首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene delivery for lung cancer using nonviral gene vectors   总被引:2,自引:0,他引:2  
Wang JT  Peng DY  Chen M  Ye JS 《Die Pharmazie》2007,62(10):723-726
Multiple options for the treatment of lung cancer have often been described in the past, including surgery, chemotherapy and radiation, but the therapeutic effect is typically transient and mostly absent with advanced disease. New approaches to the treatment of lung cancer are urgently needed. Gene therapy has been widely proposed as a novel strategy to improve therapy. Although progress has been made using viral vectors, rapid advances in transfection technologies employing nonviral vectors, together with their relatively low toxicity, suggest that nonviral vectors may have significant potential for clinical applications. This paper briefly reviews general principles of gene delivery with emphasis on recent developments in the arena of lung cancer using nonviral vectors (naked DNA, polycationic polymers, cationic liposomes). Employing gene transfer techniques to achieve therapeutically useful levels of expression of therapeutic genes in the lung could provide a new strategy for treatment of lung cancer.  相似文献   

2.
DNA can be delivered into the cell nucleus either using physical means or specific carriers that carry the genes into the cells for gene expression). Various carriers for delivering genes have been investigated which can be divided into two main groups: viral carriers where the DNA to be delivered is inserted into a virus, and cationic molecular carriers that form electrostatic interactions with DNA). Successful gene therapy depends on the efficient delivery of genetic materials into the cells nucleus and its effective expression within these cells). Although at present the in vivo expression levels of synthetic molecular gene vectors are lower than for viral vectors and gene expression is transient, these vehicles are likely to present several advantages including safety, low-immunogenicity, capacity to deliver large genes and large-scale production at low-cost). The two leading classes of synthetic gene delivery systems that have been mostly investigated are cationic lipids and cationic polymers). This review discusses recent developments in viral vectors, physical means and molecular gene carriers). The last part focuses on our recent studies in developing a new series of biodegradable polycations for in vitro and in vivo gene transfection).  相似文献   

3.
In vivo transfer and expression of foreign genes allows for the elucidation of functions of genes in living organisms and generation of disease models in animals that more closely resemble the etiology of human diseases. Gene therapy holds promise for the cure of a number of diseases at the fundamental level. Synthetic "nonviral" materials are fast gaining popularity as safe and efficient vectors for delivering genes to target organs. Not only can nanoparticles function as efficient gene carriers, they also can simultaneously carry diagnostic probes for direct "real-time" visualization of gene transfer and downstream processes. This review has focused on the central nervous system (CNS) as the target for nonviral gene transfer, with special emphasis on organically modified silica (ORMOSIL) nanoparticles developed in our laboratory. These nanoparticles have shown robust gene transfer efficiency in brain cells in vivo and allowed to investigate mechanisms that control neurogenesis as well as neurodegenerative disorders.  相似文献   

4.
Gene therapy holds promise for the treatment of many inherited and acquired diseases of the eye. Successful ocular gene therapy interventions depend on efficient gene transfer to targeted cells with minimal toxicity. A major challenge is to overcome both intracellular and extracellular barriers associated with ocular gene delivery. Numerous viral and nonviral vectors were explored to improve transfection efficiency. Among nonviral delivery systems, polymeric vectors have gained significant attention in recent years owing to their nontoxic and non-immunogenic nature. Polyplexes or nanoparticles can be prepared by interaction of cationic polymers with DNA, which facilitate cellular uptake, endolysosomal escape and nuclear entry through active mechanisms. Chemical modification of these polymers allows for the generation of flexible delivery vectors with desirable properties. In this article several synthetic and natural polymeric systems utilized for ocular gene delivery are discussed.  相似文献   

5.
Gene therapy is a promising new approach for treating a variety of genetic and acquired diseases. While viral vectors are highly efficient for gene therapy, their use is associated with high toxicity and immunogenicity. Synthetic or nonviral vectors are attractive alternatives to viral vectors because of their low immunogenicity and low acute toxicity. The main disadvantage of the nonviral vectors is the low transfection efficiency compared to viral vectors. Novel functional devices to enhance the transfection activities of nonviral vectors are needed. In this review, we discuss the modification of liposomal drug carriers with a novel functional device, the octaarginine (R8) peptide, for drug and gene delivery. Decoration of liposomes with R8 enhanced their cellular uptake. In addition, by optimizing the density of the peptide as well as its topology, the liposomes could be internalized via clathrin-independent pathways, which improved the intracellular trafficking through avoiding lysosomal degradation. A special emphasis is given to the need for optimizing the conditions of using the peptide to not only enhance the cellular uptake but also to improve the intracellular trafficking of its cargos. In addition, the use of R8-modified liposomes and nano-particles in gene delivery is discussed.  相似文献   

6.
Renal gene therapy may offer new strategies to treat diseases of native and transplanted kidneys. Several experimental techniques have been developed and employed using nonviral, viral, and cellular vectors. The most efficient vector for in vivo transfection appears to be adenovirus. Glomeruli, blood vessels, interstitial cells, and pyelum can be transfected with high efficiency. In addition, electroporation and microbubbles with ultrasound, both being enhanced naked plasmid techniques, offer good opportunities. Trapping of mesangial cells into the glomeruli as well as natural targeting of monocytes or macrophages to inflamed kidneys are elegant methods for site-specific delivery of genes. For gene therapy in kidney transplantation, hemagglutinating virus of Japan liposomes are efficient vectors for tubular transfection, whereas enhanced naked plasmid techniques are suitable for glomerular transfection. However, adenovirus offers the best opportunities in a renal transplantation setup because varying parameters of graft perfusion allows targeting of different cell types. In renal grafts, lymphocytes can be used for selective targeting to sites of inflammation. In conclusion, for both in vivo and ex vivo renal transfection, enhanced naked plasmids and adenovirus offer the best perspectives for effective clinical application. Moreover, the development of safer, nonimmunogenic vectors and the large-scale production could make clinical renal gene therapy a realistic possibility for the near future.  相似文献   

7.
Although most research in the field of somatic gene therapy has investigated the use of recombinant viruses for transferring genes into somatic target cells, various methods for nonviral gene delivery have also been proposed. Both types of gene delivery systems have advantages and drawbacks. Schematically, viral vectors are particularly efficient for gene delivery, whereas nonviral systems are free of the difficulties associated with the use of recombinant viruses but need to be further optimized to reach their full potential. In order to bridge the gap between viral vectors and synthetic reagents, we discuss here some specific features of the viral vector systems of today that could advantageously be taken into account for the design of improved nonviral gene delivery systems. Indeed, although nonviral systems differ fundamentally from viral systems, one possible approach towards enhanced artificial reagents aims at developing ‘artificial viruses' that mimic the highly efficient processes of viral infection.  相似文献   

8.
Many inherited and acquired pulmonary disorders without satisfactory therapies may be amenable to gene therapy. Despite numerous advances, efficient delivery and expression of the therapeutic transgene at physiological levels for phenotypic correction of disease has proved elusive. This article focuses on various strategies aimed at achieving targeted delivery to the lungs. Both physical methods and biological targeting have been successfully applied in various gene delivery systems. Targeting of different cell types has been achieved by pseudotyping of viral vectors with capsids from different serotypes and modification of nonviral vectors with targeting ligands. Both classes of vectors are discussed with respect to their gene delivery and expression efficiencies, longevity of expression and immunogenicity. Moreover, gene therapy clinical trials for different lung diseases are discussed.  相似文献   

9.
Until recently, nonviral vectors were outside the mainstream of gene transfer technology. Recent problems in clinical trials using viral vectors renewed interest in these methods. The clinical usefulness of nonviral methods is still hindered by their relatively low gene delivery/transgene expression efficiencies. Vectors must navigate a series of obstacles before the therapeutic gene can be expressed. This review considers these barriers and the properties of components of nonviral vectors that are essential for nucleic acid transfer. Although developments of new physical methods (hydrodynamic delivery, ultrasound, electroporation) have made a significant impact on gene transfer efficiency, various chemical carriers (lipids and polymers) have been shown to achieve high-level gene delivery and functional expression. Success of nonviral gene targeting will depend not only on the efficacy, but also safety of this methodology, and this aspect is also discussed. Understanding problems associated with nonviral targeting can also help in designing better viral vectors. In fact, interplay between viral and nonviral technologies should lead to a continued refinement of both methodologies.  相似文献   

10.
Until recently, nonviral vectors were outside the mainstream of gene transfer technology. Recent problems in clinical trials using viral vectors renewed interest in these methods. The clinical usefulness of nonviral methods is still hindered by their relatively low gene delivery/transgene expression efficiencies. Vectors must navigate a series of obstacles before the therapeutic gene can be expressed. This review considers these barriers and the properties of components of nonviral vectors that are essential for nucleic acid transfer. Although developments of new physical methods (hydrodynamic delivery, ultrasound, electroporation) have made a significant impact on gene transfer efficiency, various chemical carriers (lipids and polymers) have been shown to achieve high-level gene delivery and functional expression. Success of nonviral gene targeting will depend not only on the efficacy, but also safety of this methodology, and this aspect is also discussed. Understanding problems associated with nonviral targeting can also help in designing better viral vectors. In fact, interplay between viral and nonviral technologies should lead to a continued refinement of both methodologies.  相似文献   

11.
Nonviral-mediated gene transfer was used in human gene therapy clinical trials that dealt with the treatment of inherited or acquired genetic disorders and cancer. Several preclinical studies are currently ongoing to employ nonviral vectors in genetic immunization programs for a variety of infectious diseases. The interest in nonviral-mediated gene transfer is motivated by two main reasons: (I) nonviral-based vectors do not derive from infectious agents and are minimally toxic; and (II) they can be easily produced in large quantities. However, the main drawbacks of nonviral-mediated gene transfer are related to low transfection efficiency of target cells, especially in vivo, and to the transient nature of transgene expression. These drawbacks render nonviral-mediated gene transfer not particularly suitable for the treatment of pathological conditions that require long-term transgene expression, such as neurodegenerative disorders and inherited or acquired genetic diseases. On these grounds, the optimal application of nonviral-mediated gene transfer is in immunotherapy for cancer and infectious diseases, as a transient expression of the transgene might be sufficient to trigger effective and durable host immune responses. The purpose of this review is to summarize the standpoint of nonviral vector development.  相似文献   

12.
One of the most noninvasive approaches to drug delivery is via inhalation. The delivery of genes via aerosol holds promise for the treatment of a broad spectrum of pulmonary disorders and offers numerous advantages over more invasive modes of delivery. Delivery of genes expressing secretory therapeutic proteins or peptides may even have application to a number of nonpulmonary diseases. After the cloning of the cystic fibrosis gene, there was great interest in the delivery of genes directly to the lung surfaces via inhalation and most early efforts focused on the use of nonviral vectors, particularly cationic lipids. Early on, nebulization shear forces, inefficient penetration of mucous barriers and inhibitory effects of surfactant and other lung specific features generally resulted in a lack of therapeutic effect. But in recent years, a number of other nonviral and even viral vectors have been delivered successfully in this manner. Polyethyleneimine (PEI)-based formulations have proven stable during nebulization and result in transfection of a very large proportion of epithelial cells throughout the airways (though the level of transgene expression per cell may be relatively low), as well as significant, though lower levels of transfection throughout the lung parenchyma. Most importantly, therapeutic responses have been obtained in several animal lung tumor models when PEI-based complexes of p53 and IL-12 genes were delivered by aerosol. This approach may also prove useful as a means of localized genetic immunization. In addition, inhalation delivery of some formulations seems to be associated with surprisingly low toxicity and has resulted in little or no immunostimulatory response to the unmethylated CpG sequences in bacterially-produced plasmid DNA, which has presented a challenge to repeated gene therapy via many other modes of delivery.  相似文献   

13.
Increasing attention has been paid to technology used for the delivery of genetic materials into cells for gene therapy and the generation of genetically engineered cells. So far, viral vectors have been mainly used because of their inherently high transfection efficiency of gene. However, there are some problems to be resolved for the clinical applications, such as the pathogenicity and immunogenicity of viral vectors themselves. Therefore, many research trials with non-viral vectors have been performed to enhance their efficiency to a level comparable to the viral vector. Two directions of these trials exist: material improvement of non-viral vectors and their combination with various external physical stimuli. This paper reviews the latter research trials, with special attention paid to the enhancement of gene expression by ultrasound (US). The expression level of plasmid DNA by various cationized polymers and liposomes is promoted by US irradiation in vitro as well as in vivo. This US-enhanced expression of plasmid DNA will be discussed to emphasize the technical feasibility of US in gene therapy and biotechnology.  相似文献   

14.
Replication-deficient viruses have been used most successfully in the field of gene therapy because of their high transfection efficiency. However, the risk of insertional mutagenesis and induction of unwanted immune responses remains still critical for their safe application. On the other hand, nonviral vectors have been intensively investigated for plasmid DNA (pDNA) delivery as a safer alternative although their gene transfer efficiency is still many folds lower than for viral vectors, which has been predominately attributed to the insufficient transport of pDNA into the nucleus. Instead of pDNA, messenger RNA (mRNA) has recently emerged as an attractive and promising alternative in the nonviral gene delivery field. This strategy combines several advantages compared to pDNA: (i) the nuclear membrane, which is a major obstacle for pDNA, can be avoided because mRNA exerts its function in the cytoplasm; (ii) the risk of insertional mutagenesis can be excluded; (iii) the determination and use of an efficient promoter is omitted; (iv) repeated application is possible; (v) mRNA is also effective in non-dividing cells, and (vi) vector-induced immunogenicity may be avoidable. In this review, we summarize recent improvements of mRNA gene delivery and discuss its opportunities for the usage in gene therapy.  相似文献   

15.
目的通过对已报道的阳离子脂质材料的结构及其应用的综述,为该类基因转染载体的合理设计和进一步应用提供借鉴。方法对已有的各种阳离子脂质材料的结构及基因转染特性进行分析,并探讨其对基因转染的影响。结果阳离子脂质材料在基因转染中有着巨大的应用潜力,特定的脂质材料结构赋予其在基因转染中不同的效能。结论对阳离子脂质材料结构特征的综合分析,为进一步合理构建新的高效阳离子脂质体基因递送载体提供了思路。  相似文献   

16.
The long-term survival of lung cancer patients treated with conventional therapies (surgery, radiation therapy and chemotherapy) remains poor and has changed little in decades. The need for novel approaches remains high and gene therapy holds promise in this area. A number of genes have been shown in vitro, in animal studies and most recently, in human clinical trials, to have antitumor actions. However, a number of problems still exist and success in human patients to date has been marginal. Among the numerous considerations are the efficiency of delivery of the gene to the tumor or, if an indirect effect is the aim, possibly nontumor tissues, the efficiency and persistence of expression of the therapeutic gene, the specificity of the gene action against the tumor, potential toxic or pathogenic consequences of either the genes or the delivery vectors used, convenience of the therapy and how likely the therapy will compliment or complicate other conventional anticancer therapies. After the cloning of the cystic fibrosis gene, there was great interest in the noninvasive delivery of genes directly to the pulmonary surfaces by aerosol. Clearly, this approach could have application to some pulmonary cancers as well and most early efforts focused mainly on the use of nonviral vectors, primarily cationic lipids. Unfortunately, nebulization shear forces and inefficient pulmonary uptake and expression of plasmid DNA-cationic lipid formulations have generally resulted in a lack of therapeutic effect, so much of this work has diminished in recent years. Polyethyleneimine (PEI)-based formulations have proven stable during nebulization and result in nearly 100% efficient transfection throughout the airways and lung parenchyma. Therapeutic responses have been obtained in several animal lung tumor models when PEI-based formulations of p53 and other antitumor genes were delivered by aerosol. In addition, this mode of delivery seems to be associated with low toxicity and results in little or none of the immunostimulatory response typically associated with the delivery of bacterially produced plasmid DNA containing unmethylated CpG motifs, which has presented a challenge to repeated gene therapy via other modes of delivery. Other potential applications of PEI aerosol gene delivery include the treatment of asthma, lung alveolitis and fibrosis and a variety of monogeneic diseases such as cystic fibrosis and alpha-1-antitrypsin deficiency. In addition, a wide range of conditions treatable via genetic immunization could benefit from this approach to gene delivery as well.  相似文献   

17.
Clinical success of cationic transfection lipids in nonviral gene therapy continues to remain critically dependent on the use of serum compatible cationic amphiphiles efficient in delivering genes into our body cells. To this end, we demonstrate that covalent grafting of simple Tris-base component of the widely used biological Tris buffer in the headgroup region is capable of imparting high serum compatibility and intravenous mouse lung transfection properties to cationic amphiphile.  相似文献   

18.
Innate immune response induced by gene delivery vectors   总被引:1,自引:0,他引:1  
Gene therapy is a clinical strategy that has the potential to treat an array of genetic and nongenetic diseases. Vectors for gene transfer are the essential tools of gene therapy. For gene therapy to be successful, an appropriate amount of the therapeutic gene must be delivered into the target cells without substantial toxicity. A major limitation of the use of gene therapy vectors is the innate immune responses triggered by systemic administration of such vectors. It is essential to overcome vector-mediated innate immune responses, such as production of inflammatory cytokines, the maturation of antigen-presenting cells and tissue damage, because the induction of these responses not only shortens the period of gene expression but also leads to serious side effects. Viral vectors (for example, adenovirus (Ad) vectors) have been assumed to be more potent in inducing innate immune responses in spite of their high transduction efficiency since they contain pathogenic proteins. However, recent studies have demonstrated that not only viral vectors but also nonviral vectors, such as lipoplex (liposome/plasmid DNA complex), can induce innate immune responses. Indeed, nonviral vectors including lipoplex induce comparable or larger levels of innate immune response than viral vectors. In this review, we present an overview of the innate immune responses induced by Ad vector and lipoplex, which are used primarily for in vivo gene transfer.  相似文献   

19.
Successful gene therapy depends on the development of efficient delivery systems. Although pDNA and ODN are novel candidates for nonviral gene therapy, their clinical applications are generally limited owing to their rapid degradation by nucleases in serum and rapid clearance. A great deal of effort had been devoted to developing gene delivery systems, including physical methods and carrier-mediated methods. Both methods could improve transfection efficacy and achieve high gene expression in vitro and in vivo. As for carrier-mediated delivery in vivo, since gene expression depends on the particle size, charge ratio, and interaction with blood components, these factors must be optimized. Furthermore, a lack of cell-selectivity limits the wide application to gene therapy; therefore, the use of ligand-modified carriers is a promising strategy to achieve well-controlled gene expression in target cells. In this review, we will focus on the in vivo targeted delivery of pDNA and ODN using nonviral carriers.  相似文献   

20.
Development of gene delivery system using PLGA nanospheres   总被引:11,自引:0,他引:11  
The development of nonviral vectors for the efficient and safe delivery to cells has long been awaited to facilitate gene therapy. Recently, many nonviral vectors modified with cationic lipids, cationic polymers, etc. have been reported. However, those nonviral vectors with cationic materials require improved stability, longer duration of gene expression, and reduced cytotoxicity. We successfully prepared mucoadhesive poly (lactide-co-glycolide) nanospheres (PLGA NS) by modifying the nanoparticulate surface with chitosan to improve mucosal peptide absorption after oral and pulmonary administration. Furthermore, we found that nucleic acid, which was not dispersed in the organic solvent, could be dispersed by forming a complex with cationic lipid. Using this phenomenon, polynucleic acids for gene therapy (plasmid DNA, antisense oligonucleotide, small interfering RNA, etc.) can be encapsulated into the matrix of the polymer particles with the emulsion solvent diffusion method. The advantages of this preparation method are its simple process and avoidance of an ultrasonication process for submicronization of particles. The resultant nanospheres show better cellular uptake and different gene therapeutic effects compared with conventional vectors due to their improved adherence to cells and sustained release of polynucleic acid in the cells. In conclusion, chitosan-coated PLGA NS can possibly be applied in nonviral vectors for gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号