首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[(3)H]Prazosin bound to alpha(1A)- and alpha(1B)-adrenoceptors, as well as to a cimetidine-sensitive non-alpha(1)-adrenoceptor binding site in rat kidney membranes. An experimental design is presented where the alpha(1)-adrenoceptors are selectively exposed by blocking the non-alpha(1) binding site with 60 microM cimetidine. Conversely, the non-alpha(1) binding site can be selectively exposed by blocking the alpha(1)-adrenoceptors with 600 nM metitepine. The identity of the non-alpha(1) binding site for [(3)H]prazosin in the rat kidney, herein pharmacologically characterized by 33 competing substances, is still unknown.  相似文献   

2.
We demonstrated the presence of 2 receptors in the guinea-pig ileum by saturation analysis and extended our investigation to guinea-pig bladder and rat bladder. In functional assays of the isolated tissues in organ baths, 2 receptor ligands inhibited electrically evoked contractions in both guinea-pig bladder and ileum and a linear correlation was found between 2 receptor affinity and 2 receptor activity values of selected compounds. The 2 activity of these compounds in the presence of desensitised 1 receptors both in bladder and ileum was also tested. On the basis of our results, we propose the electrically stimulated guinea-pig bladder as a new method for evaluating 2 activity.  相似文献   

3.
Glucocorticoids affect the expression and density of neurotransmitter receptors in many tissues but data concerning the heart are contradictory and incomplete. We injected rats with hydrocortisone for 1–12 days and measured the densities of cardiac muscarinic receptors, 1-, 1- and 2-adrenoceptors and propranolol-resistant binding sites (formerly assumed to be the putative 4-adrenoceptor). Some aspects of intracellular signalling were also evaluated: we measured adenylyl cyclase activity (basal, isoprenaline- and forskolin-stimulated and carbachol-inhibited), the coupling between muscarinic receptors and G proteins and basal and isoprenaline-stimulated heart rate. The density of cardiac muscarinic receptors increased (in both the atria and the ventricles). The density of 1-adrenoceptors increased in the atria and was little changed in the ventricles. The density of 2-adrenoceptors increased in both the atria and the ventricles. The number of 1-adrenoceptors decreased initially, followed by a transient increase in the atria and did not change in the ventricles. The density of propranolol-resistant binding sites first increased and then diminished in the atria and did not change in the ventricles. Although there were noticeable changes in receptor densities, the stimulatory and inhibitory effects on adenylyl cyclase, basal and isoprenaline-stimulated heart rate and the coupling between muscarinic receptors and G proteins were not significantly altered. This may indicate that changes in receptor densities might be one of the mechanisms maintaining stable functional output. Deceased  相似文献   

4.
In view of the high structural and pharmacological similarities between the alpha(2A)-adrenoceptors of humans and other mammalian species, it has been concluded, in particular, from experiments in rabbits that the (2A)-adrenoceptor is the exclusive site of action of central antihypertensive drugs, although the amino acid sequence of the alpha(2A)-adrenoceptor of just this species was unknown. Therefore, the aim of the present investigation was to determine the complete nucleotide sequence of the coding region of the rabbit alpha(2A)-adrenoceptor gene. Degenerate oligonucleotides corresponding to regions of the alpha(2A)-adrenoceptor conserved between rat and man were used in a polymerase chain reaction with genomic DNA prepared from rabbit. A 1,356-base pair product with an open reading frame of 1,353 base pairs was obtained that encodes a protein of 451 amino acids which is similar to the alpha(2A)-adrenoceptors of other mammals (man, pig, rat, mouse, guinea-pig and cattle) but not to their alpha(2B)- and alpha(2C)-adrenoceptor subtypes suggesting its classification as an alpha(2A)-adrenoceptor. However, the degree of amino acid sequence identity is, at best, only 80% and, thus, about 10% less than between the other mammalian species. Compared with the human sequence there are 81 substantial changes of amino acids. In conclusion, rabbit and human alpha(2A)-adrenoceptors substantially differ in their amino acid sequence which may explain the opposite pharmacodynamic properties of the central antihypertensive drug rilmenidine (alpha(2)-adrenoceptor agonism and antagonism, respectively) reported in the literature. Hence, the present study supports the view that experiments with central antihypertensive drugs in rabbits are not reliably predictive for the site of action of such drugs in man.  相似文献   

5.
Rationale Sweet-substance-induced analgesia has been widely studied, and the investigation of the neurotransmitters involved in this antinociceptive process is an important way for understanding the involvement of the neural system controlling this kind of antinociception.Objective The aim of this study was to investigate the involvement of opioid and monoaminergic systems in sweet-substance-induced analgesia.Methods The present work was carried out in an animal model with the aim of investigating whether acute (24 h) or chronic (14 days) intake of a sweet substance, such as sucrose (250 g/l), is followed by antinociception. Tail withdrawal latencies in the tail-flick test were measured before and immediately after this treatment. Immediately after the recording of baseline values, independent groups of rats were submitted to sucrose or tap-water intake and, after chronic treatment, they were pretreated with intraperitoneal administration of (1) naltrexone at 0.5, 1, 2 or 3 mg/kg; (2) naloxonazine at 5, 10, 20 or 30 mg/kg; (3) methysergide at 0.5, 1, 2 or 3 mg/kg; (4) ketanserin at 0.5, 1, 2 or 3 mg/kg; or (5) physiological saline.Results Naltrexone and methysergide at two major doses decreased sweet-substance-induced analgesia after chronic intake of a sweet substance. These effects were corroborated by peripheral administration of naloxonazine and ketanserin.Conclusions These data give further evidence for: (a) the involvement of endogenous opioids and a 1-opioid receptor in the sweet-substance-induced antinociception; (b) the involvement of monoamines and 5HT2A serotonergic/1-noradrenergic receptors in the central regulation of the sweet-substance-produced analgesia.  相似文献   

6.
Rationale Cocaine-seeking behavior can be investigated in rodents using the conditioned place preference (CPP) paradigm, in which the drug-paired environment serves as a conditioned stimulus. Such approach allowed to previously demonstrate the importance of the neuromodulatory sigma1 (1) receptor in acquisition of cocaine-induced CPP. CPP can be extinguished and then reactivated, notably using a cocaine challenge (i.e., priming).Objectives and methods In order to examine the role of the 1 receptor in reinstatement of Cocaine-seeking, Swiss mice acquired CPP with cocaine (30 mg/kg, ip) and then CPP was extinguished.Results A challenge cocaine priming (15 mg/kg) reactivated CPP up to 140% of the post-conditioning response. Pre-administration of the 1 receptor antagonist BD1047 (330 mg/kg, ip) or repeated treatment with an antisense probe targeting the 1 receptor prevented CPP reactivation. The 1 agonist igmesine (1–10 mg/kg, ip) or the steroid dehydroepiandrosterone (DHEA, 10–40 mg/kg, sc) reactivated CPP, in a BD1047-sensitive manner. Moreover, the in vivo [3H](+)-SKF-10,047 binding levels to the 1 receptor were increased after cocaine conditioning in numerous brain structures and these increases subsisted after extinction. Finally, cross-reactivation of cocaine-induced CPP was observed after phencyclidine (PCP), morphine, nicotine and ethanol administration. However, BD1047 blocked reactivation of CPP induced by PCP, morphine and nicotine but not ethanol.Conclusions Since activation of the 1 receptor is not sufficient to sustain CPP in naive animals [Neuropsychopharmacology 26 (2002) 444], it is concluded that 1 receptor activation is a key event for relapse to drug seeking. Activation may occur via sensitization due to enhanced in vivo available of receptors.  相似文献   

7.
Cardiac effects of catecholamines on the L-type calcium channel depend on -adrenoceptor subtype (1- vs. 2-adrenoceptor). Chronic overexpression of these receptors leads to hypertrophy and early death at moderate (1) or excessive (2) levels of overexpression respectively. In order to examine the role of L-type calcium channels in altered cardiomyocyte calcium homeostasis found with 1-adrenoceptor overexpression, and to understand the quantitative differences between -adrenoceptor subtypes regarding calcium channel regulation, we examined single channels in myocytes obtained from 1- and 2-adrenoceptor transgenic mice. The effects of the agonist isoproterenol were investigated and compared with acute receptor stimulation in the respective non-transgenic littermates.Channels from 1-adrenoceptor transgenic mice have normal baseline activity, and channel number is not reduced. This contrasts to previous findings with 2-adrenoceptor transgenic mice, where channel activity is depressed. Isoproterenol is unable to stimulate channel activity in both transgenic models.In conclusion, the L-type calcium channel is not likely to be involved in alterations of calcium handling of 1-adrenoceptor transgenic myocytes. Furthermore, chronic 1-adrenoceptor overexpression does not depress channel activity, giving another example of the difference between 1- and 2-adrenoceptor signal transduction.K.F. and T.K. equally contributed to this work  相似文献   

8.
Rationale Central α1- and α2-adrenoceptors in a number of different brain regions are known to have opposing actions on gross behavioral activity, with the former stimulating and the latter inhibiting activity. Therefore, blockade of α1-receptors may induce inactivity by leading to unopposed α2 activity.Objective The aim of this study was to test if central blockade of α2-receptor function restores behavioral activity in α1-receptor-blocked mice.Methods Dose-response studies were undertaken on the effects of α1- and α2-agonists and antagonists microinjected into the dorsal pons on gross behavioral activity in a novel cage test.Results The behavioral inactivity resulting from blockade of α1-receptors in the pons with the antagonist, terazosin, was reversed by either a low dose of an α2-antagonist, atipamezole, or a low dose of an α2-agonist, dexmedetomidine, but was exacerbated by a high dose of the α2-agonist.Conclusion The results support the hypothesis that blockade of α1-receptors in the dorsal pons of mice produces inactivity by causing unopposed activity of α2-receptors. This condition may be relevant to inactive states seen after stress or during depressive illness.  相似文献   

9.
To establish the activity of ligands at 1 and 2 receptor, we chose two tumour cell lines, the human SK-N-SH neuroblastoma and the rat C6 glioma lines, which express 2 receptors at a high density and 1 receptors in their high-affinity or low-affinity state. We tested the 2 receptor agonist PB28 and the 2 antagonist AC927, and (+)-pentazocine and NE100 as agonist and antagonist, respectively, at 1 receptors, with regard to antiproliferative and cytotoxic effects. In addition, 1,3-di(2-tolyl)guanidine (DTG) and haloperidol were tested as reference compounds displaying nearly equipotent affinity (2>1 and 1>2, respectively). In both SK-N-SH and C6 cells, PB28 and NE100 displayed the most potent results both in antiproliferative and cytotoxic assay while AC927 and (+)-pentazocine were inactive in both assays. The cytotoxic and antiproliferative effects of DTG and haloperidol reflected their 1 antagonist activity and 2 agonist activity. Moreover, our results in the tumour cell lines correlated well with those for 2 activity found previously in a functional assay in the guinea-pig bladder. These findings establish a new model for evaluating both 2 and 1 receptor activity of ligands, which could be useful for developing new ligands having mixed 2 agonist/1 antagonist activity as potential antineoplastic agents.  相似文献   

10.
The synthetic cannabinoid ajulemic acid (CT-3) is a potent cannabinoid receptor agonist which was found to reduce pain scores in neuropathic pain patients in the absence of cannabis-like psychotropic adverse effects. The reduced psychotropic activity of ajulemic acid has been attributed to a greater contribution of peripheral CB receptors to its mechanism of action as well as to non-CB receptor mechanisms. Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. As we hypothesised that additional non-CB receptor mechanisms of ajulemic acid might contribute to its effect in neuropathic pain, we investigated the interaction of ajulemic acid with strychnine-sensitive α1- and α1β-glycine receptors by using the whole-cell patch clamp technique. Ajulemic acid showed a positive allosteric modulating effect in a concentration range which can be considered close to clinically relevant concentrations (EC50 values: α1 = 9.7 ± 2.6 μM and α1β = 12.4 ± 3.4 μM). Direct activation of glycine receptors was observed at higher concentrations above 100 μM (EC50 values: α1 = 140.9 ± 21.5 μM and α1β = 154.3 ± 32.1 μM). These in vitro results demonstrate that ajulemic acid modulates strychnine-sensitive glycine receptors in clinically relevant concentrations.  相似文献   

11.
12.
Delayed rectifier K+ currents (IK) play a critical role in determining cardiac action potential duration (APD). Modulation of IK affects cardiac excitability critically. There are three components of cardiac delayed rectifier, and the slowly activating component (IKs) is influenced strongly by a variety of stimuli. Plasma levels of noradrenaline and endothelin are elevated in heart failure, and arrhythmias are promoted by such humoral abnormalities through modulation of ion channels. It has been reported that protein kinase A (PKA) and protein kinase C (PKC) modulate IKs from human minK in a complex manner. In the present study, we coexpressed human minK with the human 1-adrenoceptor (h1AR) and the endothelin receptor subtype A (hETAR) in Xenopus oocytes and investigated the effects of receptor activation on the currents (IKs) flowing through the oocytes. ET-1 modulated IKs biphasically: a transient increase followed by a decrease. The PKC inhibitor chelerythrine completely inhibited the effects of ET-1. Intracellular EGTA abolished the transient increase by ET-1 and partially inhibited the subsequent decrease in the currents. When IKs was increased by 10–6 M isoproterenol (ISO), ET-1 did not increase but rather decreased the current to an even greater extent than under control conditions. In addition, the effects of ISO on IKs were suppressed by ETAR stimulation. These data indicate that IKs can be regulated by cross-talk between the ETAR and 1AR systems in addition to direct regulation by each receptor system.  相似文献   

13.
Rationale Neurotensin (NT) agonists have been proposed as potential antipsychotics based exclusively upon their ability to inhibit dopamine-2 (D2) receptor transmission. Several other pharmacological mechanisms have been implicated in enhancing the antipsychotic profile produced by D2 inhibition alone. These include inhibition of 5-HT2A and 1-adrenoceptors. Recently, we reported that systemic administration of the neurotensin agonist PD149163 blocks deficits in prepulse inhibition (PPI) of the startle reflex produced by the 5-HT2A receptor agonist DOI. This suggested that NT agonists could inhibit 5-HT2A modulation of neurotransmission.Objective To determine if other peripherally administered NT agonists shared this effect, we examined the effects of NT69L, another NT agonist, on DOI-induced PPI deficits. In addition, to determine if NT agonists also inhibit 1-adrenoceptor neurotransmission, we examined the effects of PD149163 and NT69L on PPI deficits induced by the 1-adrenoceptor agonist, cirazoline.Methods In the NT69L/DOI study, rats received subcutaneous (SC) injections of NT69L (0, 0.1, 1, or 2 mg/kg) followed 30 min later by SC saline or DOI (0.5 mg/kg). In the NT agonist/cirazoline studies, animals received SC injections of either PD149163 (0, 0.01, 0.1, or 1 mg/kg) or NT69L (0, 0.01, 0.1, or 1 mg/kg) followed 30 min later by SC saline or cirazoline (0.7 mg/kg). Animals were tested in startle chambers 20 min later.Results In all three experiments the PPI disruption produced by DOI and cirazoline was blocked by the NT agonists.Conclusions These findings provide strong evidence that NT agonists inhibit 5-HT2A and 1-adrenoceptor modulation of neurotransmission, pharmacological effects that, in conjunction with their known inhibition of dopamine transmission, strengthen the antipsychotic potential of NT agonists.  相似文献   

14.
Abstract Rationale. Delineation of the receptor mechanisms underlying the behavioral effects of benzodiazepines should allow for the development of drugs with improved clinical utility and reduced side effects. Objectives. The purpose of the present study was to investigate the role of GABAA1 receptors in the sedative and motor-impairing effects of benzodiazepines. Methods. Squirrel monkeys were tested with the GABAA1-preferring agonist zolpidem and the nonselective benzodiazepine agonist triazolam alone and in combination with the GABAA1-preferring antagonist β-CCt and the nonselective benzodiazepine antagonist flumazenil. During 30-min experimental sessions, all occurrences of normal behaviors like locomotion, environment- and self-directed behaviors, as well as side effects such as ataxia, rest and procumbent postures were scored. Results. Zolpidem and triazolam produced dose-dependent reductions in locomotion and environment-directed behavior and increased ataxia and procumbent posture. Triazolam, but not zolpidem, also engendered species-typical rest posture at some doses. Flumazenil antagonized all of the behavioral effects of zolpidem and triazolam, whereas β-CCt antagonized only zolpidem- and triazolam-induced ataxia. Conclusions. GABAA1 receptor mechanisms appear to play a key role in the ataxic effects of benzodiazepine agonists in squirrel monkeys, similar to recent results with transgenic mice. In contrast to the findings of these recent studies, GABAA mechanisms other than or in addition to those mediated at the α1 subunit may play a more important role in the sedative/hypnotic effects of benzodiazepines in squirrel monkeys. Electronic Publication  相似文献   

15.
We have recently shown that the -adrenoceptor ligands CGP 12177, bupranolol, and SR 59230A (aryloxypropanolamines), but not BRL 37344 and CL 316243 (phenylethanolamines), exhibit significant affinity for 1-adrenoceptors and that CGP 12177 displays partial agonist properties at -adrenoceptors in rat pulmonary artery. In this study, bupranolol and SR 59230A were further evaluated for their potential -adrenoceptor mediated effects (i.e., agonist and/or antagonist properties) in rat intralobar pulmonary artery and compared with BRL 37344 and CL 316243. Bupranolol induced a relaxation in phenylephrine-precontracted arteries, but had no effect in prostaglandin -precontracted ones. SR 59230A also elicited a relaxation in phenylephrine-precontracted arteries. In -precontracted arteries, SR 59230A induced a contractile response that was insensitive to the irreversible -adrenoceptor antagonist phenoxybenzamine. BRL 37344 at high concentrations, but not CL 316243, produced slight relaxation in both phenylephrine- and -precontracted arteries. The contractile response to phenylephrine was antagonized by bupranolol and SR 59230A in a competitive manner (pA2: 6.38 and 7.08 respectively). The concentration–response curve to phenylephrine was also shifted to the right by BRL 37344 (mean pKb: 4.45), but not by CL 316243 (100 M). This study indicates that the aryloxypropanolamine derivatives bupranolol and SR 59230A exhibit competitive antagonist, but no agonist properties on 1-adrenoceptors, SR 59230A also inducing -adrenoceptor-independent contraction. Among the phenylethanolamines, BRL 37344 but not CL 316243, also exerts an antagonist effect on 1-adrenoceptors, with a much lower potency than the aryloxypropanolamines studied.  相似文献   

16.
Abuse of anabolic androgenic steroids (AAS) is associated with serious side effects, such as hypertension and fluid retention. Renal 1- and 2-adrenoceptors are implicated in the regulation of blood pressure and fluid balance. In the present study, the levels of renal 1A-, 1B-, 2A- and 2B-adrenoceptors, and spleen 1B-adrenoceptors, were quantified in tissue membranes from rats treated with the AAS nandrolone decanoate (15 mg/kg) for 14 days. The radioligands used were [3H]-prazosin and [3H]-RX821002. The nandrolone treatment caused a 50% reduction of kidney 1B-adrenoceptors (from 15 fmol/mg protein in control rats to 6.5 fmol/mg protein in treated rats). In contrast, the levels of kidney 1A-, 2A- and 2B-, and spleen 1B-adrenoceptors were unaffected. These results raise the possibility that a decreased level of kidney 1B-adrenoceptors may cause some of the effects observed on blood pressure and fluid balance in heavy abuse of AAS.  相似文献   

17.
(-)-Isoprenaline enhances cardiac contractility through beta-adrenoceptors. However, in cardiac tissue from transgenic mice with a 200-400-fold cardiac overexpression of the human beta(2)-adrenoceptor (TG4) we observed a pronounced cardiodepression at high (-)-isoprenaline concentrations. Here, we investigated the functional role of the coexisting beta(1)-, beta(2)-, and beta(3)-adrenoceptor subtypes in several regions of the TG4 heart, and in particular their contribution to the negative inotropic effect. In paced TG4 left atria, (-)-isoprenaline produced bell-shaped concentration-effect curves increasing (-logEC(50)M=9.0) and decreasing (-logIC(50)M=6.4) contractile force. These effects were unaffected by the beta(1)-selective CGP 20712A (300 nM). The beta(2)-selective inverse agonist ICI 118,551 (30-1,000 nM) antagonised in surmountable manner both the positive and negative inotropic effects of (-)-isoprenaline with similar concentration-dependence, consistent with an exclusive mediation through beta(2)-adrenoceptors. The beta(3)-adrenoceptor-selective agonist BRL37344 (1 nM-10 microM) failed to produce significant inotropic effects in TG4 left atria. Subsequently, we measured left atrial action potentials accompanying the inotropic changes induced by (-)-isoprenaline. Action potentials tended to have shorter duration in left atria from TG4 mice than from non-transgenic littermate mice. However, (-)-isoprenaline prolonged the duration of 30% repolarisation in atria from non-transgenic littermate but not from TG4 mice, while 90% repolarisation was abbreviated in both groups of atria. Negative inotropic effects of (-)-isoprenaline were also observed in right ventricular preparations. Pertussis toxin-treatment of the mice abolished the negative inotropic effects in left atria and reduced cardiodepression in right ventricle, indicating an involvement of beta(2)-adrenoceptor coupling to PTX-sensitive G-proteins. In additional experiments, designed to study the native murine beta(1)-adrenoceptor function, we used the physiological beta(1)-adrenoceptor agonist (-)-noradrenaline. In the presence of 600 nM ICI 118,551 we failed to find a functional role of the beta(1)-adrenoceptors in left atria, and detected only a marginal contribution to the positive chronotropic effect in right atria. We also investigated the effects of the non-conventional partial agonist (-)-CGP 12177 (0.2 nM-6 microM), which in wild-type mice causes tachycardia through beta(1)-adrenoceptors. In TG4 right atria, however, (-)-CGP 12177-evoked tachycardia was resistant to blockade by CGP 20712A but antagonised by ICI 118,551, consistent with mediation through human beta(2)-adrenoceptors.The results from TG4 mice suggest that the positive and negative inotropic effects of (-)-isoprenaline are mediated through human overexpressed beta(2)-adrenoceptors coupled to G(s) protein and G(i) protein, respectively. The (-)-isoprenaline-evoked shortening of the atrial action potential combined with reduced responses of L-type Ca(2+) current may contribute to the negative inotropic effects. The function of murine cardiac beta(1)-adrenoceptors is suppressed by overexpressed human beta(2)-adrenoceptors.  相似文献   

18.
19.
It has previously been suggested that ergotamine produces external carotid vasoconstriction in vagosympathectomised dogs via 5-HT1B/1D receptors and 2-adrenoceptors. The present study has reanalysed this suggestion by using more selective antagonists alone and in combination. Fifty-two anaesthetised dogs were prepared for ultrasonic measurements of external carotid blood flow. The animals were divided into thirteen groups (n=4 each) receiving an i.v. bolus injection of, either physiological saline (0.3 ml/kg; control), or the antagonists SB224289 (300 g/kg; 5-HT1B), BRL15572 (300 µg/kg; 5-HT1D), rauwolscine (300 µg/kg; 2), SB224289 + BRL15572 (300 µg/kg each), SB224289 + rauwolscine (300 µg/kg each), BRL15572 + rauwolscine (300 µg/kg each), rauwolscine (300 µg/kg) + prazosin (100 µg/kg; 1), SB224289 (300 µg/kg) + prazosin (100 µg/kg), SB224289 (300 µg/kg) + rauwolscine (300 µg/kg) + prazosin (100 µg/kg), SB224289 (300 µg/kg) + prazosin (100 µg/kg) + BRL44408 (1,000 µg/kg; 2A), SB224289 (300 µg/kg) + prazosin (100 µg/kg)+ imiloxan (1,000 µg/kg; 2B), or SB224289 (300 µg/kg) + prazosin (100 µg/kg) + MK912 (300 µg/kg; 2C). Each group received consecutive 1-min intracarotid infusions of ergotamine (0.56, 1, 1.8, 3.1, 5.6, 10 and 18 µg/min), following a cumulative schedule. In saline-pretreated animals, ergotamine induced dose-dependent decreases in external carotid blood flow without affecting arterial blood pressure or heart rate. These control responses were: unaffected by SB224289, BRL15572, rauwolscine or the combinations of SB224289 + BRL15572, BRL15572 + rauwolscine, rauwolscine + prazosin, SB224289 + prazosin, or SB224289 + prazosin + imiloxan; slightly blocked by SB224289 + rauwolscine; and markedly blocked by SB224289 + rauwolscine + prazosin, SB224289 + prazosin + BRL44408 or SB224289 + prazosin + MK912. Thus, the cranio-selective vasoconstriction elicited by ergotamine in dogs is predominantly mediated by 5-HT1B receptors as well as 2A/2C-adrenoceptor subtypes and, to a lesser extent, by 1-adrenoceptors.In memoriam: Luis F. Valdivia died on 26 May 2004  相似文献   

20.
Stimulation of glucagon release and inhibition of insulin secretion from the islets of Langerhans are important for the blood-glucose-elevating effect of adrenaline. The mechanisms by which adrenaline accomplishes these actions may involve direct effects and indirect ones mediated by altered release of other islet hormones. In the present study we investigated how adrenaline affects the cytoplasmic Ca2+ concentration, which controls glucagon secretion from the pancreatic -cell. The studies were performed on isolated mouse -cells, which were identified by immunocytochemistry.The adrenaline effects consisted of initial mobilisation of intracellular Ca2+, accompanied by voltage-dependent influx of the ion. Part of the effect could be attributed to -adrenoceptor activation, as it was mimicked by the rise in cAMP and inhibited by the antagonist propranolol as well as the protein kinase A inhibitor adenosine 3,5-cyclic monophosphorothioate Rp-isomer. 1-Adrenoceptors were also involved, since the antagonists phentolamine and prazosin completely abolished the effects of adrenaline. Experiments with clonidine and yohimbine gave little evidence of a role of 2-adrenoceptors. The results indicate that 1- and -adrenoceptors on the -cells mediate adrenaline-stimulated glucagon secretion. The complete inhibition of the adrenaline response after blocking 1-adrenoceptors indicates an interaction with the -adrenergic pathway.Drs. Vieria and Liu contributed equally to the article  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号