首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: Solid lipid nanoparticles are promising drug carriers for systemic circulations as well as local applications. One of the major challenges for drug delivery is designing nanocarriers for efficient delivery of active substances to the target site and facilitating drug absorption.

Areas covered: In this article, the effects of excipients and particle preparation methods on the properties of solid lipid nanocarriers (SLNCs) and their impact on drug absorption and efficacies related to different administration routes are reviewed and discussed.

Expert opinion: SLNCs have special characteristics, making them attractive as drug delivery systems, for parenteral and oral delivery for systemic effects, or ocular, pulmonary and topical delivery to enhance local treatment efficacy and reducing systemic side effects. Both excipients and fabrication methods are crucial for the function and size of nanoparticles and should be considered simultaneously in designing particles to obtain the optimal drug absorption and efficacy, especially for local treatments. Despite the demonstrated advantages by the preclinical studies, further studies on improved understanding of the interactions of SLNCs with biological tissues of the target site is necessary for efficient designing functional nanoparticles for clinical applications.

Abbreviations: DG: diglycerides; FFA: free fatty acids; GMS: glyceryl monostearate; MG: monoglycerides; NLC: nanostructured lipid carriers; PL: phospholipids; SLM: solid lipid microparticles; SLN: solid lipid nanoparticles; SLNC: solid lipid nanocarriers; TG: triglycerides.  相似文献   


2.
Introduction: Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years.

Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters.

Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.  相似文献   


3.
Introduction: Considering that the number of patients afflicted by posterior eye diseases is increasing, effective drug delivery is currently in high clinical demand. Topical administration has been identified as the preferred option, while sufferingfrom multiple barriers. The development of nanoparticle-based drug delivery system provides an option, which would enhance the drug permeability across the barriers and achieve the desired drug level in the targeted tissue.

Areas covered: This review highlights the barrier to the posterior segment of the eye via topical administration. The up-to-date development of lipid nanoparticles, liposomes, emulsions, spanlastics, micelles, polymeric nanoparticles, layered double hydroxides (LDH), dendrimers, cyclodextrins(CDs), and prodrugs are summarized. Moreover, nanocarriers currently in clinical trials for posterior segment diseases have been discussed.

Expert opinion: Topical nanoparticle-based drug delivery systems have demonstrated significant progress. An ideal formulation should prolong retention time on the surface, enhance drug permeability through the ocular tissues, and efficiently deliver drugs to the targeted site. To design the rational targeting nanoparticle-based drug delivery system, a better understanding of the distribution of transporters and receptors on the eye is required. Ultimately, there is an urgent need to develop targeting hybrid drug delivery systems with the combination of the advantages of several nanocarriers.  相似文献   


4.
Introduction: Chemotherapeutic drugs are used in combination to target multiple mechanisms involved in cancer cell survival and proliferation. Carriers are developed to deliver drug combinations to common target tissues in optimal ratios and desirable sequences. Nanoparticles (NP) have been a popular choice for this purpose due to their ability to increase the circulation half-life and tumor accumulation of a drug.

Areas covered: We review organic NP carriers based on polymers, proteins, peptides, and lipids for simultaneous delivery of multiple anticancer drugs, drug/sensitizer combinations, drug/photodynamic therapy or drug/photothermal therapy combinations, and drug/gene therapeutics with examples in the past three years. Sequential delivery of drug combinations, based on either sequential administration or built-in release control, is introduced with an emphasis on the mechanistic understanding of such control.

Expert opinion: Recent studies demonstrate how a drug carrier can contribute to co-localizing drug combinations in optimal ratios and dosing sequences to maximize the synergistic effects. We identify several areas for improvement in future research, including the choice of drug combinations, circulation stability of carriers, spatiotemporal control of drug release, and the evaluation and clinical translation of combination delivery.  相似文献   


5.
Introduction: Therapeutic proteins have become a highly attractive drug of choice due to minimal toxicity, high activity and exquisite specificity. Oral delivery of protein drugs is a very interesting area for research, and, naturally, numerous technologies are required to improve the oral bioavailability of therapeutic proteins.

Areas covered: This review article systemically generalized the major physiological barriers facing oral macromolecule delivery as well as the current approaches and novel developments in the field, including permeation enhancers, enzyme inhibitors, particulate drug delivery system, ligand delivery system, mucoadhesive delivery system, mucus penetration delivery system and other strategies.

Expert opinion: The development of composite formulation methods need to meet regulatory requirements for reproducibility, manufacturing cost, and bioavailability. So far, oral delivery of protein and peptide drugs is still facing immense challenges despite of the fact that some clinical studies are undergoing. The most advanced clinical strategies for therapeutic proteins are co-administration of absorption enhancers or protease inhibitors. Besides, rising new technologies in the field also provides a growing opportunity, such as nanotechnology, mucoadhesive and mucus penetration particulate delivery system.  相似文献   


6.
Introduction: Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer.

Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering.

Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.  相似文献   


7.
Introduction: The development of therapeutics for central nervous system (CNS) disorders is still considered a challenging area in drug development due to insufficient translocation through the blood-brain barrier (BBB). Under normal conditions, BBB restrict the penetration of more than 98% of blood-borne molecules including drugs to the CNS. However, recent research findings have proven that the nature of the BBB is altered in several neurological conditions. This complexity encourages revisiting drug delivery strategies to the CNS as this can give a wide range of opportunities for CNS drug development.

Areas covered: This review focuses on nanotechnology-based drug delivery platforms designed for selective recruitment into the lesioned brain by taking advantages of BBB disruption that is associated with certain neurological conditions.

Expert opinion: Current CNS therapeutic strategies do not fully address the pathophysiological adaptation of BBB in their design. The lack of selective delivery to the brain lesions has been the culprit behind the failure of many CNS therapeutics. This highlighted the need for smart designs of advanced drug delivery systems that take advantage of BBB structural changes in CNS diseases. Recently, promising examples have been reported in this area, however, more work is still required beyond the preclinical testing.  相似文献   


8.
Introduction: Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery.

Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy.

Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.  相似文献   


9.
Introduction: Near-infrared ray (NIR)-responsive ‘smart’ nanoagents allow spatial and temporal control over the drug delivery process, noninvasively, without affecting healthy tissues and therefore they possess high potential for on-demand, targeted drug/gene delivery. Various NIR-responsive drug/gene delivery techniques are under investigation for peripheral disorders (especially for cancer). Nonetheless, their potential not been extensively examined for brain biomedical application.

Areas covered: This review focuses on NIR-responsive characteristics of different NIR-nanobiophotonics-based nanoagents and associated drug delivery strategies. Together with their ongoing applications for peripheral drug delivery, we have highlighted the opportunities, challenges and possible solutions of NIR-nanobiophotonics for potential brain drug delivery.

Expert opinion: NIR-nanobiophotonics can be considered superior among all photo-controlled drug/gene delivery approaches. Future work should focus on coupling NIR with biocompatible nanocarriers to determine the physiological compatibility of this approach. Their applications should be extended beyond the peripheral body region to brain region. Transient or intermittent NIR exposure strategies may be more accommodating for brain physiological ambience in order to minimize or avoid the possible deleterious thermal effect. In addition, while most studies are centered around the first NIR spectral window (700–1000 nm), the potential of second (1100–1350 nm) and third (1600–1870 nm) windows must be explored.  相似文献   


10.
Introduction: The major challenge of first pass metabolism in oral drug delivery can be surmounted by directing delivery toward intestinal lymphatic system (ILS). ILS circumvents the liver and transports drug directly into systemic circulation via thoracic duct. Lipid and polymeric nanoparticles are transported into ILS through lacteal and Peyer’s patches. Moreover, surface modification of nanoparticles with ligand which is specific for Peyer’s patches enhances the uptake of drugs into ILS. Bioavailability enhancement by lymphatic uptake is an advantageous approach adopted by scientists today. Therefore, it is important to understand clear insight of ILS in targeted drug delivery and challenges involved in it.

Areas covered: Current review includes an overview of ILS, factors governing lymphatic transport of nanoparticles and absorption mechanism of lipid and polymeric nanoparticles into ILS. Various ligands used to target Peyer’s patch and their conjugation strategies to nanoparticles are explained in detail. In vitro and in vivo models used to assess intestinal lymphatic transport of molecules are discussed further.

Expert opinion: Although ILS offers a versatile pathway for nanotechnology based targeted drug delivery, extensive investigations on validation of the lymphatic transport models and on the strategies for gastric protection of targeted nanocarriers have to be perceived in for excellent performance of ILS in oral drug delivery.  相似文献   


11.
Introduction: The development of new therapies for treating various eye conditions has led to a demand for extended release delivery systems, which would lessen the need for frequent application while still achieving therapeutic drug levels in the target tissues.

Areas covered: Following an overview of the different ocular drug delivery modalities, this article surveys the biomaterials used to develop sustained release drug delivery systems. Microspheres, nanospheres, liposomes, hydrogels, and composite systems are discussed in terms of their primary materials. The advantages and disadvantages of each drug delivery system are discussed for various applications. Recommendations for modifications and strategies for improvements to these basic systems are also discussed.

Expert opinion: An ideal sustained release drug delivery system should be able to encapsulate and deliver the necessary drug to the target tissues at a therapeutic level without any detriment to the drug. Drug encapsulation should be as high as possible to minimize loss and unless it is specifically desired, the initial burst of drug release should be kept to a minimum. By modifying various biomaterials, it is possible to achieve sustained drug delivery to both the anterior and posterior segments of the eye.  相似文献   


12.
Introduction: Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern.

Area covered: This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market.

Expert opinion: The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.  相似文献   


13.
Introduction: Smart hydrogel systems present opportunities to not only provide hydrophobic molecule encapsulation capability but to also respond to specific delivery routes.

Areas covered: An overview of the design principles, preparation methods and applications of hydrogel systems for delivery of hydrophobic drugs is given. It begins with a summary of the advantages of hydrogels as delivery vehicles over other approaches, particularly macromolecular nanocarriers, before proceeding to address the design and preparation strategies and chemistry involved, with a particular focus on the introduction of hydrophobic domains into (naturally) hydrophilic hydrogels. Finally, the applications in different delivery routes are discussed.

Expert opinion: Modifications to conventional hydrogels can endow them with the capability to carry hydrophobic drugs but other functions as well, such as the improved mechanical stability, which is important for long-term in vivo residence and/or self-healing properties useful for injectable delivery pathways. These modifications harness hydrophobic-hydrophobic forces, physical interactions and inclusion complexes. The lack of in-depth understanding of these interactions, currently limits more delicate and application-oriented designs. Increased efforts are needed in (i) understanding the interplay of gel formation and simultaneous drug loading; (ii) improving hydrogel systems with respect to their biosafety; and (iii) control over release mechanism and profile.  相似文献   


14.
Background and purpose: To determine the predictive performance of in silico models using drug-specific preclinical cardiac electrophysiology data to investigate drug-induced arrhythmia risk (e.g. Torsade de pointes (TdP)) in virtual human subjects.

Experimental approach: To assess drug proarrhythmic risk, we used a set of in vitro electrophysiological measurements describing ion channel inhibition triggered by the investigated drugs. The Cardiac Safety Simulator version 2.0 (CSS; Simcyp, Sheffield, UK) platform was used to simulate human left ventricular cardiac myocyte action potential models.

Results: This study shows the impact of drug concentration changes on particular ionic currents by using available experimental data. The simulation results display safety threshold according to drug concentration threshold and log (threshold concentration/ effective therapeutic plasma concentration (ETPC)).

Conclusion and implications: We reproduced the underlying biophysical characteristics of cardiac cells resulted in effects of drugs associated with cardiac arrhythmias (action potential duration (APD) and QT prolongation and TdP) which were observed in published 3D simulations, yet with much less computational burden.  相似文献   


15.
Introduction: The blood brain barrier is a functional barrier allowing the entry into the brain of only essential nutrients, excluding other molecules. Its structure, although essential to keep the harmful entities out, is also a major roadblock for pharmacological treatment of brain diseases. Several alternative invasive drug delivery approaches, such as transcranial drug delivery and disruption of blood brain barrier have been explored, with limited success and several challenges. Intranasal delivery is a non-invasive methodology, which bypasses the systemic circulation, and, through the intra- and extra- neuronal pathways, provides direct brain drug delivery. Colloidal drug delivery systems, particularly lipidic nanoparticles offer several unique advantages for this goal .

Areas covered: This review focuses on key brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis, and provide a detailed overview of the current lipid nanoparticle based treatment options explored thus far. The review also delves into basic preparation, challenges and evaluation methods of lipid drug delivery systems.

Expert opinion: Brain diseases present complex pathophysiology, in addition to the practically inaccessible brain tissues, hence according to the authors, a two-pronged approach utilizing new target discovery coupled with new drug delivery systems such as lipid carriers must be adopted.  相似文献   


16.
Introduction: Mucosal drug delivery is an attractive route of administration, particularly in overcoming deficits of conventional dosage forms including high first-pass metabolism and poor bioavailability. Fast drainage from the target mucosa, however, represents a major limitation as it prevents sufficient drug absorption. In order to address these problems, mucoadhesive in situ gelling drug delivery systems have been investigated as they facilitate easy application in combination with a longer residence time at the administration site resulting in more desirable therapeutic effects.

Areas covered: The present review evaluates the importance of the combination of mucoadhesive and in situ gelling polymers along with mechanisms of in situ gelation and mucoadhesion. In addition, an overview about recent applications in mucosal drug delivery is provided.

Expert opinion: In situ gelling and mucoadhesive polymers proved to be essential excipients in order to prolong the mucosal residence time of drug delivery systems. Due to this prolonged residence time both local and systemic therapeutic efficacy of numerous drugs can be substantially improved. Depending on the site of administration and the incorporated drug, combinations of different polymers with in situ gelling and mucoadhesive properties are needed to keep the delivery system as long as feasible at the target site.  相似文献   


17.
Introduction: The emergent field of nanoparticles has presented a wealth of opportunities for improving the treatment of human diseases. Recent advances have allowed for promising developments in drug delivery, diagnostics, and therapeutics. Modified delivery systems allow improved drug delivery over traditional pH, microbe, or receptor dependent models, while antibody association allows for more advanced imaging modalities. Nanoparticles have potential clinical application in the field of gastroenterology as they offer several advantages compared to the conventional treatment systems including target drug delivery, enhanced treatment efficacy, and reduced side effects.

Areas covered: The aim of this review article is to summarize the recent advancements in developing nanoparticle technologies to treat gastrointestinal diseases. We have covered the application of nanoparticles in various gastrointestinal disorders including inflammatory bowel disease and colorectal cancer. We also have discussed how the gut microbiota affects the nanoparticle based drug delivery in the gastrointestinal tract.

Expert opinion: Nanoparticles based drug delivery offers a great platform for targeted drug delivery for gastrointestinal disorders. However, it is influenced by the presence of microbiota, drug interaction with nanoparticles, and cytotoxicity of nanoparticles. With the advancements in nanoparticle technology, it may be possible to overcome these barriers leading to efficient drug delivery for gastrointestinal disorders based on nanoparticle platform.  相似文献   


18.
Introduction: Transporters in the plasma membrane have been exploited successfully for the delivery of drugs in the form of prodrugs and nanoparticles. Organic cation/carnitine transporter 2 (OCTN2, SLC22A5) has emerged as a viable target for drug delivery. OCTN2 is a Na+-dependent high-affinity transporter for L-carnitine and a Na+-independent transporter for organic cations. OCTN2 is expressed in the blood-brain barrier, heart, liver, kidney, intestinal tract and placenta and plays an essential role in L-carnitine homeostasis in the body.

Areas covered: In recent years, several studies have been reported in the literature describing the utility of OCTN2 to enhance the delivery of drugs, prodrugs and nanoparticles. Here we summarize the salient features of OCTN2 in terms of its role in the cellular uptake of its physiological substrate L-carnitine in physiological and pathological context; the structural requirements for recognition and the recent advances in OCTN2-targeted drug delivery systems, including prodrugs and nanoparticles, are discussed.

Expert opinion: This transporter has great potential to be utilized as a target for drug delivery to improve oral absorption of drugs in the intestinal tract. It also has potential to facilitate the transfer of drugs across the biological barriers such as the blood-brain barrier, blood-retinal barrier, and maternal-fetal barrier.  相似文献   


19.
Introduction: The design of efficient therapeutic delivery devices has become a tremendously active area of research with a strong contribution from the layer-by-layer (LbL) technology. The application of this simple yet firmly established technique for the design of drug reservoirs originates a multitude of multilayered systems of tailored architecture and with a high level of control of drug administration.

Areas covered: This review will focus on the most recent and original research on LbL assemblies based on biopolymers including polysaccharides, polypeptides and proteins, with potential use in drug delivery. Herein, drug reservoirs consisting of multilayered planar films and capsules will be examined with emphasis on the ones benefiting from the non-cytotoxic and biocompatible nature of biopolymers, which are suitable to load, protect and release a high payload of toxic and fragile drugs.

Expert opinion: The combination of biopolymers with LbL technology has undergone extensive research, still, there is a multitude of R&D opportunities for the design of smart drug delivery systems with distinct multilayered morphologies, low immunological response, non-invasive drug release devices, as well as the design of theranostic systems combining diagnostics and therapeutic features. Further developments in terms of scaling towards mass production in the pharmaceutical industry are expected in the long-term.  相似文献   


20.
Introduction: Inner ear disorders such as hearing loss, tinnitus, and Ménière’s disease significantly impact the quality of life of affected individuals. Treatment of such disorders is an ongoing challenge. Current clinical approaches relieve symptoms but do not fully restore hearing, and the search for more effective therapeutic methods represents an area of urgent current interest.

Areas covered: Thirty four patents and patent applications published from 2011 to 2015 were selected from the database of the U.S. Patent and Trademark Office (USPTO) and World Intellectual Property Organization (WIPO), covering new approaches for the treatment of inner ear disorders described in the patent literature: 1) identification of new therapeutic agents, 2) development of sustained release formulations, and 3) medical devices that facilitate delivery of such agents to the inner ear.

Expert opinion: The search for effective treatments of inner ear disorders is ongoing. Increased understanding of the molecular mechanisms of hearing loss, Ménière’s disease, and tinnitus is driving development of new therapeutic agents. However, delivery of these agents to the inner ear is a continuing challenge. At present, combination of a suitable drug with an appropriate mode of drug delivery is the key focus of innovative research to cure inner ear disorders.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号