首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the Connexin 26 (Cx26) gene have been found to account for approximately 20% of all childhood deafness. This number approaches 50% in documented recessive cases of hearing loss. Two mutations, 35delG and 167delT, account for the majority of reported mutations in this gene, but to date, more than 60 mutations have been described. No other single gene has yet been identified that contributes this significantly to the aetiology of hearing loss. Several mutations in this gene have been found to predominate in specific ethnic populations (167delT in Ashkenazi Jews and 235delC in Japanese individuals). While the majority of mutations found in Cx26 result in frame shifts and premature terminations, a number of missense mutations have also been identified. The V37I missense mutation has been reported as both a polymorphism and as a potentially disease-causing missense mutation. The present authors have identified three unrelated individuals with sensorineural hearing loss who are homozygous for this mutation. One individual is of Philippine ancestry, another is from a Chinese and Cambodian background, while the third is of Chinese ancestry, raising the possibility that this mutation may be more frequent among populations in eastern Asia.  相似文献   

2.
The most common form of non-syndromic autosomal recessive deafness (NSRD) is caused by mutations in the gene GJB2, encoding the protein connexin 26 (Cx26). The mutation c.35delG is found in 30-70% of Caucasian NSRD cases, and is abundant (allele frequency of 0.5-2%) in several European populations, while c.167delT is found in the Ashkenazi Jewish population with about 2% frequency. In the current study, using simple PCR-based tests we established an allele frequency of 0.6% in the Hungarian average, and 0.4% in the Romani (Gypsy) populations for the c.35delG mutation, and an allele frequency of 2.4% in the Ashkenazi population for the c.167delT mutation. Our results do not differ significantly from the published data for Caucasian and non-European Ashkenazi populations and they present figures for the Romani population for the first time. Both mutations may be significant causative factors among the NSRD cases of the respective populations in Central Europe.  相似文献   

3.
Mutations in the gap junction beta2 (GJB2) gene, Connexin 26 (Cx26), cause nonsyndromic sensorineural recessive deafness (NSRD). Two frameshift mutations, 167delT and 35delG, are the most frequent Cx26 lesions causing NSRD. The 35delG mutation is panethnic, while the 167delT lesion occurs almost exclusively in the Ashkenazi Jewish population at a carrier frequency of 2 to 4%. To facilitate carrier detection, a simple nonradioactive allele-specific oligonucleotide (ASO) hybridization assay was developed for the 167delT and 35delG mutations. Screening of 1012 anonymous Ashkenazi Jewish individuals from the New York Metropolitan area revealed carrier frequencies for 167delT and 35delG of 3.96% (95% CI: 2.75-5.15%) and 0.69% (95% CI: 0.18-1.20%), respectively. This sensitive, specific, and relatively inexpensive method can reliably identify affected newborns and patients with NSRD as well as facilitate carrier screening for Connexin 26 deafness in the Ashkenazi Jewish community.  相似文献   

4.
Hereditary hearing loss (HHL) is an extremely common disorder. About 70% of HHL is non-syndromic, with autosomal recessive forms accounting for approximately 85% of the genetic load. Although very heterogeneous, the most common cause of HHL in many different world populations is mutations of GJB2, a gene that encodes the gap junction protein connexin 26 (Cx26). This study investigates the contribution of GJB2 to the autosomal recessive non-syndromic deafness (ARNSD) load in the Iranian population. One hundred sixty eight persons from 83 families were studied. GJB2-related deafness was diagnosed in 9 families (4, 35delG homozygotes; 3, 35delG compound heterozygotes; 1, W24X homozygote; 1, non-35delG compound heterozygote). The carrier frequency of the 35delG allele in this population was approximately 1% (1/83). Because the relative frequency of Cx26 mutations is much less than in the other populations, it is possible that mutations in other genes play a major role in ARNSD in Iran.  相似文献   

5.
Non-syndromic neurosensory autosomal recessive deafness (NSRD) is the most common form of genetic hearing loss. Previous studies defined at least 15 human NSRD loci. Recently we demonstrated that DFNB1, located on the long arm of chromosome 13, accounts for approximately 80% of cases in the Mediterranean area. Further analysis with additional markers now identifies several recombinants which narrow the candidate region to approximately 5 cM, encompassed by markers D13S141 and D13S232 and including several ESTs and candidate genes, including the connexin26 (GJB2) gene. Analysis of PCR products from our affected patients' DNA shows two frameshift mutations in the connexin26 gene. Deletion of a G within a stretch of six Gs at position 35 of the GJB2 cDNA (mutation 35delG) leads to premature chain termination and is present in 63% of NSRD chromosomes, demonstrating linkage to chromosome 13. Deletion of a T at position 167 of GJB2 (mutation 167delT), also resulting in premature chain termination, was detected in another patient. Four neutral sequence polymorphisms were also identified. These findings are in agreement with a recent study showing that mutations in the connexin26 gene are associated with genetic forms of deafness in three Pakistani families and that GJB2 is DFNB1. Connexin26 is a member of a large family of proteins involved in formation of gap junctions, which are involved in electrical synapses and the direct transfer of small molecules and ionic currents between neighboring cells. The identification of GJB2 as the DFNB1 gene should provide a better understanding of the biology of normal and abnormal hearing, help form the basis for diagnosis and may facilitate development of strategies for treatment of this common genetic disorder.   相似文献   

6.
目的分析一个遗传性非综合征型耳聋家系的突变,并探讨缝隙连接蛋白beta2(gap junction protein beta 2,GJB2)基因235delC突变是否会加重线粒体A1555G突变导致的非综合征型耳聋症状。方法对一个母系遗传性非综合征型耳聋核心家系72个成员取外周血提取DNA,经聚合酶链反应扩增后,利用Alw26Ⅰ限制性内切酶酶切及直接测序验证,对其线粒体DNA突变进行研究;利用ApaⅠ限制性内切酶酶切及直接测序验证,筛查核心家系中GJB2基因235delC突变情况,并对GJB2基因235delC和线粒体A1555G突变的关系进行研究。结果在27名母系成员中均发现具有线粒体A1555G突变,呈母系遗传;具有耳聋表型的为21人(77.8%),家族外显率高;所筛查的包括配偶在内的72名个体中,仅3例具有GJB2基因235delC杂合子突变,且均出现在母系成员中,但3例的耳聋表型却不同。结论线粒体A1555G突变是本家系耳聋遗传易感性的基础,在该家系中GJB2基因的235delC杂合子突变未加重线粒体A1555G突变导致的非综合征型耳聋。  相似文献   

7.
Mitochondrion harbors its own DNA, known as mtDNA, encoding certain essential components of the mitochondrial respiratory chain and protein synthesis apparatus. mtDNA mutations have an impact on cellular ATP production and many of them are undoubtedly a factor that contributes to sensorineural deafness, including both syndromic and non-syndromic forms. Hot spot regions for deafness mutations are the MTRNR1 gene, encoding the 12S rRNA, the MTTS1 gene, encoding the tRNA for Ser^{(UCN)}, and the MTTL1 gene, encoding the tRNA for Leu^{(UUR)}. We investigated the impact of mtDNA mutations in the Greek hearing impaired population, by testing a cohort of 513 patients suffering from childhood onset prelingual or postlingual, bilateral, sensorineural, syndromic or non-syndromic hearing loss of any degree for six mitochondrial variants previously associated with deafness. Screening involved the MTRNR1 961delT/insC and A1555G mutations, the MTTL1 A3243G mutation, and the MTTS1 A7445G, 7472insC and T7510C mutations. Although two patients were tested positive for the A1555G mutation, we failed to identify any subject carrying the 961delT/insC, A3243G, A7445G, 7472insC, or T7510C mutations. Our findings strongly support our previously raised conclusion that mtDNA mutations are not a major risk factor for sensorineural deafness in the Greek population.  相似文献   

8.
Autosomal recessive nonsyndromic sensorineural hearing impairment (ARNSHI) comprises 80% of familial hearing loss cases. Approximately half result from mutations in the connexin 26 (Cx26) gene, GJB2, in Caucasian populations. Heterozygous mutations in GJB2 occasionally co-occur with a deletion of part of GJB6 (connexin 30; Cx30). It is estimated that approximately 1% of deafness is maternally inherited, due to mutations in mitochondrial DNA (mtDNA). Few studies have focused on the frequency of mutations in connexins or mtDNA in African American (AA) and Caribbean Hispanic (CH) admixture populations. In this study, we performed bidirectional sequencing of the GJB2 gene and polymerase chain reaction (PCR) screening for the common GJB6 deletion, as well as PCR/RFLP analysis for three mutations in mtDNA (A1555G, A3243G, A7445G), in 109 predominantly simplex AA and CH individuals. Variations found were a 101T > C (M34T; 1/101 cases), 109G > A (V37I; 1/101), 35delG (mutation; 4/101, (3/4) of non-AA/CH ethnicity), 167delT (mutation; 1/101), 139G > T (mutation; E47X; 1/101 homozygote, consanguineous), -15C > T (1/101), 79G > A (V27I; 9/101), 380G > A (R127H; 4/101; Guyana, India, Pakistan ethnicity), 670A > C (Indeterminate; K224Q; 1/101), 503A > G (novel; K168R; 3/101) and 684C > A (novel; 1/101). All but one of the AA and CH patients had monoallelic variations. There were no hemizygous GJB6 deletions in those with monoallelic GJB2 variations. We also did not identify any patients with the three mutations in mtDNA. Bidirectional sequencing of the GJB2 gene was performed in 187 AA and Hispanic healthy individuals. Our results reveal that GJB2 mutations, GJB6 deletions, and mtDNA mutations may not be significant in these minority admixture populations.  相似文献   

9.
Congenital deafness occurs in approximately 1 in 1000 live births. In developed countries about 60% of hearing loss is genetic. However, in Brazil most cases of hearing loss are due to environmental factors, such as congenital infections (mainly rubella), perinatal anoxia, kernicterus and meningitis. Recently, it has been demonstrated that the GJB2 gene is a major gene underlying congenital sensorial deafness. Mutations in this gene cause 10-20% of all genetic sensory hearing loss. One specific mutation, 35delG, accounts for the majority of mutant alleles. The extent of the hearing impairment varies from mild/moderate to profound, even within the patients homozygous for the common 35delG mutation. There may also be progression with age. Mutation analysis in the GJB2 gene was performed on 36 families (group A) presenting with at least one individual with non-syndromic deafness (NSD). An unselected series of 26 deaf individuals referred by other services where the environmental factors were not completely excluded was also part of the study (group B). Mutations in the GJB2 gene were found in 22% (eight patients) of the families tested in group A, and 11.5% (three patients) of individuals within group B. This finding should facilitate diagnosis of congenital deafness and allow early treatment of the affected subjects.  相似文献   

10.
Mutations in the gene gap junction beta 2 (GJB2), the gene for the connexin 26, are the most common cause of pre-lingual deafness worldwide. The mutation 35delG within GJB2 is prevalent in Europe. To date, there are no data about GJB2 mutation spectrum and frequencies from the Czech population. We investigated and report here the spectrum and frequencies of mutations in the GJB2 gene among 156 unrelated, congenital deafness Czech patients. Allele-specific polymerase chain reaction, together with fluorescent fragment analysis, were used for the detection of the 35delG mutation. The entire coding region of the GJB2 was directly sequenced in all patients who were not homozygous for the 35delG. No pathogenic mutation was detected in 51.9% of patients. At least one pathogenic mutation was found in 48.1% of patients, and both pathogenic mutations were detected in 37.8% of patients. Single mutations in a heterozygous state were detected in 10.3% of patients. The mutation 35delG accounts for 82.8% of detected disease mutations, Trp24stop accounts for 9.7% of pathogenic alleles and was found in patients with gypsy heritage. Mutation 313del14 accounts for 3.7% of pathogenic alleles. The frequency of 35delG heterozygotes in the Czech Republic is 1 : 29.6. Testing for only the three most common mutations would detect over 96% of all pathogenic alleles in the Czech Republic.  相似文献   

11.
The mitochondrial 1555A>G mutation is one of the most common mutations responsible for hearing loss in Asians. Although the association with aminoglycoside exposure is well known, there is great variation in the severity of hearing loss. We analyzed hearing levels in 221 Japanese individuals with this mutation and attempted to identify relevant covariants including (i) age, (ii) aminoglycoside exposure, (iii) heteroplasmy ratio, and (iv) other gene mutations. At every age, average hearing levels were worse than those in normal subjects, suggesting that mitochondrial function itself may affect the severity of hearing loss. Although the hearing loss in individuals with the 1555A>G mutation progressed with age, the rate did not differ from that of the normal subjects. Those who had reported aminoglycoside exposure had moderate-to-severe hearing impairment regardless of age, confirming that such exposure is the most important environmental variable. We also confirmed the presence of heteroplasmy, which is known to modify the expression of other mitochondrial diseases, but found no evidence for a significant correlation with hearing impairment. A high prevalence of GJB2 heterozygous mutations was noted, indicating that these mutations may exhibit epistatic interaction with the 1555A>G mutation.  相似文献   

12.
Approximately one in 1,000 children is affected by severe or profound hearing loss at birth or during early childhood (prelingual deafness). Up to 40% of congenital, autosomal recessive, severe to profound hearing impairment cases result from mutations in a single gene, GJB2, that encodes the connexin 26 protein. One specific mutation in this gene, 35delG, accounts for the majority of GJB2 mutations detected in Caucasian populations. Some previous studies have assumed that the high frequency of the 35delG mutation reflects the presence of a mutational hot spot, while other studies support the theory of a common founder. Greece is among the countries with the highest carrier frequency of the 35delG mutation (3.5%), and a recent study raised the hypothesis of the origin of this mutation in ancient Greece. We genotyped 60 Greek deafness patients homozygous for the 35delG mutation for six single nucleotide polymorphisms (SNPs) and two microsatellite markers inside or flanking the GJB2 gene. The allele distribution in the patients was compared to 60 Greek normal hearing controls. A strong linkage disequilibrium was found between the 35delG mutation and markers inside or flanking the GJB2 gene. Furthermore, we found a common haplotype with a previous study, suggesting a common founder for the 35delG mutation.  相似文献   

13.
目的检测线粒体基因组12SrRNA、基因A1555G突变在中国非综合征性聋患者中的携带频率,探讨中国非综合征性聋的分子病因的流行病学意义。方法提取中国人群中22例氨基糖甙类药物致聋患者、158例散发的非综合征性聋患者以及60例非综合征性聋家系先证者的DNA,以聚合酶链反应结合限制性内切酶酶解分析法检测线粒体基因组A1555G突变的发生情况。结果线粒体基因组A1555G阳性患者占所有耳聋患者的4.2%,散发病例组中A1555G阳性率为1.3%,非综合征性聋家系组中A1555G阳性率为13.3%,22例氨基糖甙类药物致聋患者中未发现A1555G突变。结论线粒体基因组A1555G的突变发生率略高于以往报道,是非综合征性聋家系中致聋的主要病因之一,这对于中国人群耳聋的病因学研究有积极意义。  相似文献   

14.
Mutations in the connexin 26 (Cx26) gene (GJB2) are associated with autosomal nonsyndromic sensorineural hearing loss. This study describes mutations in the Cx26 gene in cases of familial and sporadic hearing loss (HL) by gene sequencing and identifies the allelic frequency of the most common mutation leading to HL (35delG) in the population of eastern Austria. For this purpose we have developed and applied a molecular beacon based real-time mutation detection assay. Mutation frequencies in the Cx26 gene of individuals from affected families (14 out of 46) and sporadic cases (11 out of 40) were 30.4% and 27.5%, respectively. In addition to known disease related alterations, a novel mutation 262 G-->T (A88S) was also identified. 35delG accounted for almost 77% of all Cx26 mutations detected and displayed an allelic frequency in the normal hearing population of 1.7% (2 out of 120). The high prevalence of the 35delG mutation in eastern Austria would therefore allow screening of individuals and family members with Cx26 dependent deafness by a highly specific and semi-automated method.  相似文献   

15.
The 35delG mutation in the connexin 26 gene (GJB2) at the DFNB1 locus is the most common mutation in patients with autosomal-recessive sensorineural deafness. Genetic diagnosis is crucial for genetic counseling. We have developed an easy and simple method and screened a total of 235 unrelated hearing-impaired children. We found 48 of the subjects to be homozygous for the mutation, including 27 of 83 familial cases, 15 of 101 singletons, 4 of 9 subjects born to assortative marriages (deaf married to deaf), and 2 of 42 subjects for whom the parents claimed an environmental factor as the etiology of the condition. The high ratio of individuals homozygous for the mutation indicated that the 35delG mutation in the connexin gene accounts for more than 90% of the mutations at this locus.  相似文献   

16.
线粒体DNA突变是引起感音神经性耳聋的重要原因之一,这些突变主要位于线粒体12SrRNA和tRNA基因上.其中12S rRNA基因上的同质性A1555G和C1494T突变与氨基糖甙类抗生素造成的耳聋相关.携带这两个突变的个体对耳毒性药物高度敏感,导致临床上常见的"一针致聋"现象.但携带A1555G或C1494T突变的个体在没用药的情况下也能产生非综合征型耳聋,而且同一家系内和不同家系间的母系成员在听力损失程度、发病年龄及听力曲线上存在很大差异.这些数据表明A1555G或C1494T突变是导致非综合征型耳聋发生的首要因子,其他修饰因子包括氨基糖甙类抗生素、线粒体DNA单倍型和核修饰基因等,在线粒体12S rRNA A1555G或C1494T突变相关的耳聋表型表达上起协同作用.作者简要介绍了这些因素对线粒体DNA突变致聋的影响以及母系遗传性耳聋发生的可能致病机制.
Abstract:
Mutations in the mitochondrial DNA have been found to be one of the most important causes of sensorineural hearing loss. In particular, these mutations often occur in the mitochondrial 12S rRNA and tRNA genes. Of these, the homoplasmic A1555G and C1494T mutations in the 12S rRNA have been associated with both aminoglycoside induced and nonsyndromic hearing impairment in many families worldwide. Children carrying the A1555G or C1494T mutation are susceptible to the exposure of ototoxic drugs, thereby inducing or worsening hearing loss. Individuals harboring A1555G or C1494T mutation can also develop hearing loss even in the absence of aminoglycoside exposure. However, matrilineal relatives of intra-families or inter-families carrying the A1555G or C1494T mutation exhibit a wide range of severity,age-at-onset, and audiometric configuration of hearing impairment. These indicate that the A1555G or C1494T mutation is a primary factor underlying the development of deafness but insufficient to produce the clinical phenotype. Thus, other modifier factors, such as aminoglycoside (s), mitochondrial DNA haplotype(s) or nuclear modifier gene(s), play a role in the phenotypic expression of the deafness-associated mitochondrial 12S rRNA A1555G or C1494T mutation. In this review, we summarize the modifier factors for the phenotypic expression of deafness-associated 12S rRNA A1555G and C1494T mutations and propose the molecular pathogenetic mechanism of maternally inherited deafness.  相似文献   

17.
线粒体DNA突变是引起感音神经性耳聋的重要原因之一,这些突变主要位于线粒体12SrRNA和tRNA基因上.其中12S rRNA基因上的同质性A1555G和C1494T突变与氨基糖甙类抗生素造成的耳聋相关.携带这两个突变的个体对耳毒性药物高度敏感,导致临床上常见的"一针致聋"现象.但携带A1555G或C1494T突变的个体在没用药的情况下也能产生非综合征型耳聋,而且同一家系内和不同家系间的母系成员在听力损失程度、发病年龄及听力曲线上存在很大差异.这些数据表明A1555G或C1494T突变是导致非综合征型耳聋发生的首要因子,其他修饰因子包括氨基糖甙类抗生素、线粒体DNA单倍型和核修饰基因等,在线粒体12S rRNA A1555G或C1494T突变相关的耳聋表型表达上起协同作用.作者简要介绍了这些因素对线粒体DNA突变致聋的影响以及母系遗传性耳聋发生的可能致病机制.  相似文献   

18.
线粒体DNA突变是引起感音神经性耳聋的重要原因之一,这些突变主要位于线粒体12SrRNA和tRNA基因上.其中12S rRNA基因上的同质性A1555G和C1494T突变与氨基糖甙类抗生素造成的耳聋相关.携带这两个突变的个体对耳毒性药物高度敏感,导致临床上常见的"一针致聋"现象.但携带A1555G或C1494T突变的个体在没用药的情况下也能产生非综合征型耳聋,而且同一家系内和不同家系间的母系成员在听力损失程度、发病年龄及听力曲线上存在很大差异.这些数据表明A1555G或C1494T突变是导致非综合征型耳聋发生的首要因子,其他修饰因子包括氨基糖甙类抗生素、线粒体DNA单倍型和核修饰基因等,在线粒体12S rRNA A1555G或C1494T突变相关的耳聋表型表达上起协同作用.作者简要介绍了这些因素对线粒体DNA突变致聋的影响以及母系遗传性耳聋发生的可能致病机制.  相似文献   

19.
人工耳蜗植入者线粒体12SrRNA基因突变的分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目的研究接受人工耳蜗植入的耳聋患者中,线粒体12SrRNA基因突变的类型和发生概率。方法选取100例接受人工耳蜗植入的非综合征性耳聋患者(语前聋96例,语后聋4例;氨基糖苷类药物使用史者16例),取外周血提取基因组DNA,以PCR方法扩增线粒体12SrRNA基因,扩增产物纯化后直接测序分析突变。结果100例患者中有2例检测到线粒体12SrRNA基因1555A〉G纯合突变,1例检测到delT961Cn杂合突变,致病基因突变总检出率为3%。结论在所研究的人工耳蜗植入群体中,线粒体12SrRNA基因突变不是主要的致聋病因。  相似文献   

20.
目的分析温州地区120例耳聋患者的致聋原因,并探讨线粒体ONA(mitochondrial DNA,mtDNA)12S rRNA基因A1555G和C1494T突变与耳聋之间的关系。方法对我院收集的120例耳聋患者进行分子流行病学的调查,并针对线粒体1555和1494位点进行引物设计,通过PCR扩增,产物Sanger测序后比对标准序列,检测A1555G和C1494T突变的频率以及和患者使用氨基糖苷类抗生素的相关性。结果在120例重度耳聋患者中具有氨基糖苷类抗生素用药史的有66例(55%),家族性遗传耳聋有22例(18.3%),近亲结婚可能致聋有10例(8.3%),不明原因的耳聋有22例(18.3%);我们还发现,有9例患者携带线粒体A1555G突变,突变的阳性率为7.5%,1例携带C1494T突变,阳性率为0.83%,这10例患者均有用药史。结论遗传因素和氨基糖苷类用药史是导致耳聋的重要原因,其中Al555G突变和C1494T突变是耳聋较为常见的线粒体DNA突变,这对早期诊断和预防药物性耳聋具有一定的临床意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号