首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
OBJECTIVE: The role of reactive oxygen species (ROS) in mitogen-activated protein kinase (MAPK) signaling by angiotensin (Ang) II and endothelin-1 (ET-1) in human vascular smooth muscle cells (VSMC) was investigated. DESIGN: VSMCs were derived from resistance arteries from healthy subjects. MAPK activity was assessed using phospho-specific antibodies. ROS generation was measured by CMH2DCFDA fluorescence and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity by lucigenin chemiluminescence. RESULTS: Ang II and ET-1 increased MAPK phosphorylation (P < 0.01). Pre-treatment with Tiron and Tempol, *O2 scavengers, attenuated agonist-stimulated phosphorylation of p38MAPK, c-Jun N-terminal kinases (JNK) and ERK5, but not of ERK1/2 (extracellular signal-regulated kinases). Apocynin and diphenylene iodinium (DPI), NAD(P)H oxidase inhibitors, decreased Ang II-induced responses 60-70%. ET-1-mediated MAPK phosphorylation was unaffected by apocynin but was reduced (> 50%) by thenoyltrifluoroacetone (TIFT) and carboxyl cyanide-m-chlorophenylhydrazone (CCCP), mitochondrial inhibitors. Allopurinol and N-nitro-l-arginine methyl ester (l-NAME), xanthine oxidase and nitric oxide synthase (NOS) inhibitors, respectively, did not influence MAPK activation. Intracellular ROS generation, was increased by Ang II and ET-1 (P < 0.01). DPI inhibited Ang II- but not ET-1-mediated ROS production. Expression of p22phox and p47phox and activation of NAD(P)H oxidase were increased by Ang II but not by ET-1. CCCP and TIFT significantly attenuated ET-1-mediated ROS formation (P < 0.05), without influencing Ang II effects. CONCLUSIONS: Ang II activates p38MAPK, JNK and ERK5 primarily through NAD(P)H oxidase-generated ROS. ET-1 stimulates these kinases via redox-sensitive processes that involve mitochondrial-derived ROS. These data suggest that redox-dependent activation of MAPKs by Ang II and ET-1 occur through distinct ROS-generating systems that could contribute to differential signaling by these agonists in VSMCs.  相似文献   

3.
We recently reported that angiotensin II (Ang II) induced IL-6 mRNA expression in cardiac fibroblasts, which played an important role in Ang II-induced cardiac hypertrophy in paracrine fashion. The present study investigated the regulatory mechanism of Ang II-induced IL-6 gene expression, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. Ang II increased intracellular ROS in cardiac fibroblasts, and the increase was completely inhibited by the AT-1 blocker candesartan and the NADH/NADPH oxidase inhibitor diphenyleneiodonium (DPI). We first confirmed that antioxidant N-acetylcysteine, superoxide scavenger Tiron, and DPI suppressed Ang II-induced IL-6 expression. Because we observed that exogenous H(2)O(2) also increased IL-6 mRNA, the signaling pathways downstream of Ang II and exogenous H(2)O(2) were compared. Ang II, as well as exogenous H(2)O(2), activated ERK, p38 MAPK, and JNK, which were significantly inhibited by N-acetylcysteine and DPI. In contrast with exogenous H(2)O(2), however, Ang II did not influence phosphorylation and degradation of IkappaB-alpha/beta or nuclear translocation of p65, nor did it increase NF-kappaB promoter activity. PD98059 and SB203580 inhibited Ang II-induced IL-6 expression. Truncation and mutational analysis of the IL-6 gene promoter showed that CRE was an important cis-element in Ang II-induced IL-6 gene expression. NF-kappaB-binding site was important for the basal expression of IL-6, but was not activated by Ang II. Ang II phosphorylated CREB through the ERK and p38 MAPK pathway in a ROS-sensitive manner. Collectively, these data indicated that Ang II stimulated ROS production via the AT1 receptor and NADH/NADPH oxidase, and that these ROS mediated activation of MAPKs, which culminated in IL-6 gene expression through a CRE-dependent, but not NF-kappaB-dependent, pathway in cardiac fibroblasts.  相似文献   

4.
5.
6.
Reactive oxygen species (ROS) participate in cardioprotection of ischemic reperfusion (I/R) injury via preconditioning mechanisms. Mitochondrial ROS have been shown to play a key role in this process. Angiotensin II (Ang II) exhibits pharmacological preconditioning; however, the involvement of NAD(P)H oxidase, known as an ROS-generating enzyme responsive to Ang II stimuli, in the preconditioning process remains unclear. We compared the effects of 5-hydroxydecanoate (5-HD; an inhibitor of mitochondrial ATP-sensitive potassium channels), apocynin (an NAD(P)H oxidase inhibitor), and 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (tempol; a membrane permeable radical scavenger) on pharmacological preconditioning by Ang II in rat cardiac I/R injury in vivo. Treatment with a pressor dose of Ang II before a 30-minute coronary occlusion reduced infarct size as determined 24 hours after reperfusion. The protective effects of Ang II were eliminated by pretreatment with 5-HD or apocynin, similar to tempol. Both 5-HD and apocynin suppressed the enhanced cardiac lipid peroxidation and activation of the apoptosis signal-regulating kinase/p38, c-Jun NH2-terminal kinase (JNK) pathways, but not the Raf/MEK/extracellular signal-regulated kinase pathway, elicited by acutely administered Ang II. Apocynin but not 5-HD suppressed Ang II-induced augmentations of the NAD(P)H oxidase complex formation (p47phox, p22phox, and Rac-1) and its activity in the heart. Finally, 5-HD suppressed superoxide production by isolated cardiac mitochondria without any effect on their respiration. These results suggest that the preconditioning effects of Ang II for cardiac I/R injury may be mediated by cardiac mitochondria-derived ROS enhanced through NAD(P)H oxidase via JNK and p38 mitogen-activated protein kinase activation.  相似文献   

7.
Reactive oxygen species (ROS) have been proposed to mediate vascular hypertrophy induced by angiotensin II (Ang II). Recently, we and others have shown that growth-promoting signals by Ang II involve protein tyrosine kinase (PTK) and extracellular signal-regulated kinase (ERK). However, whether ROS contribute to the Ang II-induced PTK and/or ERK activation in vascular smooth muscle cells (VSMCs) remains largely unclear. Here, we have investigated the possible involvement of ROS in Ang II-induced PTK and ERK activation. In the presence of a NADH/NADPH oxidase inhibitor, diphenyleneiodonium (DPI) or an antioxidant, alpha-tocopherol, Ang II-induced protein tyrosine phosphorylation of two major proteins (p120, p70) and ERK activation were markedly reduced, whereas ERK activation by epidermal growth factor was unaffected. DPI also inhibited Ang II-induced H2O2 production and PTK activation. In this regard, H2O2 and a membrane permeable thiol-oxidizing agent, diamide, stimulated protein tyrosine phosphorylation of p120 and p70, and ERK activation in VSMCs. H2O2 also enhanced PTK activity. From these data, we conclude that ROS play a critical role in the Ang II-induced PTK and ERK activation in VSMCs, thereby contributing to vascular growth associated with enhanced Ang II activity.  相似文献   

8.
Chronic heart failure (CHF) is often associated with excitation of the sympathetic nervous system. This event is thought to be a negative predictor of survival in CHF. Sympathoexcitation and central angiotensin II (Ang II) have been causally linked. Recent studies have shown that NAD(P)H oxidase-derived reactive oxidant species (ROS) are important mediators of Ang II signaling. In the present study, we tested the hypothesis that central Ang II activates sympathetic outflow by stimulation of NAD(P)H oxidase and ROS in the CHF state. CHF was induced in male New Zealand White rabbits by chronic ventricular tachycardia. Using radio telemetry of arterial pressure and intracerebroventricular infusions, experiments were performed in the conscious state. Renal sympathetic nerve activity (RSNA) was recorded as a direct measure of sympathetic outflow. Intracerebroventricular Ang II significantly increased RSNA in sham (131.5+/-13.3% of control) and CHF (193.6+/-11.9% of control) rabbits. The increase in CHF rabbits was significantly greater than in sham rabbits (P<0.01). These responses were abolished by intracerebroventricular losartan, tempol, or apocynin. Resting RSNA was significantly reduced by intracerebroventricular losartan, tempol, or apocynin in CHF rabbits but not in sham rabbits. Intracerebroventricular administration of the superoxide dismutase inhibitor diethyldithio-carbamic acid increased RSNA significantly more in sham compared with CHF rabbits. NADPH-dependent superoxide anion production in the rostral ventrolateral medulla (RVLM) was increased by 2.9-fold in CHF rabbits compared with sham rabbits. Finally, increases in the RVLM mRNA and protein expression of Ang II type 1 (AT1) receptor and subunits of NAD(P)H oxidase (p40phox, p47phox, and gp91phox) were demonstrated in CHF rabbits. These data demonstrate intense radical stress in autonomic areas of the brain in experimental CHF and provide evidence for a tight relationship between Ang II and ROS as contributors to sympathoexcitation in CHF.  相似文献   

9.
10.
Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) hypertrophy, which results in several cardiovascular diseases. Ang II-induced cellular events have been mediated, in part, by reactive oxygen species (ROS) which also involve activation of mitogen-activated protein (MAP) kinases. Although it has been proposed that the therapeutic administration of antioxidants is useful for vascular diseases, the precise mechanisms which regulate ROS-sensitive signaling events have not been well characterized. Thus, we hypothesized that antioxidants may affect ROS-mediated MAP kinases activation induced by Ang II. The present findings showed that Ang II stimulated rapid and significant activation of ERK 1/2, JNK and p38 MAPK in cultured rat aortic smooth muscle cells (RASMC). Ang II-induced ERK 1/2 activation was not affected by all antioxidants examined, whereas JNK was sensitive to all antioxidants. In contrast, p38 MAPK activation was inhibited by DPI and ascorbic acid concentration-dependently, but by NAC only at high concentration. DETC and Trolox C had no effects on p38 MAPK activation by Ang II. We further examined the effects of antioxidants on Ang II-induced increases in oxygen consumption as an index of ROS generation in RASMC. DPI strongly inhibited Ang II-induced increases in oxygen consumption. DETC also inhibited Ang II-induced oxygen consumption, whereas ascorbic acid markedly augmented it. These findings suggest that the inhibitory effects of antioxidants on MAP kinases activation in VSMC are attributable, in part, to their modulating effects on ROS generation by Ang II in VSMC. Thus, inhibition of MAP kinases by antioxidants may imply their usefulness for relief of cardiovascular diseases.  相似文献   

11.
Angiotensin II (Ang II) signaling in vascular smooth muscle cells (VSMCs) involves reactive oxygen species (ROS) through unknown mechanisms. We propose that Ang II induces phosphorylation of growth signaling kinases by redox-sensitive regulation of protein tyrosine phosphatases (PTP) in VSMCs and that augmented Ang II signaling in spontaneously hypertensive rats (SHRs) involves oxidation/inactivation and blunted phosphorylation of the PTP, SHP-2. PTP oxidation was assessed by the in-gel PTP method. SHP-2 expression and activity were evaluated by immunoblotting and by a PTP activity assay, respectively. SHP-2 and Nox1 were downregulated by siRNA. Ang II induced oxidation of multiple PTPs, including SHP-2. Basal SHP-2 content was lower in SHRs versus WKY. Ang II increased SHP-2 phosphorylation and activity with blunted responses in SHRs. Ang II-induced SHP-2 effects were inhibited by valsartan (AT(1)R blocker), apocynin (NAD(P)H oxidase inhibitor), and Nox1 siRNA. Ang II stimulation increased activation of ERK1/2, p38MAPK, and AKT, with enhanced effects in SHR. SHP-2 knockdown resulted in increased AKT phosphorylation, without effect on ERK1/2 or p38MAPK. Nox1 downregulation attenuated Ang II-mediated AKT activation in SHRs. Hence, Ang II regulates PTP/SHP-2 in VSMCs through AT(1)R and Nox1-based NAD(P)H oxidase via two mechanisms, oxidation and phosphorylation. In SHR Ang II-stimulated PTP oxidation/inactivation is enhanced, basal SHP-2 expression is reduced, and Ang II-induced PTP/SHP-2 phosphorylation is blunted. These SHP-2 actions are associated with augmented AKT signaling. We identify a novel redox-sensitive SHP-2-dependent pathway for Ang II in VSMCs. SHP-2 dysregulation by increased Nox1-derived ROS in SHR is associated with altered Ang II-AKT signaling.  相似文献   

12.
OBJECTIVE: We have recently reported that adventitial fibroblasts are able to express endothelin-1 (ET-1) in response to angiotensin II (Ang II) stimulation. However, the mechanism by which this occurs in the adventitia remains unclear. As Ang II has been reported to increase oxidant production by NADPH oxidase, we examined the role of this complex in Ang II stimulated ET-1 expression in vascular adventitial fibroblasts. METHODS AND RESULTS: Adventitial fibroblasts were isolated and cultured from mouse aorta. Cells were treated with Ang II (100 nmol/L) in the presence or absence of NADPH oxidase inhibitors, apocynin (100 micromol/L) and diphenyleneiodonium (10 micromol/L), superoxide scavengers, SOD (350 units/mL), tempol (100 micromol/L), tiron (100 micromol/L), and ET-receptor antagonists (10 microM), BQ123 (for ET(A)-) and BQ788 (for ET(B)-). PreproET-1 mRNA and ET-1 level were determined by relative RT-PCR and ELISA, respectively. Type I procollagen-alpha-I (collagen) level was detected by Western blot. Superoxide anion (superoxide) production was determined by coelenterazine or lucigenin chemiluminescence. Ang II-induced collagen expression was inhibited by BQ123, suggesting that adventitial ET-1 plays a significant role in regulating the extracellular matrix. NADPH oxidase inhibitors and superoxide scavengers significantly decreased Ang II-induced ET-1 mRNA and peptide expression, superoxide production as well as collagen expression. Furthermore, deletion of gp91(phox) (a key subunit of NADPH oxidase) and overexpression of SOD1 attenuated Ang II-induced responses. CONCLUSION: Ang II-evoked expression of ET-1 in adventitial fibroblasts appears to be mediated, at least in part, by NADPH oxidase. Functionally, this mechanism stimulates collagen expression thereby implicating the adventitia as a potential contributor to the vascular pathophysiology associated with oxidative stress and vascular remodeling.  相似文献   

13.
Superoxide has been shown to be an important intracellular mediator of actions of angiotensin II. Recently, we found that blockade of angiotensin II type-1 receptors in the rostral ventrolateral medulla (RVLM) abrogated the pressor effect of emotional stress in rabbits. In the present study, we examined the influence of superoxide dismutase mimetics, tempol and tiron, in RVLM on cardiovascular stress response in conscious rabbits. Air-jet stress evoked a sustained increase in blood pressure (+14+/-2 mm Hg), tachycardia (+52+/-7 bpm), and renal sympathoactivation (+58+/-8%). Bilateral microinjections of tempol or tiron (20 nmol) into RVLM did not alter resting cardiovascular parameters, but attenuated the pressor, sympathetic, and tachycardiac response to stress by 40% to 55%. By contrast, 3-carbamoylproxyl, which is structurally close to tempol but has a lower superoxide scavenging activity, did not alter the stress response. Neither tempol nor tiron altered the sympathoexcitatory response to glutamate microinjections into RVLM or to baroreceptor unloading. Microinjections of nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 10 nmol) into RVLM did not affect the stress response. Coinjections of tempol and L-NAME decreased the pressor response to stress by 35+/-3%. Tempol attenuated the pressor response to microinjection of angiotensin II into RVLM by 59+/-15%, whereas L-NAME did not alter this response. These results suggest that superoxide dismutase mimetics in RVLM attenuate, partially via a nitric oxide-independent mechanism, the pressor effect of emotional stress in rabbits. Together with our previous studies, these results also indicate that superoxide is a key mediator of excitatory actions of angiotensin II in RVLM during acute stress.  相似文献   

14.
15.
16.
17.
Angiotensin II (Ang II) exerts detrimental effects on cerebral circulation, the mechanisms of which have not been elucidated. In particular, Ang II impairs the increase in cerebral blood flow (CBF) produced by neural activity, a critical mechanism that matches substrate delivery with energy demands in brain. We investigated whether Ang II exerts its deleterious actions by activating Ang II type 1 (AT1) receptors on cerebral blood vessels and producing reactive oxygen species (ROS) through NADPH oxidase. Somatosensory cortex CBF was monitored in anesthetized mice by laser-Doppler flowmetry. Ang II (0.25 microg/kg per minute IV) attenuated the CBF increase produced by mechanical stimulation of the vibrissae. The effect was blocked by the AT1 antagonist losartan and by ROS scavenger superoxide dismutase or tiron and was not observed in mice lacking the gp91phox subunit of NADPH oxidase or in wild-type mice treated with the NADPH oxidase peptide inhibitor gp91ds-tat. Ang II increased ROS production in cerebral microvessels, an effect blocked by the ROS scavenger Mn(III)tetrakis (4-benzoic acid) porphyrin and by the NADPH oxidase assembly inhibitor apocynin. Ang II did not increase ROS production in gp91-null mice. Double-label immunoelectron microscopy demonstrated that AT1 and gp91phox immunoreactivities were present in endothelium and adventitia of neocortical arterioles. Collectively, these findings suggest that Ang II impairs functional hyperemia by activating AT1 receptors and inducing ROS production via a gp91phox containing NADPH oxidase. The data provide the mechanistic basis for the cerebrovascular dysregulation induced by Ang II and suggest novel therapeutic strategies to counteract the effects of hypertension on the brain.  相似文献   

18.
Low rates of angiotensin II (Ang II) infusion raise blood pressure, renal vascular resistance (RVR), NADPH oxidase activity, and superoxide. We tested the hypothesis that these effects are ameliorated by extracellular superoxide dismutase (EC-SOD). EC-SOD knockout (-/-) and wild type (+/+) mice were equipped with blood pressure telemeters and infused subcutaneously with Ang II (400 ng/kg per minute) or vehicle for 2 weeks. During vehicle infusion, EC-SOD -/- mice had significantly (P<0.05) higher MAP (+/+: 107+/-3 mm Hg versus -/-: 114+/-2 mm Hg; n=11 to 14), RVR, lipid peroxidation, renal cortical p22(phox) expression, and NADPH oxidase activity. Ang II infusion in EC-SOD +/+ mice significantly (P<0.05) increased MAP, RVR, p22(phox), NADPH oxidase activity, and lipid peroxidation. Ang II reduced SOD activity in plasma, aorta, and kidney accompanied by reduced renal EC-SOD expression. During Ang II infusion, both groups had similar values for MAP (+/+ Ang II: 125+/-3 versus -/- Ang II: 124+/-3 mmHg; P value not significant), RVR, NADPH oxidase activity, and lipid peroxidation. SOD activity in the kidneys of Ang II-infused mice was paradoxically higher in EC-SOD -/- mice (+/+: 8.8+/-1.2 U/mg protein(-1) versus -/-: 13.7+/-1.6 U/mg protein(-1); P<0.05) accompanied by a significant upregulation of mRNA and protein for Cu/Zn-SOD. In conclusion, EC-SOD protects normal mice against oxidative stress by attenuating renal p22(phox) expression, NADPH oxidase activation, and the accompanying renal vasoconstriction and hypertension. However, during an Ang II slow pressor response, renal EC-SOD expression is reduced and, in its absence, renal Cu/Zn-SOD is upregulated and may prevent excessive Ang II-induced renal oxidative stress, renal vasoconstriction, and hypertension.  相似文献   

19.
Experimental evidence has suggested that vascular adventitial fibroblasts (AFs) may migrate into the neointima of arteries after balloon injury in various animal models. However, the research on migration of AFs has been limited to the effects of acute vascular injury. The role of AFs in chronic vascular injury and hypertension is not yet known. In this study, the migration of spontaneously hypertensive rat (SHR)-AFs and Wistar-Kyoto rat (WKY)-AFs from the thoracic aorta was determined by a transwell technique. Our results showed that fetal calf serum, angiotensin II (Ang II), phorbol ester, basic fibroblast growth factor and platelet-derived growth factor-BB induced migration in a dose-dependent manner, and the migration of SHR-AFs was always greater than that of WKY-AFs. Ang II-induced migration of AFs was considered to have been mediated by Ang II type 1 receptor (AT1-R), because the AT1-R antagonist losartan (10(-7)-10(-5) mol/l) suppressed Ang II-induced migration. Ang II-induced migration was also blocked by the extracellular-regulated protein kinase 1/2 (ERK1/2) inhibitor PD98059 (10(-5) mol/l) and p38 kinase inhibitor SB202190 (10(-5) mol/l), indicating that ERK1/2 and p38 kinase were involved in Ang II-induced migration. Ang II (10(-7) mol/l)-induced ERK1/2 and p38 kinase phosphorylation, both of which peaked after 5 min, were suppressed by PD98059 and SB202190, respectively. The Ang-II induced phosphorylation of both proteins was suppressed by losartan, whereas no effect was observed with PD123319, a specific inhibitor of Ang II type 2 receptor (AT2-R). Thus, in the present study, various factors stimulated the migration of SHR-AFs and, to a leber extent, WKY-AFs from the thoracic aorta, and the ERK1/2 and p38 kinase pathways are involved in Ang II-stimulated migration of fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号