首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The variability of the metabolic action of insulin after subcutaneous (sc) injection hampers optimal insulin therapy. Insulin formulations with a reduced tendency to form hexamers might exhibit a reduced variability of absorption from the sc insulin depot into the blood stream.

Methods

We investigated the within-subject variability of pharmacodynamic and pharmacokinetic properties of an ultra-fast insulin (UFI) formulation and regular human insulin (RHI) in patients with type 1 diabetes. Fourteen patients participated in six 10-hour euglycemic glucose clamp experiments. In this double-blind, crossover study, subjects were randomly assigned to a sequence of two experimental blocks: each block consisted of three doses of 0.1 IU/kg UFI or RHI, respectively, administered on separate days by abdominal sc injection.

Results

Ultra-fast insulin has an earlier onset of action and shorter time to maximal plasma insulin concentration when compared to RHI (tGIRmax 99 ± 36 min vs. 154 ± 74 min, p = 0.002; tCmax 33 ± 16 min vs. 97 ± 39 min, p = 0.00001). The within-subject variability of plasma insulin tCmax (p = 0.027) and of tGIRmax (p = 0.022) was less for UFI than for RHI.

Conclusions

In patients with type 1 diabetes, this UFI showed reduced within-subject variability when compared with RHI.  相似文献   

2.

Background

Fast-acting insulin analogs have been available since 1996. The absorption rate of these insulins is still too slow to mimic the physiological insulin action in healthy subjects. This study investigates the clinical performance of InsuPatch™, a local skin-heating device, on postprandial glucose excursion.

Methods

Twenty-four type 1 diabetes mellitus subjects on continuous subcutaneous insulin infusion were included in this crossover study [10 male, 14 female, age: 43.5 ± 11.3 years, diabetes duration: 18.3 ± 10.5 years, glycosylated hemoglobin: 7.4 ± 0.8%, body mass index: 25.0 ± 3.0 kg/m² (mean ± standard deviation)]. The impact of local skin heating was measured by dividing the two-hour area under the curve by integration time (AUC/t120) for blood glucose (BG) above baseline after two standardized breakfast and dinner meal pairs (with and without heating) per subject. For the first breakfast pair, venous insulin concentration was also measured.

Results

A significant reduction was found for the AUC/t120 after breakfast and after dinner meals (42 breakfast meal pairs, AUC/t120 not heated 66.4 ± 32.8 mg/dl vs heated 56.8 ± 34.0 mg/dl, p = .017; 38 dinner meal pairs, AUC/t120 not heated 30.8 ± 31.0 mg/dl vs heated 18.4 ± 23.9 mg/dl, p = .0028). The maximum venous insulin concentration with heating was 27% higher than without heating (n = 23). The number of hypoglycemic events on days with heating (n = 9) was similar to the number of days without heating (n = 13).

Conclusions

Local heating of the skin around the infusion site significantly reduced postprandial BG by enhancing insulin absorption. The heating device was well tolerated, and it could facilitate development of closed-loop systems.  相似文献   

3.

Background

We assessed the efficacy, safety, and patient-reported outcomes (PROs) of insulin pump therapy in patients with type 2 diabetes mellitus (T2DM) who were suboptimally controlled with a multiple daily injection (MDI) regimen.

Methods

In this subanalysis of a 16-week multicenter study, 21 insulin-pump-naïve patients [age 57 ± 13 years, hemoglobin A1c (A1C) 8.4 ± 1.0%, body weight 98 ± 20 kg, total daily insulin dose 99 ± 65 U, mean ± standard deviation] treated at baseline with MDI therapy with or without oral antidiabetic agents discontinued all diabetes medications except metformin and initiated insulin pump therapy. Insulin was titrated to achieve the best possible glycemic control with the simplest possible dosing regimen. Outcome measures included A1C, fasting and postprandial glucose, body weight, incidence of hypoglycemia, and PROs.

Results

Glycemic control improved significantly after 16 weeks: A1C 7.3 ± 1.0% (−1.1 ± 1.2%, p < .001), fasting glucose 133 ± 33mg/dl (−32 ± 74 mg/dl, p < .005), and postprandial glucose 153 ± 35 mg/dl (−38 ± 46 mg/dl, p < .001). At week 16, the mean daily basal, bolus, and total insulin doses were 66 ± 36, 56 ± 40, and 122 ± 72 U (1.2 U/kg), respectively, and 90% of patients were treated with two or fewer daily basal rates. Body weight increased by 2.8 ± 2.6 kg (p < .001). Mild hypoglycemia was experienced by 81% of patients at least once during the course of the study with no episodes of severe hypoglycemia. There were significant improvements in PRO measures.

Conclusions

Insulin pump therapy using a relatively simple dosing regimen safely improved glucose control and PROs in patients with T2DM who were unable to achieve glycemic targets with MDI therapy. Controlled trials are needed to further assess the clinical benefits and cost-effectiveness of insulin pumps in this patient population.  相似文献   

4.

Background

We have previously used insulin feedback (IFB) as a component of a closed-loop algorithm emulating the β cell. This was based on the observation that insulin secretion is inhibited by insulin concentration. We show here that the effect of IFB is to make a closed-loop system behave as if delays in the insulin pharmacokinetic (PK)/pharmacodynamic (PD) response are reduced. We examine whether the mechanism can be used to compensate for delays in the subcutaneous PK/PD insulin response.

Method

Closed-loop insulin delivery was performed in seven diabetic dogs using a proportional-integral-derivative model of the β cell modified by model-predicted IFB. The level of IFB was set using pole placement. Meal responses were obtained on three occasions: without IFB (NONE), reference IFB (REF), and 2xREF, with experiments performed in random order. The ability of the insulin model to predict insulin concentration was evaluated by correlation with the measured profile and results reported as R2. The ability of IFB to improve the meal response was evaluated by comparing peak and nadir postprandial glucose and area under the curve (AUC; repeated measures analysis of variance with post hoc test for linear trend).

Results

Insulin concentration was well predicted by the model (median R2 = 0.87, 0.79, and 0.90 for NONE, REF, and 2xREF, respectively). Peak postprandial glucose (294 ± 15, 243 ± 21, and 247 ± 16 mg/dl) and AUC (518.2 ± 36.13, 353.5 ± 45.04, and 280.3 ± 39.37 mg/dl·min) decreased with increasing IFB (p < .05, linear trend). Nadir glucose was not affected by IFB (76 ± 5.4, 68 ± 7.3, and 72 ± 4.3 mg/dl; p = .63).

Conclusions

Insulin feedback provides an effective mechanism to compensate for delay in the insulin PK/PD profile.  相似文献   

5.

Background

This study assessed time action profile and within- and between-subject variability of inhaled Technosphere® Insulin (TI) compared with subcutaneous regular human insulin (sc RHI).

Methods

Thirteen subjects with type 2 diabetes (age 56 ± 7 years, body mass index 30.4 ± 3.0 kg·m-2; hemoglobin A1c 6.9 ± 0.9%; mean ± SD) participated in this six-period crossover isoglycemic glucose clamp study. In randomized order, each subject received three single doses of TI and sc RHI on separate study days.

Results

Inhalation of TI resulted in a higher maximum serum insulin concentration (858 vs 438 pmol·liter-1; p = 0.0001) and shorter intervals to maximum insulin concentration (17 vs 135 minutes; p = 0.0001) than sc RHI. Overall, 48 units of TI and 24 units of sc RHI provided comparable 3-hour insulin exposure (INS area under the curve0–3 h 55.8 vs 60.0 nmol·min·liter-1, respectively). Time to maximum metabolic effect was shorter (79 vs 293 minutes; p < 0.0001), and percentage of glucose disposal during the first 3 hours was higher for TI compared with sc RHI (59 vs 27%). Within-subject variabilities of insulin exposure following inhalation of TI for 2 and 3 hours and end of study period were 19, 18, and 16% as compared with 27, 25, and 15% after sc RHI injection (p = not significant).

Conclusion

Technosphere Insulin has a more rapid onset of action than sc RHI. About 60% of the glucose-lowering effect of TI occurs during the first 3 hours after application. In contrast, <30% of the glucose-lowering effect of sc RHI occurs in this period. Technosphere Insulin demonstrated a lower intrasubject variability during the 3-hour postprandial period, without reaching statistical significance.  相似文献   

6.

Background

Basal continuous subcutaneous insulin infusion (CSII) therapy at a fixed rate may effectively improve glycemic control in patients with type 2 diabetes when oral antidiabetic treatment fails. Regimens of simple constant subcutaneous delivery of insulin may provide theoretical advantages in type 2 diabetes.

Methods

Ten subjects with type 2 diabetes who obtained insufficient glycemic control on oral antidiabetic drugs were included. Following an initial control day, two periods of 3 days with CSII of a rapid-acting insulin analogue, 1.5 IU/h (dose obtained from a preceding study), for 8 hours overnight and for 24 hours, respectively, were carried out in random order. Profiles of serum insulin aspart, serum endogenous insulin, and plasma glucose were recorded.

Results

Compared to the control day, an 8-hour overnight insulin infusion during a 3-day period improved fasting plasma glucose (FPG) (mean differences ± SEM; Δ59.0 ± 10.1 mg/dl; p < 0.01) and 2-hour postprandial plasma glucose (PPPG) (Δ57.8 ± 10.6 mg/dl; p < 0.01) after breakfast. Compared to an 8-hour overnight infusion, a 24-hour infusion further improved all three PPPG values after breakfast, lunch, and dinner (Δ28.8 ± 8.1 mg/dl, Δ30.6 ± 8.1 mg/dl, and Δ35.1 ± 7.9 mg/dl; p < 0.01). During insulin infusion, only one hypoglycemic episode with PG <55.8 mg/dl and mild symptoms was recorded.

Conclusion

Continuous subcutaneous insulin infusion with a rapid-acting insulin analogue at a fixed rate of 1.5 IU/h, either overnight or for 24 hours, improved glycemic control without safety concerns in patients with type 2 diabetes who had secondary failure to oral antidiabetic drugs. The effect on FPG was similar for both treatments, whereas the effect on PPPG was superior when insulin was infused during the entire 24 hours.  相似文献   

7.

Background:

Intensive insulin therapy and degree of glycemic control in critically ill patients remains controversial, particularly in patients with diabetes mellitus. We hypothesized that diabetic patients who achieved tight glucose control with continuous insulin therapy would have less morbidity and lower mortality than diabetic patients with uncontrolled blood glucose.

Method:

A retrospective chart review was performed on 395 intensive care unit (ICU) patients that included 235 diabetic patients. All patients received an intravenous insulin protocol targeted to a blood glucose (BG) level of 80–140mg/dl. Outcomes were compared between (a) nondiabetic and diabetic patients, (b) diabetic patients with controlled BG levels (80–140mg/dl) versus uncontrolled levels (>140 mg/dl), and (c) diabetic survivors and nonsurvivors.

Results:

Diabetic patients had a shorter ICU stay compared to nondiabetic patients (10 ± 0.7 vs 13 ± 1.1, p = .01). The mean BG of the diabetic patients was 25% higher on average in the uncontrolled group than in the controlled (166 ± 26 vs 130 ± 9.4 mg/dl, p < .01). There was no difference in ICU and hospital length of stay (LOS) between diabetic patients who were well controlled compared to those who were uncontrolled. Diabetic nonsurvivors had a significantly higher incidence of hypoglycemia (BG <60 mg/dl) compared to diabetic survivors.

Conclusion:

The results showed that a diagnosis of diabetes was not an independent predictor of mortality, and that diabetic patients who were uncontrolled did not have worse outcomes. Diabetic nonsurvivors were associated with a greater amount of hypoglycemic episodes, suggesting these patients may benefit from a more lenient blood glucose protocol.  相似文献   

8.

Background

Insulin requirements to maintain normoglycemia during glucocorticoid therapy and stress are often difficult to estimate. To simulate insulin resistance during stress, adults with type 1 diabetes mellitus (T1DM) were given a three-day course of prednisone.

Methods

Ten patients (7 women, 3 men) using continuous subcutaneous insulin infusion pumps wore the Medtronic Minimed CGMS® (Northridge, CA) device. Mean (standard deviation) age was 43.1 (14.9) years, body mass index 23.9 (4.7) kg/m2, hemoglobin A1c 6.8% (1.2%), and duration of diabetes 18.7 (10.8) years. Each patient wore the CGMS for one baseline day (day 1), followed by three days of self-administered prednisone (60 mg/dl; days 2–4), and one post-prednisone day (day 5).

Results

Analysis using Wilcoxon signed rank test (values are median [25th percentile, 75th percentile]) indicated a significant difference between day 1 and the mean of days on prednisone (days 2–4) for average glucose level (110.0 [81.0, 158.0] mg/dl vs 149.2 [137.7, 168.0] mg/dl; p = .022), area under the glucose curve and above the upper limit of 180 mg/dl per day (0.5 [0, 8.0] mg/dl·d vs 14.0 [7.7, 24.7] mg/dl·d; p = .002), and total daily insulin dose (TDI) , (0.5 [0.4, 0.6] U/kg·d vs 0.9 [0.8, 1.0] U/kg·d; p = .002). In addition, the TDI was significantly different for day 1 vs day 5 (0.5 [0.4, 0.6] U/kg·d vs 0.6 [0.5, 0.8] U/kg·d; p = .002). Basal rates and insulin boluses were increased by an average of 69% (range: 30–100%) six hours after the first prednisone dose and returned to baseline amounts on the evening of day 4.

Conclusions

For adults with T1DM, insulin requirements during prednisone induced insulin resistance may need to be increased by 70% or more to normalize blood glucose levels.  相似文献   

9.

Background

Optimizing a closed-loop insulin delivery algorithm for individuals with type 1 diabetes can be potentially facilitated by a mathematical model of the patient. However, model simulation studies that evaluate changes to the control algorithm need to produce conclusions similar to those that would be obtained from a clinical study evaluating the same modification. We evaluated the ability of a low-order identifiable virtual patient (IVP) model to achieve this goal.

Methods

Ten adult subjects (42.5 ± 11.5 years of age; 18.0 ± 13.5 years diabetes; 6.9 ± 0.8% hemoglobin A1c) previously characterized with the IVP model were studied following the procedures independently reported in a pediatric study assessing proportional–integral–derivative control with and without a 50% meal insulin bolus. Peak postprandial glucose levels with and without the meal bolus and use of supplemental carbohydrate to treat hypoglycemia were compared using two-way analysis of variance and chi-square tests, respectively.

Results

The meal bolus decreased the peak postprandial glucose levels in both the adult-simulation and pediatric-clinical study (231 ± 38 standard deviation to 205 ± 33 mg/dl and 226 ± 51 to 194 ± 47 mg/dl, respectively; p = .0472). No differences were observed between the peak postprandial levels obtained in the two studies (clinical and simulation study not different, p = .57; interaction p = .83) or in the use of supplemental carbohydrate (3 occurrences in 17 patient days of closed-loop control in the clinical-pediatric study; 7 occurrences over 20 patient days in the adult-simulation study, p = .29).

Conclusions

Closed-loop simulations using an IVP model can predict clinical study outcomes in patients studied independently from those used to develop the model.  相似文献   

10.

Introduction

The effects of pancreatic polypeptide (PP) infusion were examined in patients on insulin pump therapy to determine whether PP administration can reduce insulin requirements in patients with type 1 diabetes mellitus (T1DM) or type 3c diabetes mellitus (T3cDM; pancreatogenic).

Methods

Ten subjects with long-standing T1DM (n = 7) or T3cDM (n = 3) on insulin pump treatment received a 72 h subcutaneous infusion of 2 pmol/kg/min bovine PP or saline by portable infusion pump in a single-blinded, randomized, crossover design.

Results

Pancreatic polypeptide infusion raised plasma PP levels to 450–700 pmol/liter. Daily insulin infusion requirements (I) fell from 48 ± 6.9 to 40 ± 7.5 U on day 2 (p < .05) and from 46 ± 7.7 to 37 ± 6.6 U on day 3 (p < .05) of PP infusion compared with saline. Corrected for average blood glucose concentration (G), I/G fell in 10/10 subjects during the second 24 h period and in 7/10 subjects during the third 24 h period; sensitivity to insulin, calculated as 1/(I/G), increased 45% ± 12% on day 2 (p < .01) and 34% ± 14% on day 3 (p < .05) of PP infusion. Pancreatic polypeptide responses to a test meal were compared with the change in insulin infusion requirements in 5 subjects; the reduction in insulin requirements seen during PP infusion correlated with the degree of baseline PP deficiency (p < .002).

Conclusions

A concurrent subcutaneous infusion of PP enhances insulin sensitivity and reduces insulin requirements in patients with long-standing T1DM and T3cDM on insulin pump therapy. The benefit of PP infusion correlated with the degree of PP deficiency.  相似文献   

11.

Background

Sensor-augmented insulin pumps may be programmed to suspend insulin delivery in response to hypoglycemia. The Medtronic Paradigm® Veo™ pump with automatic low glucose suspend (LGS) was released in 2009. Data from 7 months of real-world use of the system were analyzed to assess usage patterns and effectiveness of LGS.

Method

Data from 935 patients totaling 49,867 patient days were collected; the LGS feature was on for 82% of these days. A subset of 278 subjects who used the pump for ≥3 months was analyzed separately; these subjects provided 28,401 patient days of data, with LGS used for 92% of the time.

Results

The LGS threshold was most commonly set between 50 and 60 mg/dl. A total of 27,216 LGS events occurred, and 60% began in the afternoon or evening. The median duration of LGS events was 9.87 min, 45% lasted for <5 min, and 11% lasted for >115 min (equivalent to the full extent of the LGS event between 115 and 120 min). Among the episodes lasting for >115 min, the mean sensor glucose (SG) was 58.8 ± 12.4 mg/dl at LGS activation (time 0), rose to 102.2 ± 52.8 mg/dl by the end of the LGS episode (when insulin delivery was automatically resumed), and was 150.1 ± 68.6 mg/dl at 240 min. In the 278-subject subgroup, LGS usage significantly reduced the number of SG readings <50 mg/dl (p = 0.001) and >300 mg/dl (p = 0.001).

Conclusions

The LGS feature was on for most of the patient days in the study. Most LGS episodes lasted for <10 min. Use of the LGS feature significantly reduced exposure to hypoglycemia. Profound hyperglycemia resulting from LGS episodes lasting >115 min was not observed.  相似文献   

12.

Background

This article provides a clinical update using a novel run-to-run algorithm to optimize prandial insulin dosing based on sparse glucose measurements from the previous day''s meals. The objective was to use a refined run-to-run algorithm to calculate prandial insulin-to-carbohydrate ratios (I:CHO) for meals of variable carbohydrate content in subjects with type 1 diabetes (T1DM).

Method

The open-labeled, nonrandomized study took place over a 6-week period in a nonprofit research center. Nine subjects with T1DM using continuous subcutaneous insulin infusion participated. Basal insulin rates were optimized using continuous glucose monitoring, with a target fasting blood glucose of 90 mg/dl. Subjects monitored blood glucose concentration at the beginning of the meal and at 60 and 120 minutes after the start of the meal. They were instructed to start meals with blood glucose levels between 70 and 130 mg/dl. Subjects were contacted daily to collect data for the previous 24-hour period and to give them the physicianapproved, algorithm-derived I:CHO ratios for the next 24 hours. Subjects calculated the amount of the insulin bolus for each meal based on the corresponding I:CHO and their estimate of the meal''s carbohydrate content. One- and 2-hour postprandial glucose concentrations served as the main outcome measures.

Results

The mean 1-hour postprandial blood glucose level was 104 ± 19 mg/dl. The 2-hour postprandial levels (96.5 ± 18 mg/dl) approached the preprandial levels (90.1 ± 13 mg/dl).

Conclusions

Run-to-run algorithms are able to improve postprandial blood glucose levels in subjects with T1DM.  相似文献   

13.

Background

In order to enhance the absorption of insulin following subcutaneous injection, excipients were selected to hasten the dissociation rate of insulin hexamers and reduce their tendency to reassociate postinjection. A novel formulation of recombinant human insulin containing citrate and disodium ethylenediaminetetraacetic acid (EDTA) has been tested in clinic and has a very rapid onset of action in patients with diabetes. In order to understand the basis for the rapid insulin absorption, in vitro experiments using analytical ultracentrifugation, protein charge assessment, and light scattering have been performed with this novel human insulin formulation and compared with a commercially available insulin formulation [regular human insulin (RHI)].

Method

Analytical ultracentrifugation and dynamic light scattering were used to infer the relative distributions of insulin monomers, dimers, and hexamers in the formulations. Electrical resistance of the insulin solutions characterized the overall net surface charge on the insulin complexes in solution.

Results

The results of these experiments demonstrate that the zinc chelating (disodium EDTA) and charge-masking (citrate) excipients used in the formulation changed the properties of RHI in solution, making it dissociate more rapidly into smaller, charge-masked monomer/dimer units, which are twice as rapidly absorbed following subcutaneous injection than RHI (Tmax 60 ± 43 versus 120 ± 70 min).

Conclusions

The combination of rapid dissociation of insulin hexamers upon dilution due to the zinc chelating effects of disodium EDTA followed by the inhibition of insulin monomer/dimer reassociation due to the charge-masking effects of citrate provides the basis for the ultra-rapid absorption of this novel insulin formulation.  相似文献   

14.

Background

Clinical studies have shown that the Medtronic proportional-integral-derivative (PID) control with insulin feedback (IFB) provides stable 24 h glucose control, but with high postprandial glucose. We coupled this algorithm to a Food and Drug Administration-approved type 1 diabetes mellitus simulator to determine whether a proportional-derivative controller with preprogrammed basal rates (PDBASAL) would have better performance.

Methods

We performed simulation studies on 10 adult subjects to (1) obtain the basal profiles for the PDBASAL controller; (2) define the pharmacokinetic/pharmacodynamic profile used to effect IFB, (3) optimize the PID and PDBASAL control parameters, (4) evaluate improvements obtained with IFB, and (5) develop a method to simulate changes in insulin sensitivity and assess the ability of each algorithm to respond to such changes.

Results

PDBASAL control significantly reduced peak postprandial glucose [252 (standard error = 11) versus 279 (14) mg/dl; p < .001] and increased nadir glucose [102 (3) versus 92 (3) mg/dl; p < .001] compared with PID control (both implemented with IFB). However, with PDBASAL control, fasting glucose remained elevated following a 30% decrease in insulin sensitivity [156 (6) mg/dl; different from the target of 110 mg/dl; p < .001] and remained below target following a 30% increase in insulin sensitivity [84 (2) mg/dl; p < .001]. In both cases, PID control returned glucose levels to target.

Conclusions

PDBASAL provides better postprandial glucose control than PID but is not appropriate for subjects whose basal requirements change with insulin sensitivity. Simulations used to compare different control strategies should assess this variability.  相似文献   

15.

Background

Closed-loop (CL) insulin delivery systems utilizing proportional-integral-derivative (PID) controllers have demonstrated susceptibility to late postprandial hypoglycemia because of delays between insulin delivery and blood glucose (BG) response. An insulin feedback (IFB) modification to the PID algorithm has been introduced to mitigate this risk. We examined the effect of IFB on CL BG control.

Methods

Using the Medtronic ePID CL system, four subjects were studied for 24 h on PID control and 24 h during a separate admission with the IFB modification (PID + IFB). Target glucose was 120 mg/dl; meals were served at 8:00 AM, 1:00 PM, and 6:00 PM and were identical for both admissions. No premeal manual boluses were given. Reference BG excursions, defined as incremental glucose rise from premeal to peak, and postprandial BG area under the curve (AUC; 0–5 h) were compared. Results are reported as mean ± standard deviation.

Results

The PID + IFB control resulted in higher mean BG levels compared with PID alone (153 ± 54 versus 133 ± 56 mg/dl; p < .0001). Postmeal BG excursions (114 ± 28 versus 114 ± 47 mg/dl) and AUCs (285 ± 102 versus 255 ± 129 mg/dl/h) were similar under both conditions. Total insulin delivery averaged 57 ± 20 U with PID versus 45 ± 13 U with PID + IFB (p = .18). Notably, eight hypoglycemic events (BG < 60 mg/dl) occurred during PID control versus none during PID + IFB.

Conclusions

Addition of IFB to the PID controller markedly reduced the occurrence of hypoglycemia without increasing meal-related glucose excursions. Higher average BG levels may be attributable to differences in the determination of system gain (Kp) in this study. The prevention of postprandial hypoglycemia suggests that the PID + IFB algorithm may allow for lower target glucose selection and improved overall glycemic control.  相似文献   

16.

Background

The V-Go™ is a once-daily disposable device that allows coverage of basal and prandial insulin requirements over a period of 24 hours. The aim of this proof-of-concept study was to evaluate the clinical functionality, safety, and pharmacodynamics of the V-Go delivering insulin aspart and redistributing a single basal dose of insulin glargine as a constant basal infusion supplemented with prandial insulin in subjects with type 2 diabetes mellitus.

Methods

In six subjects receiving once-daily subcutaneous (SC) injections of insulin glargine (≥15 U/day) with or without concomitant oral antidiabetic drugs, glargine was discontinued following a 3-day baseline phase. The V-Go was then applied to the lower abdomen of the subjects once daily for 7 days (days 1–3 inpatient, days 4–7 outpatient). Each V-Go provided a continuous 24-hour preset basal infusion rate of insulin aspart (0.6 U/h) and up to three daily prandial doses at mealtimes. Capillary blood glucose concentrations were measured at 11 time points per day during the baseline and inpatient phases and at 4 time points per day during the outpatient phase. Additionally, glucose profiles were measured continuously on all days.

Results

The V-Go was well tolerated and operated as anticipated. The mean ± SEM prestudy daily dose of SC insulin glargine was 33.3 ± 13.8 U; the mean daily total insulin aspart dose infused with the V-Go was 31.5 ± 7.5 and 32.3 ± 7.8 U for the inpatient and outpatient periods, respectively. Fasting blood glucose values were similar to those observed at baseline throughout the study, with nonsignificant (NS) reductions in readings collected during the outpatient phase before lunch (-35 ± 27 mg/dl) and before dinner (-38 ± 25 mg/dl). The 2-hour postprandial glucose trended lower from 231 to 195 mg/dl (NS) at breakfast, 234 to 166 mg/dl (NS) at lunch, and 222 to 171 mg/dl (NS) at dinner. Bedtime blood glucose decreased (mean change from baseline -52 ± 21 mg/dl; P = 0.0313), as did nighttime (3:00 AM) measurements (-20 ± 9 mg/dl; P = 0.0313). Overall glycemic control tended to improve, as shown by continuous glucose monitoring changing from 173 to 157 mg/dl (P = 0.063, NS) and 156 mg/dl (P = 0.219) during inpatient and outpatient periods, respectively. Glycemic variability assessed by the M value similarly tended to decrease from 33 ± 9 to 25 ± 4 (NS) and 21 ± 4 (NS) for inpatient and outpatient periods, respectively.

Conclusions

These first data suggest that use of the V-Go is an attractive alternative to SC insulin injection therapy because metabolic control appears to be maintained or even improved without increasing daily insulin doses.  相似文献   

17.

Aims/Introduction

Early initiation of basal insulin therapy is recommended for normalizing fasting blood glucose in type 2 diabetes mellitus. However, basal insulin treatment might not adequately control postprandial glucose levels. The present study evaluated whether the combination of the α-glucosidase inhibitor, acarbose, and basal insulin improved blood glucose control under daily-life treatment conditions in a large sample of Korean patients.

Materials and Methods

The present study was a multicenter, prospective, observational study under daily-life treatment conditions. A total of 539 patients with type 2 diabetes who were treated with basal insulin and additional acarbose were enrolled and followed up for 20 weeks. Changes in hemoglobin A1c, fasting and postprandial blood glucose were evaluated at baseline and at the end of the observation period. The physician and patient satisfaction of the combination treatment and safety were assessed.

Results

Hemoglobin A1c decreased by 0.55 ± 1.05% from baseline (< 0.0001). Fasting and postprandial blood glucose levels were reduced by 0.89 ± 3.79 and 2.59 ± 4.77 mmol/L (both < 0.0001). The most frequently reported adverse drug reactions were flatulence (0.37%) and abnormal gastrointestinal sounds (0.37%), and all were mild in intensity and transient. In the satisfaction evaluation, 79.0% of physicians and 77.3% of patients were ‘very satisfied’ or ‘satisfied’ with the combined basal insulin and acarbose therapy.

Conclusions

Combination therapy of basal insulin and acarbose in patients with type 2 diabetes improved glucose control, and had no drug-specific safety concerns, suggesting that the treatment might benefit individuals who cannot control blood glucose with basal insulin alone.  相似文献   

18.

Background

Postprandial hyperglycemia contributes to poor glucose control and is associated with increased cardiovascular risk in type 2 diabetes mellitus (T2DM). The objective of the study was to determine the effect of postprandial self-monitoring of blood glucose (pp-SMBG) on glucose control, lipids, body weight, and cardiovascular events.

Method

Subjects with T2DM hemoglobin A1c (A1C) between 6.5 to 7.0% were randomized into the study group (at least two pp-SMBG a day and dietary modification based on glucose readings) and control group (dietary modification based on glucose readings but no mandatory pp-SMBG) for a 6-month, observational study. Oral antidiabetic drugs or insulin regimen was unchanged in either group if A1C remained less than 7.0% during the study. End points included A1C, lipids, body weight, and cardiovascular events.

Results

One hundred sixty-nine subjects, mean age 63 years, and body weight 88 kg were recruited. Hemoglobin A1c, weight, low-density lipoprotein (LDL), and triglycerides (TGs) were similar in the groups at baseline. By the end of 6 months, A1C (6.7 ± 0.1 to 6.4 ± 0.1%, p < .05), body weight (88.5 ± 7.3 to 85.2 ± 6.3 kg, p < .05), LDL (92.3 ± 2 8.4 to 81.1 ± 22.6 mg/dl, p < .05), and TGs (141 ± 21 to 96 ± 17 mg/dl, p < .05) decreased in the study group, but did not change in the control group. No cardiovascular events were observed in either group during the 6-month study period.

Conclusions

In T2DM subjects who had already reached their A1C goal, pp-SMBG at least twice a day was associated with further improvement in glycemia, lipids, and weight, as well as exercise and dietary habit. We assume that lifestyle modification promoted by postprandial hyperglycemia awareness may underlie these findings. These results substantiate the importance of implementing pp-SMBG into lifestyle modification, and emphasize that pp-SMBG is critical in the control of T2DM.  相似文献   

19.

Background

Intradermal (ID) delivery has been shown to accelerate insulin pharmacokinetics (PK). We compared the PK and pharmacodynamic (PD) effects of insulin lispro administered before two daily standardized solid mixed meals (breakfast and lunch), using microneedle-based ID or traditional subcutaneous (SC) delivery.

Method

The study included 22 subjects with type 1 diabetes in an eight-arm full crossover block design. One arm established each subject’s optimal meal dose. In six additional arms, the optimal, higher, and lower doses (+30%, -30%) were each given ID and SC delivery, in random order. The final arm assessed earlier timing for the ID optimal dose (-12 versus -2 min). The PK/PD data were collected for 6 h following meals. Intravenous basal regular insulin was given throughout, and premeal blood glucose (BG) adjusted to 115 mg/dl.

Results

The primary end point, postprandial time in range (70–180 mg/dl), showed no route-based differences with a high level of overall BG control for both SC and ID delivery. Secondary insulin PK end points showed more rapid ID availability versus SC across doses and meals (∆Tmax -16 min, ∆T50rising -7 min, ∆T50falling -30 min, all p < .05). Both intrasubject and intersubject variability for ID Tmax were significantly lower. Intradermal delivery showed modest, statistically significant secondary PD differences across doses and meals, generally within 90–120 min postprandially (∆12 mg/dl BG at 90 min, ∆7 mg/dl BGmax, ∆7 mg/dl mean BG 0–2 h, all p < .05).

Conclusions

This study indicates that ID insulin delivery is superior to SC delivery in speed of systemic availability and PK consistency and may improve postprandial glucose control.  相似文献   

20.

Background

This study investigated continuous glucose profiles in nondiabetic subjects.

Methods

Continuous interstitial glucose measurement was performed under everyday life conditions (2 days) and after ingestion of four meals with standardized carbohydrate content (50 grams), but with different types of carbohydrates and variable protein and fat content. Twenty-four healthy volunteers (12 female, 12 male, age 27.1 ± 3.6 years) participated in the study. Each subject wore two microdialysis devices (SCGM1, Roche Diagnostics) simultaneously.

Results

The mean 24-hour interstitial glucose concentration under everyday life conditions was 89.3 ± 6.2 mg/dl (mean ± SD, n = 21), and mean interstitial glucose concentrations at daytime and during the night were 93.0 ± 7.0 and 81.8 ± 6.3 mg/dl, respectively. The highest postprandial glucose concentrations were observed after breakfast: 132.3 ± 16.7 mg/dl (range 101–168 mg/dl); peak concentrations after lunch and dinner were 118.2 ± 13.4 and 123.0 ± 16.9 mg/dl, respectively. Mean time to peak glucose concentration was between 46 and 50 minutes. After ingestion of standardized meals with fast absorption characteristics, peak interstitial glucose concentrations were 133.2 ± 14.4 and 137.2 ± 21.1 mg/dl, respectively. Meals with a higher fiber, protein, and fat content induced a smaller increase and a slower decrease of postprandial glucose concentrations with peak values of 99.2 ± 10.5 and 122.1 ± 20.4 mg/dl, respectively.

Conclusions

This study provided continuous glucose profiles in nondiabetic subjects and demonstrated that differences in meal composition are reflected in postprandial interstitial glucose concentrations. Regarding the increasing application of continuous glucose monitoring in diabetic patients, these data suggest that detailed information about the ingested meals is important for adequate interpretation of postprandial glucose profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号