首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kynurenic acid (KYNA) is an endogenous NMDA receptor antagonist as well as a blocker of the α7* nicotinic receptor and mounting evidence suggests that the compound participates in the pathophysiology of schizophrenia. Previous studies have shown that elevated levels of endogenous KYNA are associated with an increased firing of midbrain dopamine (DA) neurons. In the present study, utilizing extracellular single unit cell recording techniques, the mechanism involved in this excitatory action of the compound was analyzed in male Sprague–Dawley rats. Administration of 4-chlorokynurenine (4-Cl-KYN; 25 mg/kg, i.p.), which is converted to the selective NMDA glycine-site antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), was found to increase firing rate and per cent burst firing activity of ventral tegmental area (VTA) DA neurons to the same magnitude as pretreatment of kynurenine (causing a 25-fold elevation in extracellular brain KYNA). Intravenous administration of the selective antagonist at the α7* nicotinic receptor methyllycaconitine (MLA; 1–4 mg/kg) did not affect firing of VTA DA neurons, whereas intraperitoneal administration of this drug in a high dose (6 mg/kg) was associated with a decreased firing rate and per cent burst firing activity. Administration of SDZ 220-581 (10 mg/kg, i.v.), a competitive antagonist at the glutamate recognition-site of the NMDA receptor, was found to increase firing rate and per cent burst firing. Present results have potential implications for the treatment of schizophrenia, and indicate that the increased activity of VTA DA neurons following elevation of brain KYNA is mediated through glutamatergic rather than by nicotinergic mechanisms.  相似文献   

2.
The mode of action by which the atypical antipsychotic drug clozapine exerts its superior efficacy to ameliorate both positive and negative symptoms is still unknown. In the present in vivo electrophysiological study, we investigate the effects of haloperidol (a typical antipsychotic drug) and clozapine on ventral tegmental area (VTA) dopamine (DA) neurons in a situation of hyperdopaminergic activity in order to mimic tentatively a condition similar to that seen in schizophrenia. Increased DA transmission was induced by elevating endogenous levels of the N-methyl-D-aspartate receptor and alpha7(*) nicotinic receptor antagonist kynurenic acid (KYNA; by means of PNU 156561A, 40 mg /kg, i.v.). In control rats, i.v. administered haloperidol (0.05-0.8 mg/kg) or clozapine (1.25-10 mg/kg) was associated with increased firing rate and burst firing activity of VTA DA neurons. However, in rats displaying hyperdopaminergia (induced by elevated levels of KYNA), the effects of clozapine on VTA DA neurons were converted into pure inhibitory responses, including decrease in burst firing activity. In contrast, haloperidol still produced an excitatory action on VTA DA neurons in rats with elevated levels of endogenous brain KYNA. The results of the present study suggest that clozapine facilitates or inhibits VTA DA neurotransmission, depending on brain concentration of KYNA. Such an effect of clozapine may be related to its unique effect in also ameliorating negative symptoms of schizophrenia.  相似文献   

3.
In the present study, we investigated the effects of psychostimulant exposure on kappa-opioid peptide (KOP) receptor signaling in the rat mesolimbic system. A single subcutaneous (s.c.) injection of amphetamine (2.5 mg/kg) reduced the KOP receptor-mediated inhibition of glutamate release in the nucleus accumbens shell, as a consequence of KOP receptor desensitization. This effect was blocked by dopamine (DA) receptor antagonists or the nonselective opioid antagonist, naltrexone (1 mg/kg, s.c.), and mimicked by the KOP receptor agonists U69593 (0.32 mg/kg, s.c.) and dynorphin (1 microM), indicating that an amphetamine-induced release of dynorphin is producing a long-lasting desensitization of the KOP receptor. Despite the fact that amphetamine also increases dynorphin release in the ventral tegmental area (VTA), KOP receptor function in this region was not affected by amphetamine; there was no difference in the KOP receptor-mediated change in firing rate or resting membrane potential measured in VTA neurons from saline- or amphetamine-treated animals. This study demonstrates that amphetamine can produce regionally selective adaptations in KOP receptor signaling, which may, in turn, alter the effects of subsequent drug exposure.  相似文献   

4.
Previous work demonstrates the fundamental role of the firing pattern, specifically the burst firing mode of midbrain dopamine (DA) neurons in the regulation of DA release. Spontaneous burst firing has been shown to be dependent upon NMDA receptor activation of the DA cells. In addition to NMDA receptors, previous studies have reported that also GABA(B) receptors modulate the firing pattern of DA neurons in the substantia nigra. In the present electrophysiological study the role of GABA(B) receptors in the modulation of the firing pattern of DA neurons in the ventral tegmental area (VTA) in anaesthetised Sprague-Dawley rats was analysed. Systemic administration of the selective and potent GABA(B) receptor agonist baclofen dose-dependently reduced firing rate and burst firing in VTA DA neurons. An increase in the regularity of DA cell firing was also observed. All these effects were effectively antagonized by administration of the selective GABA(B) antagonist CGP 35348 (100 mg/kg or 200 mg/kg, i.v.). Administration of CGP 35348 (400 mg/kg, i.v.) per se was associated with a long-lasting increase in burst firing activity. The effects of systemic administration of baclofen, alone or in combination with CGP 35348, on the firing rate were largely mimicked by local microiontophoretic application of the drugs onto the DA neurons.Our findings indicate that central GABA(B) receptors may contribute to control of the burst firing mode of VTA DA neurons. Physiologically, activation of GABA(B) receptors may subserve a dampening function on VTA DA cell excitability which may counterbalance NMDA receptor-mediated excitation.  相似文献   

5.
The major brain noradrenergic nucleus locus coeruleus (LC) has long been thought to be involved in states of alertness and cognitive processes. These functional characteristics make this nucleus interesting with regard to the signs of schizophrenia, especially the negative symptoms of the disease. In the present in-vivo electrophysiological study we analyse a putative interaction between endogenous kynurenic acid (KYNA) and the antipsychotic drugs clozapine and haloperidol on noradrenergic LC neurons. Previous studies have shown that systemically administered antipsychotic drugs increase the neuronal activity of LC noradrenaline (NA) neurons. In line with these findings, our results show that clozapine (1.25-10 mg/kg i.v.) and haloperidol (0.05-0.08 mg/kg i.v.) increased the firing rate of LC NA neurons in anaesthetized rats. Pretreatment with PNU 156561A (40 mg/kg i.v., 3 h), a potent inhibitor of kynurenine 3-hydroxylase, produced a 2-fold increase in rat brain KYNA levels. This treatment prevented the increase in firing rate of LC NA neurons induced by haloperidol (0.05-0.08 mg/kg i.v.) and clozapine in high doses (2.5-10 mg/kg i.v.). However, the excitatory action of the lowest dose of clozapine (1.25 mg/kg i.v.) was not abolished by elevated levels of brain KYNA. Furthermore, pretreatment with L-701,324 (4 mg/kg i.v.) a selective antagonist at the glycine site of the NMDA receptor prevented the excitatory effects of both clozapine and haloperidol. The present results suggest that the excitation of LC NA neurons by haloperidol and clozapine involves a glutamatergic component.  相似文献   

6.
The 5-HT5A receptor is arguably the least understood 5-HT receptor. Despite widespread expression in human and rodent brains it lacks specific ligands. Our previous results suggest that 5-HT5A receptor antagonists may be effective against cognitive impairment in schizophrenia. In this study, using behavioral, immunohistochemical, electrophysiological and microdialysis techniques, we examined the mechanism by which ASP5736, a novel and selective 5-HT5A receptor antagonist, exerts a positive effect in animal models of cognitive impairment. We first confirmed the effect of ASP5736 on cognitive deficits in rats treated subchronically with phencyclidine hydrochloride (PCP) using an attentional set shifting task. Subsequently, we identified 5-HT5A receptors in dopaminergic (DAergic) neurons and parvalbumin (PV)-positive interneurons in the ventral tegmental area (VTA) and in PV-positive interneurons in the medial prefrontal cortex (mPFC). Burst firing of the DAergic cells in the parabrachial pigmental nucleus (PBP) in the VTA, which predominantly project to the mPFC, was significantly enhanced by treatment with ASP5736. In contrast, ASP5736 exerted no significant effect on either the firing rate or burst firing in the DA cells in the paranigral nucleus (PN), that project to the nucleus accumbens (N. Acc.). ASP5736 increased the release of DA and gamma-aminobutyric acid (GABA) in the mPFC of subchronically PCP-treated rats. These results support our hypothesis that ASP5736 might block the inhibitory 5-HT5A receptors on DAergic neurons in the VTA that project to the mPFC, and interneurons in the mPFC, and thereby improve cognitive impairment by preferentially enhancing DAergic and GABAergic neurons in the mPFC.  相似文献   

7.
Stress during adolescence is a risk factor for neuropsychiatric diseases, including schizophrenia. We recently observed that peripubertal male rats exposed to a combination of daily footshock plus restraint stress exhibited schizophrenia-like changes. However, numerous studies have shown sex differences in neuropsychiatric diseases as well as on the impact of coping with stress. Thus, we decided to evaluate, in adolescent female rats, the impact of different stressors (restraint stress [RS], footshock [FS], or the combination of FS and RS [FS+RS]) on social interaction (3-chamber social approach test/SAT), anxiety responses (elevated plus-maze/EPM), cognitive function (novel object recognition test/NOR), and dopamine (DA) system responsivity by evaluating locomotor response to amphetamine and in vivo extracellular single unit recordings of DA neurons in the ventral tegmental area (VTA) in adulthood. The impact of FS+RS during early adulthood was also investigated. Adolescent stress had no impact on social behavior, anxiety, cognition and locomotor response to amphetamine. In addition, adolescent stress did not induce long-lasting changes in VTA DA system activity. However, a decrease in the firing rate of VTA DA neurons was found 1–2 weeks post-adolescent stress. Similar to adolescent stress, adult stress did not induce long-lasting behavioral deficits and changes in VTA DA system activity, but FS+RS decreased VTA DA neuron population activity 1–2 weeks post-adult stress. Our results are consistent with previous studies showing that female rodents appear to be more resilient to developmental stress-induced persistent changes than males and may contribute to the delayed onset and lesser severity of schizophrenia in females.  相似文献   

8.
Electrophysiological techniques and in vivo microdialysis were used to investigate the effect of SB 242084, a potent and selective 5-HT2C receptor antagonist in the control of nigro-striatal and mesolimbic dopaminergic function. Thus, extracellular single unit recordings were performed from neurochemically-identified dopamine (DA) neurons in the substantia nigra, pars compacta (SNc) and the ventral tegmental area (VTA), as well as monitoring of striatal and accumbal basal DA release in anesthetized rats following the administration of SB 242084 and RO 60-0175. Administration of SB 242084 (160-640 microg/kg, i.v.) caused a dose-dependent increase in the basal firing rate of VTA DA neurons, reaching its maximum (27.8+/-6%, above baseline) after 640 microg/kg. Moreover, bursting activity was significantly enhanced by SB 242084 in the VTA. On the other hand, SB 242084 (160-640 microg/kg, i.v.) did not cause any significant change in the basal firing rate and bursting activity of DA neurons in the SNc. Injection of the 5-HT2C receptor agonist RO 60-0175 (80-320% microg/kg, i.v.) dose-dependently decreased the basal firing of DA neurons in the VTA but not in the SNc. RO 60-0175 exerted its maximal inhibitory effect (53.9+/-15.1%, below baseline) in the VTA at the dose of 320 microg/kg. Basal DA release (34.8+/-9%, above baseline) and dihydroxyphenylacetic acid (DOPAC) efflux (19.7+/-7%, above baseline) were significantly enhanced in the nucleus accumbens following the intraperitoneal administration of 10 mg/kg SB 242084. Intraperitoneal injection of 5 mg/kg SB 242084 significantly increased DA release (16.4+/-6%, above baseline) in the nucleus accumbens, but did not affect DOPAC efflux. In the striatum, SB 242084 (5 and 10 mg/kg, i.p.) only slightly increased DA release above baseline (3.5+/-4 and 11.2+/-6%, respectively), without affecting DOPAC efflux in this area. However, the effect of SB 242084 in the striatum was rendered more evident by the fact that injection of the vehicle used to dissolve the drug in a group of control rats, significantly reduced basal DA output by 19.6+/-7%. Stimulation of 5-HT2C receptors by RO 60-0175 (1 mg/kg, i.p.) significantly decreased DA release in the nucleus accumbens by 26.1+/-4% (below baseline) 60 min after injection. On the other hand, RO 60-0175 (1 mg/kg, i.p.) did not cause any significant change of DA release in the striatum. However, DOPAC efflux was reduced by RO 60-0175 (1 mg/kg, i.p.) both in the striatum and the nucleus accumbens. Taken together, these data indicate that the central 5-HT system exerts a tonic and phasic inhibitory control on mesolimbic DA neuron activity and that 5-HT2C receptor subtypes are involved in this effect. Moreover, these findings might open new possibilities for the employment of 5-HT2C receptor antagonists in the treatment of neuropsychiatric disorders related to a hypofunction of central DA neurons.  相似文献   

9.
The effects of a potent and specific antagonist of 5-HT3 receptors, ICS 205-930, on the dopamine (DA)-releasing properties of morphine (1.0 mg/kg s.c.), nicotine (0.6 mg/kg s.c.), ethanol (1.0 g/kg i.p.) and amphetamine (0.25 and 1.0 mg/kg s.c.) were studied in rats. DA release was estimated by trans-cerebral dialysis in the nucleus accumbens of freely moving rats. ICS 205-930 (15-30 micrograms/kg s.c.) failed to modify the basal output of DA and its metabolites, however, ICS 205-930 dose dependently reduced the stimulation of DA release by morphine, nicotine and ethanol. Thus, at doses of 30 micrograms/kg s.c., ICS 205-930 completely prevented the morphine-, nicotine- and ethanol-induced stimulation of DA release in the nucleus accumbens; doses of 15 micrograms/kg s.c. partially prevented the morphine-, nicotine- and ethanol-induced stimulation of DA release while doses of 7.5 micrograms/kg s.c. were ineffective. In contrast, ICS 205-930 (up to 30 micrograms/kg s.c.) failed to affect the amphetamine-induced stimulation of DA release in the nucleus accumbens. The inhibitory effects of ICS 205-930 (15 and 30 micrograms/kg s.c.) on the drug-induced stimulation of DA release could also be extended to the neuroleptic haloperidol (0.1 mg/kg s.c.). The results indicate that blockade of 5-HT3 receptors selectively prevents the stimulation of DA release induced by drugs known to stimulate the firing activity of DA neurons.  相似文献   

10.
In vivo microdialysis and single-cell extracellular recordings were used to assess the involvement of serotonin(4) (5-HT(4)) receptors in the effects induced by morphine, amphetamine and cocaine on nigrostriatal and mesoaccumbal dopaminergic (DA) pathway activity.The increase in striatal DA release induced by morphine (2.5 mg/kg, s.c.) was significantly reduced by the selective 5-HT(4) antagonists GR 125487 (0.1 and 1 mg/kg, i.p.) or SB 204070 (1 mg/kg, i.p.), and potentiated by the 5-HT(4) agonist prucalopride (5 mg/kg, i.p.). Neither of these compounds affected morphine-stimulated DA release in the nucleus accumbens. In both regions, amphetamine (2 mg/kg, i.p.) and cocaine (15 mg/kg, i.p.) induced DA release was affected neither by GR 125487 nor by prucalopride. None of the 5-HT agents used modified basal DA release in either brain region. Finally, GR 125487 (445 microg/kg, i.v.), whilst not affecting basal firing of DA neurons within either the substantia nigra pars compacta nor the ventral tegmental area, significantly reduced morphine (0.1-10 mg/kg, i.v.) stimulated firing of nigrostriatal DA neurons only.These results confirm that 5-HT(4) receptors exert a state-dependent facilitatory control restricted to the nigrostriatal DA pathway, and indicate that 5-HT(4) receptors selectively modulate DA exocytosis associated with increased DA neuron firing rate.  相似文献   

11.
Chronic cocaine administration leads to catecholamine reuptake inhibition which enhances reward and motivational behaviors. Ventral Tegmental Area dopaminergic (VTA DA) neuronal firing is associated with changes in reward predictive signals. Acute cocaine injections inhibit putative VTA DA cell firing in vertebrates. Parthenolide, a compound isolated from the feverfew plant (Tanacetum parthenium), has been shown to substantially inhibit cocaine's locomotion effects in a planarian animal model (Pagán et al., 2008). Here we investigated the effects of parthenolide on the spontaneous firing activity of putative VTA DA neurons in anesthetized male rats (250-300g). Single-unit recordings were analyzed after intravenous (i.v.) parthenolide administration followed by 1mg/kg i.v. cocaine injection. Results showed that parthenolide at 0.125 mg/kg and 0.250mg/kg significantly blocked cocaine's inhibitory effect on DA neuronal firing rate and bursting activity (p< 0.05, two way ANOVA). We propose that parthenolide might inhibit cocaine's effects on VTA DA neurons via its interaction with a common binding site at monoamine transporters. It is suggested that parthenolide could have a potential use as an overdose antidote or therapeutic agent to cocaine intoxication.  相似文献   

12.
Pharmacological evidence suggests that schizophrenia is associated with increased stimulation of dopamine (DA) D2 receptors. Recently, several groups have demonstrated that amphetamine-induced DA release is increased in schizophrenia, providing direct evidence for dysregulation of DA systems in this condition. In healthy volunteers, pretreatment with the noncompetitive N-methyl-D-aspartate (NMDA) antagonist ketamine increases amphetamine-induced DA release to levels similar to those observed in patients with schizophrenia. Therefore, the dysregulation of DA function observed in schizophrenia might be secondary to NMDA hypofunction. In this study, the regulation of this response by glutamate (GLU) transmission was further characterized by using a metabotropic glutamate (mGlu) receptor group II agonist to inhibit GLU transmission. The amphetamine- (0.5 mg/kg intravenously (i.v.)) induced decrease in [11C]raclopride equilibrium-specific binding (V3') was measured under control conditions and following pretreatment with the mGlu2/3 receptor agonist LY354740 (20 mg/kg i.v.) in four baboons. Amphetamine reduced [11C]raclopride V3' by 28+/-7% under control conditions. Following LY354740 pretreatment, amphetamine-induced reduction in [11C]raclopride V3' was significantly enhanced (35+/-7%, p=0.002). The enhancement of the amphetamine-induced reduction in [11C]raclopride V3' by LY354740 was not a simple additive effect, as LY354740 alone did not reduce [11C]raclopride V3'. In conclusion, the results of this study further document the involvement of GLU transmission in regulating the effect of amphetamine-induced DA release, and provide additional support to the hypothesis that the dysregulation of DA function revealed by the amphetamine challenge in schizophrenia might stem from a deficit in GLU transmission.  相似文献   

13.
Previous research demonstrated that the mesoaccumbens dopamine (DA) pathway played a critical role in the behavioral effects of amphetamine in rodents. Nonetheless, recent findings have also indicated involvement of 5-hydroxytryptamine (5-HT, serotonin) transmission in these effects. In the present study, we investigated the role of 5-HT1B receptors located in the ventral tegmental area (VTA) in the amphetamine-induced locomotor hyperactivity in rats. Male Wistar rats, implanted bilaterally with cannulae in the VTA were infused with saline (0.2 microl/side), GR 55562 (an antagonist of 5-HT1B receptors; 0.1-1 microg/side) or CP 93129 (an agonist of 5-HT1B receptors; 0.003-0.03 microg/side) immediately prior to the injection of saline (1 ml/kg, ip) or amphetamine (0.5 mg/kg, ip). The monitoring of locomotor activity in photobeam chambers began at once and proceeded for 60 min. Neither GR 55562 nor CP 93129 affected basal locomotor activity. Pretreatment with GR 55562 (0.1-1 microg/side) did not affect the locomotor hyperactivity evoked by amphetamine. On the other hand, microinjections of CP 93129 (0.01-0.03 microg/side) enhanced the amphetamine-induced hyperlocomotor activity. GR 55562 (1 microg/side) markedly reduced the enhancing effects of CP 93129 (0.01 microg/side) on the amphetamine-induced hyperactivity. These findings indicate that 5-HT1B receptors located in the VTA do not play a major role in the hyperlocomotion elicited by amphetamine, whereas their activation may modulate the behavioral response to the psychostimulant.  相似文献   

14.
The results of the present study show that 5 days of systemic treatment with fluoxetine (5 mg/kg) resulted in an augmented locomotor response to amphetamine (0.5 mg/kg). This augmented response to amphetamine was observed 24 and 48 h, but not 5 days, after the cessation of fluoxetine treatment. Subchronic fluoxetine treatment also produced an increase in the brain concentration of amphetamine when rats were challenged with amphetamine 48 h, but not 5 days, after the cessation of fluoxetine treatment. Thus, the effect of subchronic fluoxetine in augmenting amphetamine-induced hyperactivity was consistent with the effect of subchronic fluoxetine in augmenting the amphetamine concentration in the brain. This pattern of results indicates that subchronic fluoxetine potentiates the response to amphetamine within a limited time-window, and that this potentiating effect is likely to be due to the reduced metabolism of amphetamine via the inhibition of cytochrome P450 by fluoxetine and/or its metabolite norfluoxetine.  相似文献   

15.
Acetaldehyde increases dopaminergic neuronal activity in the VTA.   总被引:4,自引:0,他引:4  
Acetaldehyde is the first and principal metabolite of ethanol administered systemically. To its rise in blood, after administration of disulfiram, is ascribed the aversive reaction that should discourage alcoholics from drinking. In the present study, we sought to determine the effect of acetaldehyde on the electrophysiological properties of dopamine (DA)-containing neurons in the ventro tegmental area (VTA) of rats in vivo. Intravenous (i.v.) administration of acetaldehyde (5-40 mg/kg) readily and dose-dependently increased the firing rate, spikes/burst, and burst firing of VTA neurons. Ethanol (250-1000 mg/kg/i.v.) administration produced similar increments in electrophysiological parameters. In addition, a second group of rats was pretreated with the alcohol-dehydrogenase inhibitor 4-methyl-pyrazole (90 mg/kg) intraperitoneally (i.p.), and ethanol and acetaldehyde were administered i.v. at the same doses, 48 h later. In this group, ethanol effects were drastically reduced and the firing rate, spikes/burst, and burst firing were not significantly altered. In contrast, acetaldehyde fully retained its capacity to stimulate electrophysiological indices. The results indicate that acetaldehyde produces electrophysiological actions on VTA neurons in vivo, similar to those produced by ethanol, and significantly participate in ethanol-induced increment in DA neuronal activity. These results also suggest that acetaldehyde, by increasing DA neuronal activity in the VTA, may significantly contribute to the centrally mediated positive motivational properties of ethanol, which would oppose the well-known peripherally originating aversive properties.  相似文献   

16.
Functional dopaminergic hyperactivity is a key feature of schizophrenia. Etiology of this dopaminergic hyperactivity, however, is unknown. We have recently demonstrated that subchronic phencyclidine (PCP) treatment in rodents induces striatal dopaminergic hyperactivity similar to that observed in schizophrenia. The present study investigates the ability of PCP to potentiate amphetamine-induced dopamine release in prefrontal cortex (PFC) and nucleus accumbens (NAc) shell. Prefrontal dopaminergic hyperactivity is postulated to underlie cognitive dysfunction in schizophrenia. In contrast, the degree of NAc involvement is unknown and recent studies have suggested that PCP-induced hyperactivity in rodents may correlate with PFC, rather than NAc, dopamine levels. Rats were treated with 5-20 mg/kg/day PCP for 3-14 days by osmotic minipump. PFC and NAc dopamine release to amphetamine challenge (1 mg/kg) was monitored by in vivo microdialysis and HPLC-EC. Doses of 10 mg/kg/day and above produced serum PCP concentrations (50-150 ng/ml) most associated with PCP psychosis in humans. PCP-treated rats showed significant, dose-dependent enhancement in amphetamine-induced dopamine release in PFC but not NAc, along with significantly enhanced locomotor activity. Enhanced response was observed following 3-day, as well as 14-day, treatment and resolved within 4 days of PCP treatment withdrawal. These findings support the concept that endogenous NMDA receptor dysfunction could account for the pattern of dopaminergic dysfunction observed in schizophrenia, and suggest that even short duration abuse of PCP-like agents may greatly potentiate behavioral effects of psychostimulants in drug abuse situations. Finally, these studies provide a model system in which to evaluate effects of potential psychotherapeutic agents.  相似文献   

17.
Functional dopaminergic hyperactivity is a key feature of schizophrenia. Recent in vivo imaging studies have demonstrated greater striatal dopamine release in response to amphetamine challenge in schizophrenia subjects than in normal controls. N-methyl-D-aspartate (NMDA) receptors are known to play a prominent role in regulation of striatal dopamine release. In humans, NMDA antagonists induce a psychotic state that closely resembles schizophrenia. The present study investigates the degree to which chronic continuous administration of the NMDA antagonist phencyclidine (PCP) induces schizophrenia-like hyperreactivity of striatal dopamine release to amphetamine in rodents. Rats were treated with 10 or 15 mg/kg/d PCP for two weeks by osmotic minipump, and striatal dopamine release to amphetamine challenge (1 mg/kg) was monitored by microdialysis. PCP-treated rats showed significant enhancement in amphetamine-induced dopamine release, along with significantly enhanced locomotor activity. These findings support the concept that NMDA receptor dysfunction may contribute to dopaminergic dysfunction in schizophrenia.  相似文献   

18.
The effects of amphetamine, apomorphine and haloperidol on the spontaneous activity of electrophysiologically identified nigral dopaminergic neurons were examined with extracellular recordings in vivo in neonatal rats ranging in age from postnatal day 1 to postnatal day 28, and in adult rats. In postnatal day 1-6 pups amphetamine (5 mg/kg i.p.) produced a paradoxical increase in neuronal firing in 45% and had no effect on 30% of the 20 neurons examined. During the second week half of the neurons recorded were unresponsive to amphetamine. Typical amphetamine-induced inhibition was observed in only 25% of the neurons from postnatal day 1-6 and 50% of those from postnatal day 7-15 rats compared to 81.8% in postnatal day 16-28 pups and 100% in adults. Apomorphine (50-200 micrograms/kg i.p.; 5-20 micrograms/kg i.v.), significantly inhibited the spontaneous activity of dopaminergic neurons, including cells that previously failed to be inhibited by amphetamine, independent of age. The apomorphine-induced inhibition was consistently reversed by administration of haloperidol (0.5-2.0 mg/kg, i.p.; 50-200 micrograms/kg i.v.). The anomalous responses to amphetamine in early neonatal rats may be related to its paradoxical behavioral effects in human children afflicted with attention deficit disorder.  相似文献   

19.
Prenatal stress exposure (PSE) is known to increase addiction risk. Dopamine (DA) neurons in the ventral tegmental area (VTA) play an important role in addiction. In order to understand the cellular mechanisms underlying PSE-induced increase in addiction risk, we examined the effects of PSE on the electrical impulse activity of VTA DA neurons using the in vivo extracellular single-unit recording technique. Amphetamine self-administration was also conducted to confirm increased addiction risk after PSE. The PSE was carried out by restraining pregnant dams from GD 11 to 20. Adult male offspring (3–6 months old) were used in the experiments. Animals with PSE showed enhanced amphetamine self-administration compared with controls when amphetamine dose was reduced after acquisition. The number of spontaneously active VTA DA neurons was also reduced in PSE rats. The reduction was reversed by acute apomorphine that normally inhibits the impulse activity of DA neurons. The reversal effect suggests that PSE-induced reduction in the number of spontaneously active VTA DA neurons is caused by overexcitation to the extent of depolarization block. Furthermore, the reduced number of spontaneously active VTA DA neurons was also reversed by acute psychostimulants (eg, amphetamine; cocaine), which in control rats inhibited the activity of VTA DA neurons. The reversal effect on VTA DA neuron in PSE animals represents an actual increase in the impulse activity. This effect might contribute to increased responding to psychostimulants and mediate increased addiction risk after PSE.  相似文献   

20.
Rationale Endocannabinoid-mediated forms of transient synaptic depression have been described in several brain structures, including the dopaminergic ventral tegmental area (VTA). However, their functional and/or behavioural correlates are yet to be determined. Objectives The present study was designed to investigate whether back-propagating action potentials in dopamine (DA) neurons, evoked by the stimulation of the medial forebrain bundle (MFB), could trigger endocannabinoid-mediated forms of synaptic modulation. The MFB contains axons ascending from DA neurons to the nucleus accumbens and other forebrain structures, and its stimulation is rewarding because it elicits intra-cranial self-stimulation. Materials and methods Single cell extracellular recordings were carried out from anti-dromically identified VTA DA neurons in chloral hydrate anesthetized rats. Results DA neurons responded to MFB stimulation (1 s, 20–80 Hz) with a frequency-dependent increase in spontaneous firing rate, which was enhanced by the cannabinoid type-1 receptor antagonist SR141716A (1 mg/kg) and depressed by the agonist WIN55212-2 (0.125 mg/kg). Increasing brain levels of the endocannabinoid anandamide by blocking its major hydrolysing enzyme, fatty-acid amide hydrolase, with URB597 (0.1 mg/kg) was ineffective, whereas blockade of the endocannabinoid membrane transporter with UCM707 (1 mg/kg) enhanced post-stimulus firing rate. Conclusions Our study indicates that stimulation of the MFB evokes an endocannabinoid-mediated short-term modulation of DA neuron activity. Thus, endocannabinoids might play an important role in the mechanisms underlying the rewarding properties of MFB stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号