首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao S  Mata M  Glorioso JC  Fink DJ 《Gene therapy》2007,14(13):1010-1016
We examined the role of spinal tumor necrosis factor-alpha (TNFalpha) in neuropathic pain of peripheral nerve origin. Two weeks after selective L5 spinal nerve ligation (SNL), rats exhibiting mechanical allodynia and thermal hyperalgesia showed a marked increase in full-length membrane-associated TNFalpha (mTNFalpha) in the dorsal horn of spinal cord, in the absence of detectable soluble TNFalpha peptide. Local release of the soluble p55 TNF receptor, achieved by herpes simplex virus vector-based gene transfer to dorsal root ganglion, resulted in a reduction of mTNFalpha and concomitant reductions in interleukin-1beta and phosphorylated p38 MAP kinase. Subcutaneous inoculation of soluble p55 TNF receptor expressing HSV vector into the plantar surface of the hind foot ipsilateral to the ligation 1 week before SNL delayed the development of both mechanical allodynia and thermal hyperalgesia; subcutaneous inoculation into the hind foot ipsilateral to the ligation 1 week after SNL resulted in a statistically significant reduction in mechanical allodynia and thermal hyperalgesia that was apparent 1 week after inoculation. These results suggest a novel 'reverse signaling' through glial mTNFalpha, which may be exploited to downregulate the neuroimmune reaction in spinal cord to reduce chronic neuropathic pain.  相似文献   

2.
A rat model of bone cancer pain   总被引:38,自引:0,他引:38  
This study describes the first known model of bone cancer pain in the rat. Sprague-Dawley rats receiving intra-tibial injections of syngeneic MRMT-1 rat mammary gland carcinoma cells developed behavioural signs indicative of pain, including: mechanical allodynia, difference of weight bearing between hind paws and mechanical hyperalgesia. The development of the bone tumour and structural damage to the bone was monitored by radiological analysis, quantitative measurement of mineral content and histology.Intra-tibial injections of 3 x 10(3) or 3 x 10(4) syngeneic MRMT-1 cells produced a rapidly expanding tumour within the boundaries of the tibia, causing severe remodelling of the bone. Radiographs showed extensive damage to the cortical bone and the trabeculae by day 10-14 after inoculation of 3 x 10(3) MRMT-1 cells, and by day 20, the damage was threatening the integrity of the tibial bone. While both mineral content and mineral density decreased significantly in the cancerous bone, osteoclast numbers in the peritumoural compact bone remained unchanged. However, tartarate-resistant acid phosphatase staining revealed a large number of polykariotic cells, resembling those of osteoclasts within the tumour. No tumour growth was observed after the injection of heat-killed MRMT-1 cells.Intra-tibial injections of 3 x 10(3) or 3 x 10(4) MRMT-1 cells, heat-killed cells or vehicle did not show changes in body weight and core temperature over 19-20 days. The general activity of animals after injection with live or heat-killed MRMT-1 cells was higher than that of the control group, however, the activity of the MRMT-1 treated group declined during the progress of the disease.Rats receiving intra-tibial injections of MRMT-1 cells displayed the gradual development of mechanical allodynia and mechanical hyperalgesia/reduced weight bearing on the affected limb, beginning on day 12-14 or 10-12 following injection of 3 x 10(3) or 3 x 10(4) cells, respectively. These symptoms were not observed in rats receiving heat-killed cells or vehicle.Behavioural data suggest a reasonable time window for evaluation of anti-nociceptive agents between day 14 and 20 after cancer cell inoculation in this model.Acute treatment with morphine (1-3mg/kg, subcutanously (s.c.)) produced a dose-dependent reduction in the response frequency of hind paw withdrawal to von Frey filament stimulation 17 or 19 days following intra-tibial injections of 3 x 10(3) MRMT-1 cells. A significant reduction in the difference in hind limb weight bearing was also observed. Acute treatment with celebrex (10-30 mg/kg, s.c.) did not affect mechanical allodynia or difference in weight bearing in rats 20 days following treatment with 3 x 10(3) MRMT-1 cells.Although the pathophysiology of cancer pain is largely unknown, significant enhancement of glial fibrillary acidic protein (GFAP) staining in the corresponding segments of the ipsilateral spinal cord highlights the possible involvement of astrocytes.In summary, the induction of bone cancer in the rat by the syngeneic MRMT-1 mammary tumour cell line provides a valid pre-clinical model for pain associated with bone metastases. Significant mechanical hyperalgesia and allodynia develops in association with the progression of the tumour in the bone marrow cavity, while the general condition of the animal remains satisfactory. While acute treatment with morphine has some analgesic effect on hind limb sparing the selective COX-2 inhibitor, celebrex, has no influence on the pain-related behavioural changes in this model.  相似文献   

3.
《Pain》2014,155(12):2618-2629
The proinflammatory cytokines tumor necrosis factor (TNF) α and interleukin (IL) 1β have been strongly implicated in the pathogenesis of neuropathic pain, but the intracellular signaling of these cytokines in glial cells is not fully understood. TNF receptor-associated factor 6 (TRAF6) plays a key role in signal transduction in the TNF receptor superfamily and the IL-1 receptor superfamily. In this study, we investigated the role of TRAF6 in neuropathic pain in mice after spinal nerve ligation (SNL). SNL induced persistent TRAF6 upregulation in the spinal cord. Interestingly, TRAF6 was mainly colocalized with the astrocytic marker glial fibrillary acidic protein on SNL day 10 and partially expressed in microglia on SNL day 3. In cultured astrocytes, TRAF6 was upregulated after exposure to TNF-α or IL-1β. TNF-α or IL-1β also increased CCL2 expression, which was suppressed by both siRNA and shRNA targeting TRAF6. TRAF6 siRNA treatment also inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) in astrocytes induced by TNF-α or IL-1β. JNK inhibitor D-NKI-1 dose-dependently decreased IL-1β–induced CCL2 expression. Moreover, spinal injection of TRAF6 siRNA decreased intrathecal TNF-α– or IL-1β–induced allodynia and hyperalgesia. Spinal TRAF6 inhibition via TRAF6 siRNA, shRNA lentivirus, or antisense oligodeoxynucleotides partially reversed SNL-induced neuropathic pain and spinal CCL2 expression. Finally, intrathecal injection of TNF-α–activated astrocytes induced mechanical allodynia, which was attenuated by pretreatment of astrocytes with TRAF6 siRNA. Taken together, the results suggest that TRAF6, upregulated in spinal cord astrocytes in the late phase after nerve injury, maintains neuropathic pain by integrating TNF-α and IL-1β signaling and activating the JNK/CCL2 pathway in astrocytes.  相似文献   

4.
目的:探讨脊髓胶质细胞、促炎性细胞因子TNF-α和IL-1β以及NF-κB通路在鞘内注射血小板活化因子(PAF)诱发大鼠痛敏中的作用。方法:鞘内置管成功的雄性Sprague-Dawley大鼠64只随机分为6组:人工脑脊液(artificial cerebral spinal fluid,ACSF),对照组(n=16),鞘内注射ACSF 10μl;PAF组(n=16),鞘内注射PAF 10μg,溶解于10μl人工脑脊液;二甲基亚砜(DMSO)对照组(n=8),腹腔注射0.1%DMSO生理盐水2 ml;SC-514(10 mg/kg)组Ⅰ,SC-514(50 mg/kg)组Ⅱ和SC-514(100 mg/kg)组Ⅲ(n=16)。SC-514溶解于2 ml 0.1%DMSO生理盐水。DMSO组和SC-514组在鞘内注射PAF前2 h分别腹腔注射给药。鞘内给药后测机械缩爪阈值和热缩爪潜伏期,5 h后免疫组织化学染色检测腰段脊髓GFAP和OX-42的表达,ELISA检测脊髓TNF-α和IL-1β表达。结果:鞘内注射PAF激活大鼠脊髓星形胶质细胞和小胶质细胞,GFAP和OX-42标记免疫阳性反应增强,脊髓TNF-α和IL-1β表达增强;IKKβ抑制剂SC-514剂量依赖性减轻PAF诱发的触觉痛敏和热痛敏,并抑制TNF-α和IL-1β的表达增强。结论:鞘内注射PAF诱发大鼠触诱发痛和热痛敏,脊髓胶质细胞和NF-κB通路的激活以及促炎性细胞因子TNF-α和IL-1β表达增强可能参与其机制。  相似文献   

5.
Activated glial cells (microglia and astroglia) in the spinal cord play a major role in mediating enhanced pain states by releasing proinflammatory cytokines and other substances thought to facilitate pain transmission. In the present study, we report that intrathecal administration of minocycline, a selective inhibitor of microglial cell activation, inhibits low threshold mechanical allodynia, as measured by the von Frey test, in two models of pain facilitation. In a rat model of neuropathic pain induced by sciatic nerve inflammation (sciatic inflammatory neuropathy, SIN), minocycline delayed the induction of allodynia in both acute and persistent paradigms. Moreover, minocycline was able to attenuate established SIN-induced allodynia 1 day, but not 1 week later, suggesting a limited role of microglial activation in more perseverative pain states. Our data are consistent with a crucial role for microglial cells in initiating, rather than maintaining, enhanced pain responses. In a model of spinal immune activation by intrathecal HIV-1 gp120, we show that the anti-allodynic effects of minocycline are associated with decreased microglial activation, attenuated mRNA expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), IL-1beta-converting enzyme, TNF-alpha-converting enzyme, IL-1 receptor antagonist and IL-10 in lumbar dorsal spinal cord, and reduced IL-1beta and TNF-alpha levels in the CSF. In contrast, no significant effects of minocycline were observed on gp120-induced IL-6 and cyclooxygenase-2 expression in spinal cord or CSF IL-6 levels. Taken together these data highlight the importance of microglial activation in the development of exaggerated pain states.  相似文献   

6.
The activation of spinal cord microglia and astrocytes after peripheral nerve injury or inflammation contributes to behavioral hypersensitivity. The contribution of spinal cord glia to mechanical hypersensitivity after hind paw incision has not been investigated previously. Male Sprague-Dawley rats underwent a unilateral plantar hind paw incision, and the development of mechanical hypersensitivity was assessed by using von Frey filaments. The activation of spinal cord microglia and astrocytes was measured 1, 2, 3, and 5 days after hind paw incision by using immunohistochemistry. The glial activation inhibitor, fluorocitrate, was administered intrathecally 24 hours after hind paw incision to determine glial involvement in mechanical hypersensitivity. Hind paw incision induced an activation of spinal astrocytes ipsilateral to incision within 24 hours. Both microglia and astrocytes reached a maximum activation 3 days after hind paw incision. Fluorocitrate produced a dose-dependent reduction in mechanical hypersensitivity when administered 24 hours after hind paw incision. Spinal cord glial activation contributes to the mechanical hypersensitivity that develops after hind paw incision. PERSPECTIVE: Hind paw incision produces mechanical hypersensitivity that can be alleviated with the inhibition of spinal cord glia. Our results suggest that the activation of spinal cord astrocytes within 24 hours of incision contributes to mechanical hypersensitivity. Therefore, spinal cord astrocytes might represent a novel target for the treatment of postoperative pain.  相似文献   

7.
Bura SA  Nadal X  Ledent C  Maldonado R  Valverde O 《Pain》2008,140(1):95-103
Peripheral nerve injury produces a persistent neuropathic pain state characterized by spontaneous pain, allodynia and hyperalgesia. In this study, we evaluated the possible involvement of A 2ARs in the development of neuropathic pain and the expression of microglia and astrocytes in the spinal cord after sciatic nerve injury. For this purpose, partial ligation of the sciatic nerve was performed in A 2A knockout mice and wild-type littermates. The development of mechanical and thermal allodynia, as well as thermal hyperalgesia was evaluated by using the von Frey filament model, the cold-plate test and the plantar test, respectively. In wild-type animals, sciatic nerve injury led to a neuropathic pain syndrome that was revealed in these three nociceptive behavioural tests. However, a significant decrease of the mechanical allodynia and a suppression of thermal hyperalgesia and allodynia were observed in A 2AR deficient mice. The expression of microglia and astrocytes was enhanced in wild-type mice exposed to sciatic nerve injury and this response was attenuated in knockout animals. Taken together, our results demonstrate the involvement of A 2ARs in the control of neuropathic pain and propose this receptor as an interesting target for the development of new drugs for the management of this clinical syndrome.  相似文献   

8.
9.
Mounting evidence supports the hypothesis that spinal microglia modulate the development and maintenance of some chronic pain states. Here we examined the role of spinal microglia following both peripheral inflammatory insult and peripheral nerve injury. We observed significant ipsilateral dorsal horn microglia activation 2 weeks after injury and bilateral activation 50 days following nerve injury as well as 24 h following intraplantar zymosan but not intraplantar complete Freund's adjuvant (CFA). Ipsilateral but not contralateral microglia activation was associated with hind paw mechanical hyperalgesia. Spinal injection of the glial metabolic inactivator fluorocitrate attenuated ipsilateral hyperalgesia and bilateral spinal microglia activation after peripheral nerve injury. Intrathecal fluorocitrate reversed hyperalgesia after intraplantar zymosan and produced no reversal of CFA-induced hyperalgesia. These data suggest a role for spinal glia in the persistence of mechanical hyperalgesia following peripheral nerve injury. However, activation of spinal microglia contralaterally did not correlate to nociception. Furthermore, it would appear that the time course of microglia activation and their contribution to inflammatory pain is dependent on the inflammatory stimulus administered.  相似文献   

10.
Hyperbaric oxygen (HBO) therapy is reported to attenuate pain in both clinical pain conditions and animal pain models, but the underlying mechanism remains to be investigated. Here, we show that 7 daily 60-minute HBO (100% oxygen, 2 atmosphere absolute) treatments effectively and persistently inhibited heat hyperalgesia, mechanical allodynia, and paw edema induced by peripheral injection of complete Freund's adjuvant (CFA). Five daily 60-minute HBO treatments also produced a prolonged reversal effect of the ongoing inflammatory pain. Furthermore, such an HBO treatment reduced CFA-induced activation of glial cells, phosphorylation of mitogen-activated protein kinases, and production of a variety of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-1 beta [IL-1β], and interleukin-6 [IL-6]) and chemokines (monocyte chemoattractant protein-1 [MCP-1], keratinocyte-derived chemokine [KC], and IFN-gamma-inducible protein 10 [IP-10]) in the spinal cord. HBO treatment also decreased lipopolysaccharide-induced mRNA expression of these cytokines and chemokines in primary cultures of astrocytes and microglia. In addition, the mRNA expressions of IL-1β, IL-6, MCP-1, KC, and IP-10 in the inflamed paw skin were decreased by HBO. Taken together, these data suggest that HBO treatment is an effective therapy for inflammatory pain in animals. The inhibition of the neuroinflammation that is mediated by glial cells and inflammatory mediators may, at least in part, contribute to the antinociceptive effect of HBO therapy.PerspectiveOur results suggest that repetitive HBO treatment attenuates CFA-induced pain and reduces glial activation and inflammatory mediators' production. These findings provide evidence of the antinociception effect of HBO on inflammatory pain and characterize some of the underlying mechanisms.  相似文献   

11.
The present study examined the effects of intrathecal use of resveratrol on pain hypersensitivities, spinal glia activation, and CX3CR1 expression in the model of bone cancer pain (BCP). The BCP model was established through intrathecally injecting Walker 256 mammary gland carcinoma cells to Sprague‐Dawley rats. We found that spinal CX3CR1 expression and glial activation aggravated after inoculation. Resveratrol (i.t.) attenuated bone cancer‐induced pain hypersensitivities, decreased CX3CR1 expression and glial activation in the spine in a BCP model. Resveratrol (i.t.) also attenuated mechanical allodynia resulting from intrathecally injecting fractalkine in rats. Inhibition of spinal glial activation and CX3CR1 upregulation may involve in resveratrol's analgesic effects. These findings demonstrated that resveratrol attenuated pain facilitation through inhibiting spinal glial activation and CX3CR1 upregulation in a BCP model.  相似文献   

12.
Asai H  Ozaki N  Shinoda M  Nagamine K  Tohnai I  Ueda M  Sugiura Y 《Pain》2005,117(1-2):19-29
We developed a mouse model of cancer pain to investigate its underlying mechanisms. SCC-7, squamous cell carcinoma (SCC) derived from C3H mice, was inoculated subcutaneously into either the plantar region or thigh in male C3H/Hej mice. Heat and mechanical sensitivity as well as spontaneous behavior were measured at the plantar surface of the ipsilateral hind paw after the inoculation. Inoculated sites were histologically examined, and the expression of capsaicin receptors (TRPV1) was examined in the dorsal root ganglia (DRG) to clarify their potential contribution to pain sensitivity. Inoculation of cancer cells induced marked heat hyperalgesia and mechanical allodynia in the ipsilateral hind paw for two weeks in both plantar- and thigh-inoculation models. Signs of spontaneous pain, such as lifting, licking and flinching of the paw were also observed. However, further growth of the tumor reversed the mechanical allodynia in both plantar- and thigh-inoculation models, and heat hyperalgesia in thigh-inoculation models. Histologically, no infiltration of the tumor cells into the nerve was observed. TRPV1 immunoreactive cells increased in the L5 DRG on day 7, but returned to the control level on day 15 post-inoculation. Intraperitoneal administration of the competitive TRPV1 antagonist capsazepine inhibited hyperalgesia induced by tumor cell-inoculation in either plantar- or thigh-inoculated animals. This study indicated that inoculation of SCC resulted in spontaneous pain, heat hyperalgesia and mechanical allodynia. The altered expression of TRPV1 in the DRG may be involved in behavioral changes in this model.  相似文献   

13.
Diabetes mellitus is the leading cause of peripheral neuropathy worldwide. Despite this high level of incidence, underlying mechanisms of the development and maintenance of neuropathic pain are still poorly understood. Evidence supports a prominent role of glial cells in neuropathic pain states. Gabapentin is used clinically and shows some efficacy in the treatment of neuropathic pain. Here we investigate the distribution and activation of spinal microglia and astrocytes in streptozotocin (STZ)-diabetic rats and the effect of the gold standard analgesic, Gabapentin, on these cells. Mechanical allodynia was observed in four week-diabetic rats. Oral administration of Gabapentin significantly attenuated mechanical allodynia. Quantification of cell markers Iba-1 for microglia and GFAP for astrocytes revealed extensive activation of microglia in the dorsal horn of diabetic rats, whereas a reduction in the number of astrocytes could be observed. In addition, an attenuation of microglial activation correlated with reduced allodynia following Gabapentin treatment, while Gabapentin had no effect on the number of astrocytes. Here we show a role of microglia in STZ-induced mechanical allodynia and furthermore, that the anti-allodynic effect of Gabapentin may be linked to a reduction of spinal microglial activation. Astrocytic activation in this model appears to be limited and is unaffected by Gabapentin treatment. Consequently, spinal microglial activation is a key mechanism underlying diabetic neuropathy. Furthermore, we suggest that Gabapentin may exert its anti-allodynic actions partially through alterations of microglial cell function.  相似文献   

14.
Fox A  Medhurst S  Courade JP  Glatt M  Dawson J  Urban L  Bevan S  Gonzalez I 《Pain》2004,107(1-2):33-40
Chronic pain resulting from metastatic bone cancer remains poorly understood and resistant to treatment. Here we have examined the effect of the novel COX-2 enzyme inhibitor lumiracoxib in a model of bone cancer pain in the rat. Lumiracoxib was administered orally twice daily from day 10 to day 20 after injection of MRMT-1 tumour cells into one tibia. Mechanical hyperalgesia, measured as the reduction in weight-bearing of the ipsilateral limb, and the development of static and dynamic allodynia were significantly inhibited by repeated lumaricoxib administration. A similar reduction in hyperalgesia and allodynia was noted after twice daily administration of another COX-2 inhibitor, valdecoxib, whilst a single acute administration of either drug on day 20, produced no anti-nociceptive activity. Bone mineral density measurements, radiological scores and histological analysis showed that chronic lumaricoxib treatment also significantly attenuated bone destruction induced by tumour cell injection. These data indicate that lumiracoxib and other COX-2 inhibitors have potential therapeutic benefit in the treatment of bone cancer pain.  相似文献   

15.
Glial cell hyperactivity has been proposed to be responsible for chronic pain, however, the mechanisms remain unclear. Interleukin (IL)-18, released from glial cells, has been reported to be involved in neuropathic pain. In this study, we investigated the role of IL-18 in bone cancer pain. Bone cancer pain was mimicked by injecting Walker-256 mammary gland carcinoma cells into the intramedullary space of the tibia in rats. Expression and location of IL-18 and the IL-18 receptor were tested. To investigate the contribution of IL-18 signaling to bone cancer pain, IL-18 binding protein and recombinant IL-18 were used. To investigate the mechanisms of glial cells effects, MK801, N-methyl-D-aspartate (NMDA) receptor inhibitor, and Src kinase-specific inhibitor PP1 were used. Tumor cell implantation (TCI) treatment increased expression of IL-18 and IL-18 receptor in spinal cord. The time course of IL-18 upregulation was correlated with TCI-induced pain behaviors. Blocking the IL-18 signaling pathway prevented and reversed bone cancer-related pain behaviors. Meanwhile, blocking IL-18 signaling also suppressed TCI-induced glial cell hyperactivity, as well as activation of GluN2B and subsequent Ca2+-dependent signaling. Spinal administration of recombinant IL-18 in naive rat induced significant mechanical allodynia, as well as GluN2B activation. However, intrathecal injection of MK801 failed to suppress recombinant IL–18-induced GluN2B phosphorylation, whereas Src kinase inhibitor PP1 significantly inhibited IL-18-induced GluN2B activation. IL–18-mediated glial-glia and glial-neuron interaction may facilitate bone cancer pain. Blocking IL-18 signaling may effectively prevent and/or suppress bone cancer pain.

Perspective

IL-18 signaling may be a new target for cancer pain therapy.  相似文献   

16.
《The journal of pain》2023,24(7):1163-1180
Systemic lupus erythematosus (SLE) is an unpredictable autoimmune disease where the body's immune system mistakenly attacks healthy tissues in many parts of the body. Chronic pain is one of the most frequently reported symptoms among SLE patients. We previously reported that MRL lupus prone (MRL/lpr) mice develop hypersensitivity to mechanical and heat stimulation. In the present study, we found that the spinal protease-activated receptor-1(PAR1) plays an important role in the genesis of chronic pain in MRL/lpr mice. Female MRL/lpr mice with chronic pain had activation of astrocytes, over-expression of thrombin and PAR1, enhanced glutamatergic synaptic activity, as well as suppressed activity of adenosine monophosphate-activated protein kinase (AMPK) and glial glutamate transport function in the spinal cord. Intrathecal injection of either the PAR1 antagonist, or AMPK activator attenuated heat hyperalgesia and mechanical allodynia in MRL/lpr mice. Furthermore, we also identified that the enhanced glutamatergic synaptic activity and suppressed activity of glial glutamate transporters in the spinal dorsal horn of MRL/lpr mice are caused by activation of the PAR1 and suppression of AMPK signaling pathways. These findings suggest that targeting the PAR1 and AMPK signaling pathways in the spinal cord may be a useful approach for treating chronic pain caused by SLE.PerspectiveOur study provides evidence suggesting activation of PAR1 and suppression of AMPK in the spinal cord induces thermal hyperalgesia and mechanical allodynia in a lupus mouse model. Targeting signaling pathways regulating the PAR1 and AMPK could potentially provide a novel approach to the management of chronic pain caused by SLE.  相似文献   

17.
Activation of spinal cord microglia and astrocytes is a common phenomenon in nerve injury pain models and is thought to exacerbate pain perception. Following a nerve injury, a transient increase in the presence of microglia takes place while the increased numbers of astrocytes stay elevated for an extended period of time. It has been proposed that activated microglia are crucial for the development of neuropathic pain and that they lead to activation of astrocytes which then play a role in maintaining the long term pathological pain sensation. In the present report, we examined the time course of spinal cord glial activation in three different murine pain models to investigate if microglial activation is a general prerequisite for astrocyte activation in pain models. We found that two different types of cancer induced pain resulted in severe spinal astrogliosis without activation of microglia. In contrast, sciatic nerve injury led to a transient activation of microglia and sustained astrogliosis. These results show that development of hypersensitivity and astrocyte activation in pain models can take place independent of microglial activation.  相似文献   

18.
Peripheral inflammation induces persistent central sensitization characterized by mechanical allodynia and heat hyperalgesia that are mediated by distinct mechanisms. Compared to well-demonstrated mechanisms of heat hyperalgesia, mechanisms underlying the development of mechanical allodynia and contralateral pain are incompletely known. In this study, we investigated the distinct role of spinal JNK in heat hyperalgesia, mechanical allodynia, and contralateral pain in an inflammatory pain model. Intraplantar injection of complete Freund’s adjuvant (CFA) induced bilateral mechanical allodynia but unilateral heat hyperalgesia. CFA also induced a bilateral activation (phosphorylation) of JNK in the spinal cord, and the phospho JNK1 (pJNK1) levels were much higher than that of pJNK2. Notably, both pJNK and JNK1 were expressed in GFAP-positive astrocytes. Intrathecal infusion of a selective peptide inhibitor of JNK, D-JNKI-1, starting before inflammation via an osmotic pump, reduced CFA-induced mechanical allodynia in the maintenance phase but had no effect on CFA-induced heat hyperalgesia. A bolus intrathecal injection of D-JNKI-1 or SP600126, a small molecule inhibitor of JNK also reversed mechanical allodynia bilaterally. In contrast, peripheral (intraplantar) administration of D-JNKI-1 reduced the induction of CFA-induced heat hyperalgesia but did not change mechanical allodynia. Finally, CFA-induced bilateral mechanical allodynia was attenuated in mice lacking JNK1 but not JNK2. Taken together, our data suggest that spinal JNK, in particular JNK1 plays an important role in the maintenance of persistent inflammatory pain. Our findings also reveal a unique role of JNK1 and astrocyte network in regulating tactile allodynia and contralateral pain.  相似文献   

19.
Cancer pain is one kind of the most common and severe kinds of chronic pain. No breakthrough regarding the mechanisms and therapeutics of cancer pains has yet been achieved. Based on the well established involvement of the NMDA (N‐methyl‐d ‐aspartate) receptor containing NR2B in inflammatory pain and neuropathic pain and the effective pain relief obtained with ketamine in cancer patients with intractable pain, we supposed that NR2B in the spinal cord was an important factor for cancer pain. In this study, we investigated the possible role of NR2B in the spinal cord using a murine model of bone cancer pain. C3H/HeJ mice were inoculated into the intramedullary space of the right femur with Osteosarcoma NCTC 2472 cells to induce ongoing bone cancer‐related pain behaviors. At day 14 after operation, the expression of NR2B mRNA and NR2B protein in the spinal cord were higher in tumor‐bearing mice compared to the sham mice. Intrathecal administration of 5 and 10 μg of NR2B subunit‐specific NMDA receptor antagonist ifenprodil attenuated cancer‐evoked spontaneous pain, thermal hyperalgesia and mechanical allodynia. These results suggest that NR2B in the spinal cord may participate in bone cancer pain in mice, and ifenprodil may be a useful alternative or adjunct therapy for bone cancer pain. The findings may lead to novel strategies for the treatment of bone cancer pain.  相似文献   

20.
Nerve injury and the consequent release of interleukins (ILs) are processes implicated in pain transmission. To study the potential role of IL-1 in the pathogenesis of allodynia and hyperalgesia, IL-1alpha and comparative IL-1beta, IL-6, and IL-10 mRNA levels were quantified using competitive RT-PCR of the lumbar spinal cord and dorsal root ganglia (DRG; L5-L6) three and seven days after chronic constriction injury (CCI) in rats. Microglial and astroglial activation in the ipsilateral spinal cord and DRG were observed after injury. In naive and CCI-exposed rats, IL-1alpha mRNA and protein were not detected in the spinal cord. IL-1beta and IL-6 mRNAs were strongly ipsilaterally elevated on day seven after CCI. In the ipsilateral DRG, IL-1alpha, IL-6, and IL-10 mRNA levels were increased on days three and seven; IL-1beta was elevated only on day seven. Western blot analysis revealed both the presence of IL-1alpha proteins (45 and 31 kDa) in the DRG and the down-regulation of these proteins after CCI. Intrathecal administration of IL-1alpha (50-500 ng) in naive rats did not influence nociceptive transmission, but IL-1beta (50-500 ng) induced hyperalgesia. In rats exposed to CCI, an IL-1alpha or IL-1 receptor antagonist dose-dependently attenuated symptoms of neuropathic pain; however, no effect of IL-1beta was observed. In sum, the first days after CCI showed a high abundance of IL-1alpha in the DRG. Together with the antiallodynic and antihyperalgesic effects observed after IL-1alpha administration, this finding indicates an important role for IL-1alpha in the development of neuropathic pain symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号