首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The number of clinical cases of inclusion body hepatitis (IBH) and hydropericardium-hepatitis syndrome (HHS) has been increasing, resulting in considerable economic losses in many countries. Currently, only fowl Adenovirus (FAdV) serotype 4 (FAdV-4) has been reported as the causative agent of HHS, whereas IBH can be caused by all 12 serotypes of FAdV. For protection against HHS, various live and killed FAdV serotype 4 vaccines have been developed. However, there is a concern whether these vaccines composed of FAdV-4 alone could provide protection against IBH, which is caused by other serotypes of virulent FAdVs. To date, there have been no reports evaluating the protective efficacy of the FAdV-4 vaccine against other serotypes of FAdV. Thus, we investigated the cross-protection efficacy of an inactivated oil-emulsion FAdV-4 vaccine against various serotypes of FAdV field isolates. Our study demonstrated that the inactivated oil-emulsion FAdV-4 vaccine could provide broad cross-protection against various serotypes of FAdV in not only vaccinated birds, but also the progenies of vaccinated breeder. Therefore, we conclude that the inactivated oil-emulsion FAdV-4 vaccine could be effective in preventing the spread of various other serotypes of FAdV as well as FAdV-4 infection in the poultry industry.  相似文献   

2.
《Vaccine》2021,39(27):3560-3564
Adenoviruses cause economically important diseases in vertebrates. Effective vaccines against adenoviral diseases are currently lacking. Here, we report a highly conserved epitopic region on hexon proteins of adenoviruses that generate a strong immune response when used as a virus-like-particle (VLP) vaccine, produced by inserting the epitopic region into the core protein of hepatitis B virus. For evaluation of its protective efficacy, the epitopic region from a representative adenovirus, fowl adenovirus serotype 4 (FAdV-4), was tested as a VLP vaccine which conferred 90% protection against challenge with a virulent FAdV-4 isolate in chickens. Importantly, such a high level of protection is not achieved when the epitopic region is employed as a part of a subunit vaccine. As the sequence and the structure of the epitopic region are highly conserved in hexon proteins of adenoviruses, the epitopic region could be employed as a promising VLP vaccine candidate against adenoviral diseases, in general.  相似文献   

3.
《Vaccine》2018,36(5):744-750
Fowl adenovirus (FAdV) is comprised of five species (A to E) and 12 serotypes (1–7, 8a, 8b, 9–11). Inclusion body hepatitis (IBH) is caused by FAdV-7, 8a, 8b (species E) and FAdV-2 and 11 (species D). Commercial vaccines against IBH are not available in Canada. Autogenous FAdV broiler breeder vaccines are now used in some areas where outbreaks of IBH are occurring. The objective of this study was to evaluate the efficacy of a bivalent (species D and E) live and an inactivated FAdV broiler breeder vaccine in protecting broiler chicks against IBH through maternal antibody (MtAb) transfer. FAdV seronegative broiler breeders (n = 300/group) received either a live or inactivated bivalent (FAdV-8b-SK + FAdV-11-1047) vaccine. The live vaccine (1 × 104 TCID50 of each virus/bird) was given orally once at 16 weeks of age and the inactivated vaccine (1 × 106TCID50 of each virus + 20% Emulsigen D) was given intramuscularly at 16 and 19 weeks of age. Controls (n = 150) were given saline orally. The inactivated vaccine group was boosted 3 weeks later with the same vaccine. Neutralizing antibodies (NAb) in sera (n = 10) were detected at 19, 22, 30 and 48 weeks of age. NAb were able to neutralize various FAdV serotypes within species D and E. Mean NAb were similar in the both live and killed vaccine groups at 19, 30 and 48 weeks and ranged from 2.4 to 3.7 log10. Approximately 26 ± 7% of MtAbs were passively transferred through eggs to day-old chicks. Progeny challenged with a lethal dose (1 × 107 TCID50/bird intramuscularly) of FAdV-8b-SK, FAdV-11-1047, or FAdV-2-685 (n = 90/group) at 14 days post-hatch (dph) showed 98–100% protection in broiler chicks to homologous or heterologous FAdV challenges. Our data suggests that a bivalent live and an inactivated FAdV vaccine are equally effective and have the potential for the control of IBH.  相似文献   

4.
《Vaccine》2023,41(38):5507-5517
Vaccines for avian influenza (AI) can protect poultry against disease, mortality, and virus transmission. Numerous factors, including: vaccine platform, immunogenicity, and relatedness to the field strain, are known to be important to achieving optimal AI vaccine efficacy. To better understand how these factors contribute to vaccine protection, a systematic meta-analysis was conducted to evaluate efficacy data for vaccines in chickens challenged with highly pathogenic (HP) AI. Data from a total of 120 individual trials from 25 publications were selected and evaluated. Two vaccine criteria were evaluated for their effects on two metrics of protection. The vaccine criteria were: 1) the relatedness of the vaccine antigen and challenge strain in the hemagglutinin 1 domain (HA1) protein sequence; 2) vaccine-induced antibody titers to the challenge virus (VIAC). The metrics of protection were: A) survival of vaccinated chickens vs unvaccinated controls; and B) reduction in oral virus-shedding by vaccinated vs unvaccinated controls 2–4 days post challenge. Three vaccine platforms were evaluated: oil-adjuvanted inactivated whole AI virus, recombinant herpes virus of turkeys (rHVT) vectored, and a non-replicating alpha-virus vectored RNA particle (RP) vaccine. Higher VIAC correlated with greater reduction of virus-shed and vaccine efficacy by all vaccine platforms. Both higher HA1 relatedness and higher VIAC using challenge virus as antigen correlated with better survival by inactivated vaccines and rHVT-vectored vaccines. However, rHVT-vectored and RP based vaccines were more tolerant of variation in the HA1; the relatedness of the HA1 of the vaccine and challenge virus did not significantly correlate with survival with rHVT-vectored vaccines. Protection was achieved with the lowest aa similarity for which there was data, 90–93 % for rHVT vaccines and 88 % for the RP vaccine.  相似文献   

5.
《Vaccine》2020,38(2):143-149
Recently, outbreaks of adenoviral gizzard erosion (AGE) have been documented in pullets and layers housed free range and in enriched cage systems characterized by increased mortality and a negative impact on egg production. In the present study the pathogenicity of a fowl adenovirus serotype 1 (FAdV-1) field strain as well as the aetiological role of a FAdV-8a strain, both isolated from AGE affected pullets, were investigated in vivo in 20-week-old specific-pathogen-free (SPF) layer-type chickens. Furthermore, the efficacy of a single (week 17) and double (week 14 and 17) application of a live vaccine consisting of an apathogenic FAdV-1 (CELO strain) against challenge with virulent FAdV-1 was investigated.For the first time, AGE was successfully reproduced in adult birds after oral infection of 20-week-old SPF birds with a virulent FAdV-1 field isolate, characterized by pathological changes of the gizzard from 7 days post challenge onwards. In addition, a negative impact of the FAdV-1 infection on the development of the reproductive tract was observed. Thus, confirming the pathogenicity and aetiological role of FAdV-1 in the development of AGE and economic losses due to AGE in layers. In contrast, no pathological changes were observed in birds infected with FAdV-8a.Independent of a single or double application of the live FAdV-1 vaccine strain CELO, no gross pathological changes were observed in gizzards post challenge with the virulent FAdV-1, indicating that complete protection of layers against horizontal induction of AGE was achieved. Nonetheless, virulent FAdV-1 was detected in cloacal swabs and gizzards in both vaccinated groups post challenge determined by the application of an amplification refractory mutation system quantitative PCR used to differentiate between vaccine and challenge strains.  相似文献   

6.
《Vaccine》2021,39(14):1933-1942
The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.  相似文献   

7.
《Vaccine》2019,37(43):6397-6404
BackgroundMarek’s disease (MD) is a lymphoproliferative disease of chickens caused by Marek’s disease virus (MDV), an oncogenic α-herpesvirus. Since 1970, MD has been controlled by widespread vaccination; however, more effective MD vaccines are needed to counter more virulent MDV strains. The bivalent vaccine combination of SB-1 and herpesvirus of turkey (HVT) strain FC126 has been widely used. Nonetheless, the mechanism(s) underlying this synergistic effect has not been investigated.MethodsThree experiments were conducted where SB-1 or HVT were administered as monovalent or bivalent vaccines to newly hatched chickens, then challenged five days later with MDV. In Experiment 1, levels of MDV replication in PBMCs were measured over time, and tumor incidence and vaccinal protection determined. In Experiment 2, MDV and vaccine strains replication levels in lymphoid organs were measured at 1, 5, 10, and 14 days post-challenge (DPC). In Experiment 3, to verify that the bursa was necessary for HVT protection, a subset of chicks were bursectomized and these birds plus controls were similarly vaccinated and challenged, and the levels of vaccinal protection determined.ResultsThe efficacy of bivalent SB-1 + HVT surpasses that of either SB-1 or HVT monovalent vaccines in controlling the level of pathogenic MDV in PBMCs until the end of the study, and this correlated with the ability to inhibit tumor formation. SB-1 replication in the spleen increased from 1 to 14 DPC, while HVT replicated only in the bursa at 1 DPC. The bursa was necessary for immune protection induced by HVT vaccine.ConclusionSynergy of SB-1 and HVT vaccines is due to additive influences of the individual vaccines acting at different times and target organs. And the bursa is vital for HVT to replicate and induce immune protection.  相似文献   

8.
《Vaccine》2020,38(6):1526-1534
Despite decades of vaccination, surveillance, and biosecurity measures, H5N2 low pathogenicity avian influenza (LPAI) virus infections continue in Mexico and neighboring countries. One explanation for tenacity of H5N2 LPAI in Mexico is the antigenic divergence of circulating field viruses compared to licensed vaccines due to antigenic drift. Our phylogenetic analysis indicates that the H5N2 LPAI viruses circulating in Mexico and neighboring countries since 1994 have undergone antigenic drift away from vaccine seed strains. Here we evaluated the efficacy of a new recombinant fowlpox virus vector containing an updated H5 insert (rFPV-H5/2016), more relevant to the current strains circulating in Mexico. We tested the vaccine efficacy against a closely related subcluster 4 Mexican H5N2 LPAI (2010 H5/LP) virus and the historic H5N2 HPAI (1995 H5/HP) virus in White Leghorn chickens. The rFPV-H5/2016 vaccine provided hemagglutinin inhibition (HI) titers pre-challenge against viral antigens from both challenge viruses in almost 100% of the immunized birds, with no differences in number of birds seroconverting or HI titers among all tested doses (1.5, 2.0, and 3.1 log10 mean tissue culture infectious doses/bird). The vaccine conferred 100% clinical protection and a significant decrease in oral and cloacal virus shedding from 1995 H5/HP virus challenged birds when compared to the sham controls at all tested doses. Virus shedding titers from vaccinated 2010 H5/LP virus challenged birds significantly decreased compared to sham birds especially at earlier time points. Our results confirm the efficacy of the new rFPV-H5/2016 against antigenic drift of LPAI virus in Mexico and suggest that this vaccine would be a good candidate, likely as a primer in a prime-boost vaccination program.  相似文献   

9.
《Vaccine》2021,39(23):3169-3178
An effective dengue vaccine should induce a long-lasting immune response against all four serotypes simultaneously with a minimum number of immunizations. Our live attenuated tetravalent dengue vaccine candidate, KD-382, was developed using a classical host range mutation strategy (no addition of artificial genetic modification). In our previous study, cynomolgus monkeys immunized with a single dose of KD-382 seroconverted to all four serotypes. However, it is important to determine if neutralizing antibodies (NAbs) induced by KD-382 can work as a long-lasting immune response to prevent dengue. In this study, a single dose of KD-382 induced a strong NAb response against all four serotypes in cynomolgus monkeys. We also confirmed that NAb titers against all four serotypes persist for at least five years, indicating its high potential as a dengue vaccine candidate. Next, we evaluated the effect of pre-existing dengue immunity on NAb responses induced by KD-382. We administered KD-382 to cynomolgus monkeys pre-administered one of the monovalent parental wild-type strains 60 days before vaccination. Regardless of the pre-immunized serotype, all the monkeys showed sufficient tetravalent NAb responses, which lasted for over two years. All the KD-382 vaccinated monkeys were then challenged with different parental wild-type viruses than that used for pre-administration; viral RNA in the serum was less than the lower limit of quantification, indicating complete protection against secondary heterologous dengue infection without any harmful disease enhancement. Consequently, KD-382 successfully induced a long-lasting and protective tetravalent NAb response in monkeys, suggesting that KD-382 is a promising vaccine candidate usable for both dengue seronegative and seropositive individuals.  相似文献   

10.
《Vaccine》2022,40(38):5608-5614
The majority of infectious bursal disease virus (IBDV) strains circulating in the broiler chicken industry in Canada are variant strains (varIBDV). Despite high levels of maternally derived antibodies (MtAb), the circulating varIBDVs can establish infection and cause severe immunosuppression in broiler chicks. The objective of this study was to evaluate circulating varIBDVs as broiler breeder vaccine candidates and investigate their protective efficacy against varIBDV challenge in their progeny chicks. Six groups of breeders (20 females/group) were vaccinated with varIBDV strains, SK09, SK10, SK11, SK12, and SK13 or saline at the age of 13 weeks and antibody response was determined by ELISA at 3–7-, and 20- weeks post-vaccination. We also included commercial chicks for the comparison. Results showed that SK-09 is the most antigenic strain, followed by SK-10, SK-12, and SK-13. In contrast, SK-11 showed the lowest antibody response, and over time, antibody titers steadily decreased. Eggs from breeders were collected at 21-week post-vaccination and incubated to produce their respective progenies. The serum antibody titer in day-old chicks showed a successful MtAb transfer. Progeny chicks (n = 40/group) were orally challenged with varIBDV-SK-09 strain at 6 days of age and serum antibody titer (19 d and 35 d of age), bursa to body weight ratio (19 d and 35 d of age), bursal viral load (9 d and 19 d of age) was examined to assess the protection against IBDV. Following the challenge, we found a significant increase in the antibody titers in MtAb-free and commercial vaccine groups than in the varIBDV groups, both at 19 d and 35 d of age. The BBW ratio and viral load data indicated a significant homologous and heterologous protection against varIBDV-SK-09 challenge by SK-09 and SK-10 MtAbs, respectively. Overall, this study demonstrated the feasibility of developing breeder vaccines using circulating varIBDV as candidate vaccine antigens.  相似文献   

11.
《Vaccine》2021,39(11):1609-1620
Subunit vaccines derived from tumor antigens play a role in tumor therapy because of their unique advantages. However, because of the weak immunogenicity of peptides in subunit vaccines, it is difficult to trigger an effective cytotoxic T lymphocyte (CTL) response, which is critical for cancer therapy. A requirement for the activation of CTL cells by exogenous antigens is the stimulation of antigen presenting cells (APC) with the help of adjuvants and cross-presentation to T lymphocytes. Standard nonconjugated adjuvant-peptide mixtures do not ensure co-targeting of the antigen and the adjuvant to the same APC, which limits the effects of adjuvants. In this study, a fusion protein consisting of murine granulocyte-macrophage colony stimulating factor (mGM-CSF) fused with CTA2 (A2 subunit of cholera toxin) was generated and assembled with CTB-PSMA624-632 (prostate specific membrane antigen (PSMA) peptide 624–632 fused to CTB) to obtain a cholera toxin-like protein. The chimeric protein retained the biological activity of mGM-CSF and had stronger GM1 binding activity than (CTB-PSMA624-632)5. C57BL/6J mice immunized with the CT-like chimeric protein exhibited delayed tumor growth following challenge with human PSMA-EGFP-expressing RM-1 cells. Experiment results showed that the CT-like chimeric protein could induce the maturation of DC cells and improve CTL responses. Overall, these results indicate that the nasal administration of a CT-like chimeric protein vaccine results in the development of effective immunity against prostate tumor cells and might be useful for future clinical anti-tumoral applications.  相似文献   

12.
《Vaccine》2022,40(23):3182-3192
COVID-19 presents an ongoing global health crisis. Protein-based COVID-19 vaccines that are well-tolerated, safe, highly-protective and convenient to manufacture remain of major interest. We therefore sought to compare the immunogenicity and protective efficacy of a number of recombinant SARS-CoV-2 spike protein candidates expressed in insect cells. By comparison to a full length (FL) spike protein detergent-extracted nanoparticle antigen, the soluble secreted spike protein extracellular domain (ECD) generated higher protein yields per liter of culture and when formulated with either Alum-CpG55.2 or Advax-CpG55.2 combination adjuvants elicited robust antigen-specific humoral and cellular immunity in mice. In hamsters, the spike ECD when formulated with either adjuvant induced high serum neutralizing antibody titers even after a single dose. When challenged with the homologous SARS-CoV-2 virus, hamsters immunized with the adjuvanted spike ECD exhibited reduced viral load in day 1–3 oropharyngeal swabs and day 3 nasal turbinate tissue and had no recoverable infectious virus in day 3 lung tissue. The reduction in lung viral load correlated with less weight loss and lower lung pathology scores. The formulations of spike ECD with Alum-CpG55.2 or Advax-CpG55.2 were protective even after just a single dose, although the 2-dose regimen performed better overall and required only half the total amount of antigen. Pre-challenge serum neutralizing antibody levels showed a strong correlation with lung protection, with a weaker correlation seen with nasal or oropharyngeal protection. This suggests that serum neutralizing antibody levels may correlate more closely with systemic, rather than mucosal, protection. The spike protein ECD with Advax-CpG55.2 formulation (Covax-19® vaccine) was selected for human clinical development.  相似文献   

13.
《Vaccine》2023,41(17):2793-2803
Protein subunit vaccines have been widely used to combat infectious diseases, including the current COVID-19 pandemic. Adjuvants play the key role in shaping the quality and magnitude of the immune response to protein and inactivated vaccines. We previously developed a protein subunit COVID-19 vaccine, termed ZF2001, based on an aluminium hydroxide-adjuvanted tandem-repeat dimeric receptor-binding domain (RBD) of the viral spike (S) protein. Here, we described the use of a squalene-based oil-in-water adjuvant, Sepivac SWE™ (abbreviated to SWE), to further improve the immunogenicity of this RBD-dimer-based subunit vaccines. Compared with ZF2001, SWE adjuvant enhanced the antibody and CD4+ T-cell responses in mice with at least 10 fold of dose sparing compared with ZF2001 adjuvanted with aluminium hydroxide. SWE-adjuvanted vaccine protected mice against SARS-CoV-2 challenge. To ensure adequate protection against the currently circulating Omicron variant, we evaluated this adjuvant in combination with Delta-Omicron chimeric RBD-dimer. SWE significantly increased antibody responses compared with aluminium hydroxide adjuvant and afforded greater neutralization breadth. These data highlight the advantage of emulsion-based adjuvants to elevate the protective immune response of protein subunit COVID-19 vaccines.  相似文献   

14.
《Vaccine》2019,37(31):4302-4309
Influenza A virus (IAV) vaccines in pigs generally provide homosubtypic protection but fail to prevent heterologous infections. In this pilot study, the efficacy of an intradermal pDNA vaccine composed of conserved SLA class I and class II T cell epitopes (EPITOPE) against a homosubtypic challenge was compared to an intramuscular commercial inactivated whole virus vaccine (INACT) and a heterologous prime boost approach using both vaccines. Thirty-nine IAV-free, 3-week-old pigs were randomly assigned to one of five groups including NEG-CONTROL (unvaccinated, sham-challenged), INACT-INACT-IAV (vaccinated with FluSure XP® at 4 and 7 weeks, pH1N1 challenged), EPITOPE-INACT-IAV (vaccinated with PigMatrix EDV at 4 and FluSure XP® at 7 weeks, pH1N1 challenged), EPITOPE-EPITOPE-IAV (vaccinated with PigMatrix EDV at 4 and 7 weeks, pH1N1 challenged), and a POS-CONTROL group (unvaccinated, pH1N1 challenged). The challenge was done at 9 weeks of age and pigs were necropsied at day post challenge (dpc) 5. At the time of challenge, all INACT-INACT-IAV pigs, and by dpc 5 all EPITOPE-INACT-IAV pigs were IAV seropositive. IFNγ secreting cells, recognizing vaccine epitope-specific peptides and pH1N1 challenge virus were highest in the EPITOPE-INACT-IAV pigs at challenge. Macroscopic lung lesion scores were reduced in all EPITOPE-INACT-IAV pigs while INACT-INACT-IAV pigs exhibited a bimodal distribution of low and high scores akin to naïve challenged animals. No IAV antigen in lung tissues was detected at necropsy in the EPITOPE-INACT-IAV group, which was similar to naïve unchallenged pigs and different from all other challenged groups. Results suggest that the heterologous prime boost approach using an epitope-driven DNA vaccine followed by an inactivated vaccine was effective against a homosubtypic challenge, and further exploration of this vaccine approach as a practical control measure against heterosubtypic IAV infections is warranted.  相似文献   

15.
《Vaccine》2022,40(33):4732-4741
The virus-like particles (VLPs) of porcine circovirus type 2 (PCV2) is an attractive vaccine candidate that retains the natural conformation of the virion but lacks the viral genome to replicate, thus balancing safety and immunogenicity. However, the assembly of VLPs requires cumbersome subsequent processes, hindering the development of related vaccines. In addition, as a subunit antigen, VLPs are defective in inducing cellular and mucosal immune responses. In this study, the capsid (Cap) protein of PCV2 was synthesized and self-assembled into VLPs in the recombinant attenuated S. Choleraesuis vector, rSC0016(pS-Cap). Furthermore, rSC0016(pS-Cap) induced a Cap-specific Th1-dominant immune response, mucosal immune responses, and neutralizing antibodies against PCV2. Finally, the virus genome copies in mice immunized with the rSC0016(pS-Cap) were significantly lower than those of the empty vector control group after challenge with PCV2. In conclusion, our study demonstrates the potential of using S. Choleraesuis vectors to delivery VLPs, providing new ideas for the development of PCV2 vaccines.  相似文献   

16.
17.
《Vaccine》2021,39(30):4231-4237
Invasive pneumococcal disease (IPD) is responsible for serious illnesses such as bacteremia, sepsis, meningitis, and pneumonia in young children, older adults, and persons with immunocompromising conditions and often leads to death. Although the most recent pneumococcal conjugate vaccines (PCVs) have been designed to target serotypes identified as the primary causative agents of IPD, the epidemiological landscape continues to change stressing the need to develop new PCVs. We have developed an investigational 24-valent PCV (PCV24) including serotypes 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F all conjugated to CRM197 and evaluated this vaccine in adult monkeys. PCV24 was shown to be immunogenic and induced functional antibody for all vaccine serotypes. Of the serotypes common to PCV13 and V114 (PCV15), PCV24 had a similar immunogenic response with the exceptions of 23F which had higher IgG GMCs for PCV13 and V114, and 7F which had higher GMCs for PCV13. Functional antibody responses were similar for the serotypes in common between PCV24, PCV13 and V114 vaccines, with the exception of serotype 7F which was greater for PCV13. Overall, this study shows that PCV24 provided similar immunogenicity as the lower valent vaccines in adult monkeys with no apparent serotype interference. In addition, PCV24 also provided protection against pneumococcal infection in a mouse challenge model.  相似文献   

18.
《Vaccine》2020,38(19):3537-3544
BackgroundVaccination is the most effective approach to prevent infection with highly pathogenic avian influenza (HPAI). Adjuvants are often used to induce effective immune responses and overcome the immunological weakness of recombinant HPAI antigens. Given the logistical challenges of immunization to HPAI during pandemic situations, vaccines administered via the intramuscular (I.M.) route would be of value.MethodsA new formulation of nanoemulsion adjuvant (NE02) suitable for I.M. vaccination was developed. This NE02 was evaluated alone and in combination with CpG to develop H5 immune responses in mouse and ferret models. Measures of recombinant H5 (rH5) specific immunity evaluated included serum IgG and IgG subclasses, bronchoalveolar lavage fluid IgA, and cytokines. The activation of NF-kB was also analyzed. The efficacy of the vaccine was assessed by performing hemagglutination inhibition (HAI), virus neutralization (VN) assays, and viral challenges in ferrets.ResultsI.M. vaccination with rH5-NE02 significantly increased rH5-specific IgG and protected ferrets in the viral challenge model providing complete protection and sterile immunity in all animals tested. Combining NE02 and CpG produced accelerated antibody responses and this was accompanied by an elevation of IFN-γ and IL-17 responses and the downregulation of IL-5. The combination also caused a synergistic effect on NF-kB activation. In immunized ferrets after viral challenge, the rH5-NE02 + CpG vaccine via I.M. achieved at least 75% and 88% seroconversion of HAI and VN antibody responses, respectively, and improved body temperature stabilization and weight loss over NE02 alone.ConclusionsThe I.M. injection of NE02 adjuvanted rH5 elicits strong and broad immune responses against H5 antigens and effectively protects animals from lethal H5 challenge. Combining this adjuvant with CpG enhanced immune responses and provided improvements in outcomes to viral challenge in ferrets. The results suggest that combinations of adjuvants may be useful to enhance H5 immune responses and improve protection against influenza infection.  相似文献   

19.
《Vaccine》2021,39(25):3428-3434
BackgroundThe widespread use of pneumococcal conjugate vaccines (PCVs) has significantly decreased pneumococcal disease worldwide. However, China has not adopted PCVs in their national immunization schedules and had only approved these vaccines for children aged 2–15 months by 2020.MethodsIn an open-label trial, enrolled healthy children aged 2–5 years old were randomized 1:1 and divided into a 7-valent pneumococcal conjugate vaccine (PCV7) group and a Haemophilus influenzae type b conjugate vaccine (Hib) group. Children in the PCV7 group received a single dose of PCV7, and the Hib group received a single dose of Hib vaccine. Blood samples were collected before and 6 months after vaccination. Immunogenicity and safety of PCV7 were assessed at prespecified time points.ResultsSix months after a single dose of PCV7, children in the PCV7 group for all 7 serotypes, IgG mean concentrations (GMCs) and opsonophagocytic geometric mean titres (GMTs) were significantly higher (P < .001) than at baseline, and the proportion of IgG ≥ 0.35 µg/mL ranged from 90.0% to 100%. Although the antibody level increased with age, preexisting antibodies did not induce hyporesponsiveness to PCV7. In the Hib group, the antibody levels were not significantly different or had changed slightly at 6 months. PCV7 was well tolerated in all age groups, and no serious adverse events (AEs) emerged during this study.ConclusionsA single dose of PCV7 was immunogenic and safe for Chinese children aged 2–5 years, and the preexisting antibodies against the PCV7 serotypes did not change the response to vaccination. The findings supported the effectiveness of PCV7 in this age group. PCVs with broader serotype coverage are expected to expand pneumococcal disease protection.  相似文献   

20.
《Vaccine》2019,37(42):6221-6231
Foot-and-mouth disease (FMD) is a highly contagious viral infection of cloven hooved animals that continues to cause economic disruption in both endemic countries or when introduced into a formally FMD free country. Vaccines that protect against clinical disease and virus shedding are critical to control FMD. The replication deficient human adenovirus serotype 5 (Ad5) vaccine vector expressing empty FMD virus (FMDV) capsid, AdtFMD, is a promising new vaccine platform. With no shedding or spreading of viral vector detected in field trials, this vaccine is very safe to manufacture, as there is no requirement for high containment faciitites. Here, we describe three studies assessing the proportion of animals protected from clinical vesicular disease (foot lesions) following live-FMDV challenge by intradermolingual inoculation at 6 or 9 months following a single vaccination with the commercial AdtFMD vaccine, provisionally licensed for cattle in the United States. Further, we tested the effect of vaccination route (transdermal, intramuscular, subcutaneous) on clinical outcome and humoral immunity. Results demonstrate that a single dose vaccination in cattle with the commercial vaccine vector expressing capsid proteins of the FMDV strain A24 Cruzeiro (Adt.A24), induced protection against clinical FMD at 6 months (100% transdermal, 80% intramuscular, and 60% subcutaneous) that waned by 9 months post-vaccination (33% transdermal and 20% intramuscular). Post-vaccination serum from immunized cattle (all studies) generally contained FMDV specific neutralizing antibodies by day 14. Anti-FMDV antibody secreting cells are detected in peripheral blood early following vaccination, but are absent after 28 days post-vaccination. Thus, the decay in antibody mediated immunity over time is likely a function of FMDV-specific antibody half-life. These data reveal the short time span of anti-FMDV antibody secreting cells (ASCs) and important performance characteristics of needle-free vaccination with a recombinant vectored subunit vaccine for FMDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号