigs. We investigated early ischemic preconditioning in the same model. METHODS: Twenty-eight pigs were divided into 4 groups: group 1 (n = 6) underwent a sham operation, group 2 (n = 6) underwent aortic occlusion for 20 minutes, group 3 (n = 8) underwent aortic occlusion for 35 minutes, and group 4 (n = 8) underwent aortic occlusion for 20 minutes and underwent aortic occlusion 80 minutes later without hypotension for 35 minutes. Aortic occlusion was accomplished by using 2 balloon occlusion catheters placed fluoroscopically at T6 to T8 above the diaphragm and at the aortic bifurcation. Neurologic evaluation was performed by an independent observer according to the Tarlov scale (0-4). The lower thoracic and lumbar spinal cords were harvested at 120 hours and examined histologically with hematoxylin-and-eosin stain. Histologic results (number of neurons and grade of inflammation) were scored (0-4) and were similarly analyzed. Statistical analysis was by means of the Kruskal-Wallis test. RESULTS: Group 4 had a better neurologic outcome at 24, 48, and 120 hours in comparison with group 3 (P <.001). The histologic changes were proportional to the neurologic test scores, with the more severe and extensive gray matter damage in animals of group 3 (number of neurons, P <.001; grade of inflammation, P <.001). CONCLUSION: Early ischemic preconditioning without hypotension protects against spinal cord injury after aortic occlusion, as confirmed by using the Tarlov score and histopathology.  相似文献   

7.
目的 观察脊髓缺血损伤时脑型肌酸激酶 (CK BB)和后肢肌电图 (EMG)的变化。方法  1 6只兔随机分为假手术组和缺血 再灌注组 ,每组 8只。缺血 再灌注组夹闭腹主动脉 4 0min ,检测夹闭前 1 0min、夹闭 4 0min和松夹后 6 0min动脉血中CK BB含量。术后 7d记录后肢神经功能评分和检测肌电活动。结果 与缺血前和假手术组比较 ,缺血 再灌注组CK BB含量明显升高而其神经功能评分显著降低 (P <0 0 5或P <0 0 1 ) ,EMG大量可见自发电位 ,运动单位电位募集类型显著改变 (P <0 0 1 )。结论 监测血清CK BB含量或后肢肌电图变化可反映脊髓缺血性损伤的有无和程度的轻重  相似文献   

8.
OBJECTIVE: Ischemic preconditioning has been found to protect various organs from a subsequent longer ischemic insult. We investigated whether the late phase of ischemic preconditioning reduces spinal cord injury from occlusion of the descending thoracic aorta. METHODS: Twenty-four pigs (27 to 30 kg) were randomly divided in four groups: group I (n = 4) underwent a sham operation, group II (n = 4) underwent aortic occlusion for 20 minutes, group III (n = 8) underwent aortic occlusion for 35 minutes, and group IV (n = 8) underwent aortic occlusion for 20 minutes and, 48 hours later, aortic occlusion for 35 minutes. Aortic occlusion was accomplished with two balloon occlusion catheters placed fluoroscopically at T(6) to T(8) above the diaphragm and at the aortic bifurcation. Neurologic evaluation was performed by an independent observer according to Tarlov's scale (0 to 4, with 4 as normal). The lower thoracic and lumbar spinal cords were harvested at 120 hours and examined histologically with hematoxylin and eosin stain. Histologic results (number of neurons and grade of inflammation) were scored 0 to 4 (4, intact spinal cord; 0, no neurons and high inflammation) and were similarly analyzed. Results were expressed as the mean +/- the standard error of the mean, and statistical analysis used the Kruskal-Wallis test. RESULTS: Group IV had a better neurologic outcome at 24, 48, and 120 hours in comparison with group III (P <.001), although 120 hours after the end of the experiment, the neurologic outcome in group IV was worse than at 24 hours (P =.014). The histologic changes were proportional to the neurologic test scores, with the more severe and extensive gray matter damage in the animals of group III (number of neurons, P <.001; and grade of inflammation, P <.001). CONCLUSION: Ischemic preconditioning (late phase, 48 hours after the first occlusion) reduces spinal cord injury after aortic occlusion, as estimated with Tarlov's score and histopathology.  相似文献   

9.
PURPOSE: This experiment was designed for the determination of the optimal epidural cooling temperature for the allowance of spinal cord protection with minimal side effects during an aortic occlusion-induced spinal cord ischemia model in rabbits. METHODS: Spinal cord ischemia was induced in rabbits with infrarenal aortic occlusion for 40 minutes. Spinal cord cooling was effected with epidural infusion of normal saline solution at the following different temperatures: group 1, 17 degrees C (n = 6); group 2, 24 degrees C (n = 6); group 3, 32 degrees C (n = 6); and group 4, 39 degrees C (n = 3). Sham-operated rabbits without aortic occlusion were used as controls with epidural infusion at healthy body temperature (39 degrees C; n = 3). Motor function was assessed at 48 hours with Tarlov's criteria, and the animals were killed. The spinal cord was sectioned into multiple segments, and semiquantitative histologic scoring (0 to 5) was used to grade ischemic injury. RESULTS: Cooling solution and spinal cord temperatures showed linear correlation (r = 0.95). All the rabbits in groups 1 (except one with mild weakness), 2, and 3 were neurologically intact, and all in group 4 had paraplegia develop (P < .001). One rabbit in group 1 died from increased intracranial pressure (ICP). Mean blood pressure, ICP, and body temperature were similar among the groups. Histology correlated with the clinical findings. In groups 1 and 2, minimal histologic changes were noted. Low-grade ischemic changes were present in group 3 in the low-lumbar and mid-lumbar segments. Severe ischemic injury occurred at the same segments in group 4 (P < .05). CONCLUSION: These study results suggest that in rabbits satisfactory spinal cord protection during aortic occlusion can be achieved at moderate regional hypothermia (24 degrees C). Large volume infusion for the achievement of profound hypothermia may cause deleterious effects of increased ICP and is not warranted.  相似文献   

10.
BACKGROUND: Ischemic preconditioning (IPC) is an endogenous cellular protective mechanism whereby brief, noninjurious periods of ischemia render a tissue more resistant to a subsequent, more prolonged ischemic insult. We hypothesized that IPC of the spinal cord would reduce neurologic injury after experimental aortic occlusion in rats and that this improved neurologic benefit could be induced acutely after a short reperfusion interval separating the IPC and the ischemic insult. METHODS: Forty male Sprague-Dawley rats under general anesthesia were randomly assigned to one of two groups. The IPC group (n = 20) had 3 minutes of aortic occlusion to induce spinal cord ischemia 30 minutes of reperfusion, and 12 minutes of ischemia, whereas the controls (n = 20) had only 12 minutes of ischemia. Neurologic function was evaluated 24 and 48 hours later. Some animals from these groups were perfusion-fixed for hematoxylin and eosin staining of the spinal cord for histologic evaluation. RESULTS: Survival was significantly better at 48 hours in the IPC group. Sensory and motor neurologic function were significantly different between groups at 24 and 48 hours. Histologic evaluation at 48 hours showed severe neurologic damage in rats with poor neurologic test scores. CONCLUSIONS: Ischemic preconditioning reduces neurologic injury and improves survival in a rat model of spinal cord ischemia. The protective benefit of IPC is acutely invoked after a 30-minute reperfusion interval between the preconditioning and the ischemic event.  相似文献   

11.
Background: Rapid ischemic preconditioning (IPC) has been shown to reduce cellular injury after subsequent cardiac and cerebral ischemia. However, the data on rapid IPC of the spinal cord is limited. The authors investigated whether pretreatment with sublethal ischemia of spinal cord can attenuate neuronal injury after spinal cord ischemia in rabbits.

Methods: Forty-seven male New Zealand white rabbits were randomly assigned to one of three groups (n = 15 or 16 each). In the IPC(-) group, the infrarenal aorta was occluded for 17 min to produce spinal cord ischemia. In the IPC(+) group, 5 min of aortic occlusion was performed 30 min before 17 min of spinal cord ischemia. In the sham group, the aorta was not occluded. Hind limb motor function was assessed at 3 h, 24 h, 4 days, and 7 days after reperfusion using Tarlov scoring (0 = paraplegia; 4 = normal). Animals were killed for histopathologic evaluation at 24 h or 7 days after reperfusion. The number of normal neurons in the anterior spinal cord (L4-L6) was counted.

Results: Neurologic scores were significantly higher in the IPC(+) group than the IPC(-) group at 3 and 24 h after reperfusion (P < 0.05). However, neurologic scores in the IPC(+) group gradually decreased and became similar to those in the IPC(-) group at 4 and 7 days after reperfusion. At 24 h after reperfusion, the numbers of normal neurons were significantly higher in the IPC (+) group than in the IPC(-) group (P < 0.05) and were similar between the IPC(+) and sham groups. At 7 days after reperfusion, there was no difference in the number of normal neurons between the IPC(+) and IPC(-) groups.  相似文献   


12.
BACKGROUND: Rapid ischemic preconditioning (IPC) has been shown to reduce cellular injury after subsequent cardiac and cerebral ischemia. However, the data on rapid IPC of the spinal cord is limited. The authors investigated whether pretreatment with sublethal ischemia of spinal cord can attenuate neuronal injury after spinal cord ischemia in rabbits. METHODS: Forty-seven male New Zealand white rabbits were randomly assigned to one of three groups (n = 15 or 16 each). In the IPC(-) group, the infrarenal aorta was occluded for 17 min to produce spinal cord ischemia. In the IPC(+) group, 5 min of aortic occlusion was performed 30 min before 17 min of spinal cord ischemia. In the sham group, the aorta was not occluded. Hind limb motor function was assessed at 3 h, 24 h, 4 days, and 7 days after reperfusion using Tarlov scoring (0 = paraplegia; 4 = normal). Animals were killed for histopathologic evaluation at 24 h or 7 days after reperfusion. The number of normal neurons in the anterior spinal cord (L4-L6) was counted. RESULTS: Neurologic scores were significantly higher in the IPC(+) group than the IPC(-) group at 3 and 24 h after reperfusion (P < 0.05). However, neurologic scores in the IPC(+) group gradually decreased and became similar to those in the IPC(-) group at 4 and 7 days after reperfusion. At 24 h after reperfusion, the numbers of normal neurons were significantly higher in the IPC (+) group than in the IPC(-) group (P < 0.05) and were similar between the IPC(+) and sham groups. At 7 days after reperfusion, there was no difference in the number of normal neurons between the IPC(+) and IPC(-) groups. CONCLUSION: The results indicate that rapid IPC protects the spinal cord against neuronal damage 24 h but not 7 days after reperfusion in a rabbit model of spinal cord ischemia, suggesting that the efficacy of rapid IPC may be transient.  相似文献   

13.
Neurologic deficits after the surgical repair of thoracic and thoracoabdominal aortic disease are devastating complications. Recently, pharmacologic preconditioning with potassium channel openers was reported to protect the spinal cord against neurologic injury in a model of spinal cord ischemia. A novel benzopyran derivative with an N-cyanoguanidine group, KR-31378, has been synthesized as a new therapeutic agent against ischemic injury. In the present study, we evaluated the protective effects of KR-31378 on spinal cord ischemic injury and compared its neuroprotective activities and hemodynamic stabilities with those of diazoxide. Thirty-four New Zealand white rabbits were randomly divided into four groups: ischemia group (n = 10, 25 min of aortic cross-clamping without any intervention), diazoxide group (n = 8, diazoxide [5 mg/kg] intravenously 15 min before the 25-min cross-clamping), KR20 group (n = 8, KR-31378 [20 mg/kg] intravenously 30 min before the 25-min cross-clamping), and the KR50 group (n = 8, KR-31378 [50 mg/kg] intravenously 30 min before the 25-min cross-clamping). Neurologic functions were evaluated for 72 h postoperatively using modified Tarlov's scores. All rabbits were sacrificed for histopathologic observations after finally scoring neurologic function. All rabbits but three survived. The rest were completely evaluated 72 h postoperatively. Unlike diazoxide-treated rabbits, KR-31378-treated rabbits showed relatively stable hemodynamics. Tarlov's score outcomes showed a marked improvement in the diazoxide group, in the KR20 group, and in the KR50 group compared to the ischemia group (p = .005, .002, and .001, respectively). However, Tarlov's scores in the KR50 group were not significantly different from those of the diazoxide group. Histopathologic data were not significantly different between the groups, but the degree of degenerative change in motor neurons showed a significant correlation with Tarlov's scores 3 days postoperatively (gamma = -.378, p = .036). Thus, the administration of KR-31378 before the aortic cross-clamping resulted in a significant improvement in neurologic outcome with stable hemodynamics in this rabbit model.  相似文献   

14.
BACKGROUND: Spinal cord injury remains a devastating complication of thoracic and thoracoabdominal aortic operations. The aim of this study was to assess the affectivity of direct ischemic preconditioning (PC) and remote PC in preventing spinal cord ischemic injury in an experimental model. MATERIALS AND METHODS: Thirty-eight New Zealand white rabbits were divided into five groups: One group served as Sham group (n = 7). Rabbits in other groups had their abdominal aorta cross-clamped for 40 min. Before aortic occlusion, aorta was clamped twice at the same site of aortic occlusion for 5 min followed by 15 min of reperfusion after each ischemic episode in one group (Direct PC, n = 8), left renal artery was clamped twice for 5 min followed by 15 min of reperfusion after each renal ischemic episode in one group (Remote PC, n = 8), left renal artery was first clamped for 5 min followed by 15 min of reperfusion and then aorta was clamped for 5 min followed by 15 min of reperfusion in one group (Remote + Direct PC, n = 8), and no PC method was used in Control group (n = 7). RESULTS: In all PC groups, neurological status of rabbits (Tarlov score) at post-ischemia 24th and 48th hours was better than the control group (P < 0.05), but worse than Sham group (P < 0.05). Mean viability index values in PC groups were higher than control group (P < 0.01). Post-ischemia serum NSE and MDA levels obtained in all three PC groups were significantly lower than control group (P < 0.05 and P < 0.01). CONCLUSIONS: The use of direct ischemic PC and/or remote PC is an effective way of reducing spinal cord ischemic injury because of aortic occlusion, while direct PC is more effective. The combined use of direct PC and remote PC did not provide better protection.  相似文献   

15.
衡亮  张昕  钱红 《中国美容医学》2012,21(3):410-413
目的:探讨芦荟多糖(aloe polysaccharide,AP)对兔脊髓缺血损伤是否有神经保护作用.方法:32只成年雄性新西兰兔随机分成4组(每组8只 ),即对照组(C 组)、芦荟多糖组(A组)、溶剂对照组( V组 ) 及假手术组(S组).A组在脊髓缺血前30min经耳缘静脉给予50m·kg-1芦荟多糖;V组以同样方式给予等容量生理盐水;C组仅仅制备脊髓缺血损伤模型,不进行其它处理;S组仅仅暴露腹主动脉,而不阻断它,其他处理同C组;兔脊髓缺血模型采用夹闭兔腹主动脉肾下段20min.再灌注后48h,对所有动物神经功能评分,然后处死动物取脊髓(L5-7),制作标本行组织病理学观察.结果:A组的神经功能评分和脊髓前角正常神经细胞数明显多于C组及V组(P<0.01);C组及V组的神经功能评分和脊髓前角正常神经细胞数组间无明显差异(P>0.05);神经功能评分与其对应脊髓前角正常神经细胞计数之间有显著相关性(r=0.804,P<0.01).结论:芦荟多糖对兔脊髓缺血再灌注损伤有明显的神经保护作用.  相似文献   

16.
OBJECTIVE: We investigated the neuroprotective effect of NS-7 (4-[4-fluorophenyl]-2-methyl-6- [5-piperidinopntyloxy] pyrimidine hydrochloride), a novel Na(+)/Ca(2+) channel blocker, on transient spinal cord ischemia in rabbits. METHODS: Spinal cord ischemia was induced in New Zealand white rabbits by means of infrarenal aortic occlusion for 20 minutes. Four experimental groups were enrolled. A sham group (n = 3) underwent the same operation without aortic occlusion. A control group (n = 7) received only saline before occlusion. Group A (n = 8) received NS-7 (1 mg/kg) 15 minutes before ischemia, and group B (n = 8) received NS-7 (1 mg/kg) at the onset of reperfusion. Neurologic function was assessed 24 and 48 hours after the operation with modified Tarlov criteria. Spinal cords were harvested for histopathologic examination and in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL staining). Spinal cord infarction was investigated with 2, 3, 5-triphenyltetrazonlium chloride staining. RESULTS: Tarlov scoring demonstrated marked improvement in both group A and group B compared with the control group at 24 and 48 hours after the operation. Minimal histologic changes were found in lumbar spinal cords of the 2 NS-7-treated groups, whereas severe neuronal necrosis was shown in the control group. TUNEL-positive neurons and the infarct size of lumbar spinal cords were significantly reduced by NS-7 administered both before ischemia and at the onset of reperfusion. No significant difference was noted between group A and group B in terms of spinal cord protection. CONCLUSION: These results indicate that NS-7 protects the spinal cord against ischemic injury by preventing both neuronal necrosis and apoptosis.  相似文献   

17.
Anesthetic preconditioning (APC) is a protective mechanism, whereby exposure to a volatile anesthetic renders a tissue resistant to a subsequent ischemic insult. We hypothesized that APC of the rat spinal cord with sevoflurane would reduce neurologic deficit after an ischemic-reperfusion injury. Rats were randomly assigned to 1 of 5 groups. The ischemic preconditioning (IPC) group (n = 14) had 3 min of IPC, 30 min of reperfusion, and 12 min of ischemia. The chronic APC (cSEVO) group (n = 14) had 1 h of APC with 3.5% sevoflurane on each of 2 days before ischemia. The acute APC (aSEVO) group (n = 14) had 1 h of APC with 3.5% sevoflurane followed by a 1-h washout period before the induction of ischemia. The controls (n = 14) underwent no preconditioning before ischemia. IPC attenuated the ischemia-reperfusion injury, whereas aSEVO and cSEVO groups were no better than control animals. Histologic evaluation of the spinal cord showed severe neurologic damage in all groups except for the IPC group and sham-operated rats. APC with sevoflurane did not reduce neurologic injury in a rat model of spinal cord ischemia. Traditional ischemic preconditioning had a strong protective benefit on neurologic outcome.  相似文献   

18.
Background: Xenon has been shown to reduce cellular injury after cerebral ischemia. However, the neuroprotective effects of xenon on ischemic spinal cord are unknown. The authors compared the effects of xenon and propofol on spinal cord injury following spinal cord ischemia in rabbits. Methods: Thirty‐two male New Zealand white rabbits were randomly assigned to one of three groups. In the xenon and propofol group, 70% of xenon and 0.8 mg/kg/min of propofol were administered 30 min before an aortic occlusion and maintained until the end of the procedure. The aortic occlusion was performed for 15 min. In the sham group, the aorta was not occluded. After an assessment of the hind limb motor function using the Tarlov score (0=paraplegia, 4=normal) at 48 h after reperfusion, gray and white matter injuries were evaluated based on the number of normal neurons in the anterior spinal cord and the percentage areas of vacuolation in the white matter, respectively. Results: In the xenon and propofol groups, the Tarlov score and the number of normal neurons were significantly lower than those in the sham group, whereas the percentage areas of vacuolation were similar among the three groups. There were no significant differences in Tarlov scores and the number of normal neurons between the xenon and the propofol groups. Conclusion: The results indicated that 70% of xenon has no additional neuroprotective effects on ischemic spinal cord injury in rabbits compared with propofol.  相似文献   

19.
Ischemicspinalcordinjuryremainsadisastrouscomplicationofthedescendingandthoracoabdominalaortaeafteroperation .Thereportedincidenceofparaplegiarangesfrom 4 %to 33% .1Therefore ,agreatnumberofeffortshavebeenfocusedonsolvingthisproblem ,whichincludehypothermia ,cerebrospinalfluiddrainage ,temporarybypassandpharmacologicalagents .2 Thecellularandmolecularmechanismsofischemicspinalcordinjuryhavenotbeentotallyelucidated .Butvariousstudieshavesuggestedthatfreeradicalproduction ,calciumaccumulationand…  相似文献   

20.
Objective: Paraplegia is a serious complication of thoracic and thoracoabdominal aortic operations and is the result of ischemic spinal cord injury induced by low perfusion pressure during cross-clamping of the aorta. Ischemic preconditioning (IPC) of the heart or brain with reversible sublethal ischemic injury induces resistance to subsequent lethal ischemia. The aim of this study is to investigate whether ischemic tolerance can be induced by IPC of the spinal cord in a swine model. Study Design: The animals were randomly divided into three groups: the sham group (n = 3), control group (n = 6) and IPC group (n = 8). In the sham group, we performed a left thoracotomy without any ischemic injury. In the IPC group, the swine received a reversible ischemic spinal cord injury by aortic clamping for 20 min, whereas in the control group, no aortic cross-clamping was performed. Forty-eight hours later, the animals in both the IPC and control groups underwent aortic clamping for 30 min. Neurological examination was done 24 h later, and then the animals were euthanized for histopathology and a malonedialdehyde spectrophotometry assay of the spinal cord tissue. Results: A statistically significant difference in neurological outcome was observed between the control and IPC groups at 24 h after ischemic injury. The incidence of paraplegia and severe paresis was 100% in the control group and 62.5% in the IPC group (p =. 028). Between control and IPC groups, there was no statistically significant difference in histopathology and only a borderline statistical difference in the malonedialdehyde assay of the ischemic spinal cord (p =. 0745). Conclusion: In this study, IPC induced protection against a 30-min ischemic insult of the spinal cord, although complete recovery was not achieved (standing up or walking). We expect that combining this IPC with other existing protective methods might lead to a synergistic effect, which warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号