首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
MicroRNA (miRNA) and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small regulatory RNAs characterized in chickens we used a deep sequencing approach developed by Solexa (now Illumina Inc.). We sequenced three small RNA libraries prepared from different developmental stages of the chicken embryo (days five, seven, and nine) to produce over 9.5 million short sequence reads. We developed a bioinformatics pipeline to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected almost all of the previously known chicken miRNAs and their respective miRNA* sequences. In addition we discovered 449 new chicken miRNAs including 88 miRNA candidates. Of these, 430 miRNAs appear to be specific to the avian lineage. Another six new miRNAs had evidence of evolutionary conservation in at least one vertebrate species outside of the bird lineage. The remaining 13 putative miRNAs appear to represent chicken orthologs of known vertebrate miRNAs. We discovered 39 additional putative miRNA candidates originating from miRNA generating intronic sequences known as mirtrons.  相似文献   

3.
Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer   总被引:4,自引:0,他引:4  
MicroRNAs (miRNAs) represent a new class of small non-coding RNAs regulating gene expression by inducing RNA degradation or interfering with translation. Aberrant miRNA expression has been described for several human malignancies and tumour suppressor functions have been ascribed to this new class of small regulatory RNAs. Accordingly, inactivation due to deletion or mutation has been found in human malignancies. Here, we describe the role of aberrant hypermethylation as an additional mechanism for miRNA gene inactivation in human breast cancer. Aberrant hypermethylation was shown for mir-9-1, mir-124a3, mir-148, mir-152, and mir-663 in 34-86% of cases in a series of 71 primary human breast cancer specimens. For comprehensive methylation analysis, combined bisulphite restriction analysis, bisulphite sequencing, and Pyrosequencing were employed. miRNA gene hypermethylation correlated strongly with methylation of known tumour suppressor genes (p = 0.003). After treatment of various breast cancer cell lines with the demethylating agent 5-aza-2'-deoxycytidine, reduction of mir-9-1 gene methylation and concomitant reactivation of expression could be observed. For the mir-9-1 gene, which is already hypermethylated in pre-invasive intraductal lesions, a good correlation between quantitative methylation level and reduction of expression could be demonstrated in a subset of primary human breast cancer specimen (r = 0.8). In conclusion, this study demonstrates that various microRNA genes are also affected by epigenetic inactivation due to aberrant hypermethylation and that this is an early and frequent event in breast cancer development.  相似文献   

4.
5.
In plants there are several classes of 21-24-nt short RNAs that regulate gene expression. The most conserved class is the microRNAs (miRNAs), although some miRNAs are found only in specific species. We used high-throughput pyrosequencing to identify conserved and nonconserved miRNAs and other short RNAs in tomato fruit and leaf. Several conserved miRNAs showed tissue-specific expression, which, combined with target gene validation results, suggests that miRNAs may play a role in fleshy fruit development. We also identified four new nonconserved miRNAs. One of the validated targets of a novel miRNA is a member of the CTR family involved in fruit ripening. However, 62 predicted targets showing near perfect complementarity to potential new miRNAs did not validate experimentally. This suggests that target prediction of plant short RNAs could have a high false-positive rate and must therefore be validated experimentally. We also found short RNAs from a Solanaceae-specific foldback transposon, which showed a miRNA/miRNA*-like distribution, suggesting that this element may function as a miRNA gene progenitor. The other Solanaceae-specific class of short RNA was derived from an endogenous pararetrovirus sequence inserted into the tomato chromosomes. This study opens a new avenue in the field of fleshy fruit biology by raising the possibility that fruit development and ripening may be under miRNA regulation.  相似文献   

6.
MicroRNA (miRNA) genes give rise to small regulatory RNAs in a wide variety of organisms. We used computational methods to predict miRNAs conserved among Drosophila species and large-scale sequencing of small RNAs from Drosophila melanogaster to experimentally confirm and complement these predictions. In addition to validating 20 of our top 45 predictions for novel miRNA loci, the large-scale sequencing identified many miRNAs that had not been predicted. In total, 59 novel genes were identified, increasing our tally of confirmed fly miRNAs to 148. The large-scale sequencing also refined the identities of previously known miRNAs and provided insights into their biogenesis and expression. Many miRNAs were expressed in particular developmental contexts, with a large cohort of miRNAs expressed primarily in imaginal discs. Conserved miRNAs typically were expressed more broadly and robustly than were nonconserved miRNAs, and those conserved miRNAs with more restricted expression tended to have fewer predicted targets than those expressed more broadly. Predicted targets for the expanded set of microRNAs substantially increased and revised the miRNA-target relationships that appear conserved among the fly species. Insights were also provided into miRNA gene evolution, including evidence for emergent regulatory function deriving from the opposite arm of the miRNA hairpin, exemplified by mir-10, and even the opposite strand of the DNA, exemplified by mir-iab-4.  相似文献   

7.
8.
9.
Nearly 97% of the human genome is composed of noncoding DNA, which varies from one species to another. Changes in these sequences often manifest themselves in clinical and circumstantial malfunction. Numerous genes in these non-protein-coding regions encode microRNAs, which are responsible for RNA-mediated gene silencing through RNA interference (RNAi)-like pathways. MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) with complete or partial complementarity, are useful for the design of new therapies against cancer polymorphisms and viral mutations. Currently, many varieties of miRNA are widely reported in plants, animals, and even microbes. Intron-derived microRNA (Id-miRNA) is a new class of miRNA derived from the processing of gene introns. The intronic miRNA requires type-II RNA polymerases (Pol-II) and spliceosomal components for their biogenesis. Several kinds of Id-miRNA have been identified in C elegans, mouse, and human cells; however, neither function nor application has been reported. Here, we show for the first time that intron-derived miRNAs are able to induce RNA interference in not only human and mouse cells, but in also zebrafish, chicken embryos, and adult mice, demonstrating the evolutionary preservation of intron-mediated gene silencing via functional miRNA in cell and in vivo. These findings suggest an intracellular miRNA-mediated gene regulatory system, fine-tuning the degradation of protein-coding messenger RNAs.  相似文献   

10.
MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5′UTR, ORF, and 3′UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3′UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response.  相似文献   

11.
12.
MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression by targeting messenger RNAs and causing cleavage or translation blockage. miRNAs induced after parasitization of the lepidopteran host Lymantria dispar by the parasitoid wasp Glyptapanteles flavicoxis, which introduces a polydnavirus and other parasitoid factors, were examined to identify induced miRNAs that might regulate host genes and contribute to host immunosuppression and other effects. miRNA profiling of parasitized larval hemocytes versus non-parasitized ones by microarray hybridization to mature insect and virus miRNAs identified 27 differentially expressed miRNAs after parasitization. This was confirmed by real-time relative qPCR for insect miRNAs (dme-mir-1, -8, -14, -184, -276, -277, -279, -289, -let-7) using miRNA-specific TaqMan™ assays. Certain cellular miRNAs were differentially expressed in larval tissues, such as the potentially developmentally linked mir-277, signifying a need for functional studies.  相似文献   

13.
Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in BCR-stimulated and -unstimulated cells revealed that 39 miRNAs were differentially expressed upon stimulation of the BCR. Importantly, stimulation in the presence of anti-CD40 antibodies, which rescues cells from BCR-induced apoptosis, prevented most changes in miRNA expression. Ectopic expression of mir-150 and mir-181a1b1, miRNAs that were upregulated upon BCR stimulation, resulted in inhibition of cell growth. Finally, we showed that ectopic expression of mir-150, mir-181a1b1 and mir-17~92 sensitized cells to anti-IgM stimulation-induced growth inhibition. Together, these results demonstrate that miRNAs are involved in BCR signaling, suggesting that they may have important roles in the regulation of B cell-mediated tolerance and immunity.  相似文献   

14.
Cell‐type specific regulation of a small number of growth factor signal transduction pathways generates diverse developmental outcomes. The zinc finger protein Churchill (ChCh) is a key effector of fibroblast growth factor (FGF) signaling during gastrulation. ChCh is largely thought to act by inducing expression of the multifunctional Sip1 (Smad Interacting Protein 1). We investigated the function of ChCh and Sip1a during zebrafish somitogenesis. Knockdown of ChCh or Sip1a results in misshapen somites that are short and narrow. As in wild‐type embryos, cycling gene expression occurs in the developing somites in ChCh and Sip1a compromised embryos, but expression of her1 and her7 is maintained in formed somites. In addition, tail bud fgf8 expression is expanded anteriorly in these embryos. Finally, we found that blocking FGF8 restores somite morphology in ChCh and Sip1a compromised embryos. These results demonstrate a novel role for ChCh and Sip1a in repression of FGF activity. Developmental Dynamics 239:548–558, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The microRNAs of Caenorhabditis elegans   总被引:38,自引:0,他引:38       下载免费PDF全文
MicroRNAs (miRNAs) are an abundant class of tiny RNAs thought to regulate the expression of protein-coding genes in plants and animals. In the present study, we describe a computational procedure to identify miRNA genes conserved in more than one genome. Applying this program, known as MiRscan, together with molecular identification and validation methods, we have identified most of the miRNA genes in the nematode Caenorhabditis elegans. The total number of validated miRNA genes stands at 88, with no more than 35 genes remaining to be detected or validated. These 88 miRNA genes represent 48 gene families; 46 of these families (comprising 86 of the 88 genes) are conserved in Caenorhabditis briggsae, and 22 families are conserved in humans. More than a third of the worm miRNAs, including newly identified members of the lin-4 and let-7 gene families, are differentially expressed during larval development, suggesting a role for these miRNAs in mediating larval developmental transitions. Most are present at very high steady-state levels-more than 1000 molecules per cell, with some exceeding 50,000 molecules per cell. Our census of the worm miRNAs and their expression patterns helps define this class of noncoding RNAs, lays the groundwork for functional studies, and provides the tools for more comprehensive analyses of miRNA genes in other species.  相似文献   

16.
17.
18.
microRNA(miRNA)是一类内源性的短链非编码RNA分子,能与特定的信使RNA靶向结合,在转录后水平调控基因表达.miRNA可在多个环节参与调控机体固有免疫反应.微生物感染时,miRNA可通过调控模式识别受体信号通路及产生的细胞因子,负性或正性调控固有免疫应答.在病毒感染时,宿主编码的miRNA能抑制病毒复制,...  相似文献   

19.
20.
MicroRNAs (miRNAs) are small, noncoding RNAs that negatively regulate gene expression. As miRNAs are involved in a wide range of biological processes and diseases, much effort has been invested in identifying their mRNA targets. Here, we present a novel combinatorial approach, RIP-chip-SRM (RNA-binding protein immunopurification + microarray + targeted protein quantification via selected reaction monitoring), to identify de novo high-confidence miRNA targets in the nematode Caenorhabditis elegans. We used differential RIP-chip analysis of miRNA-induced silencing complexes from wild-type and miRNA mutant animals, followed by quantitative targeted proteomics via selected reaction monitoring to identify and validate mRNA targets of the C. elegans bantam homolog miR-58. Comparison of total mRNA and protein abundance changes in mir-58 mutant and wild-type animals indicated that the direct bantam/miR-58 targets identified here are mainly regulated at the level of protein abundance, not mRNA stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号