首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Endothelial cell migration and tube formation in response to vascular endothelial growth factor (VEGF) play an important role in the process of angiogenesis. Recent data indicate that angiotensin type 2 (AT2) receptor stimulation is antiangiogenic. Therefore, we studied the effect of angiotensin II (Ang II) on VEGF-induced migration and in vitro tube formation of human endothelial cells. Ang II inhibited VEGF-induced migration of EA.hy926 cells, human coronary artery (HCA) and human dermal microvascular (HDM) endothelial cells (ECs) as well as tube formation by HDMECs. The AT2 receptor antagonist PD123,319 but not the AT1 receptor antagonist losartan blocked the inhibitory effect of Ang II. The inhibitory effect of Ang II on VEGF-induced migration of endothelial cells was mimicked by the specific AT2 receptor agonist CGP-42112A. The phosphorylation of Akt and its downstream effector endothelial NO synthase (eNOS) is pivotal to VEGF-induced angiogenesis. We therefore investigated the effect of Ang II on VEGF-induced Akt and eNOS phosphorylation. Ang II diminished the VEGF-induced phosphorylation of Akt and eNOS in endothelial cells, whereas the autophosphorylation of VEGF receptors was unaffected. CGP-42112A again mimicked and PD123,319 but not losartan blocked the inhibitory effect of Ang II. Treatment of endothelial cells with pertussis toxin (PTX) totally abolished the AT2 receptor-mediated inhibition of VEGF-induced endothelial cell migration and blocked the inhibition of Akt and eNOS phosphorylation. In conclusion, this study indicates that AT2 receptor stimulation inhibits VEGF-induced endothelial cell migration and tube formation via activation of a PTX-sensitive G protein. These findings may explain the reported antiangiogenic properties of the AT2 receptor.  相似文献   

2.
Despite the importance of platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31) in the adhesion and diapedesis of monocytes/lymphocytes, little is known about the mechanisms by which it is regulated. We explored the role of a glycosphingolipid, lactosylceramide (LacCer), in modulating PECAM-1 expression and cell adhesion in human monocytes. We observed that LacCer specifically exerted a time-dependent increase in PECAM-1 expression in U-937 cells. Maximal increase in PECAM-1 protein occurred after incubation with LacCer for 60 min. LacCer activated PKCalpha and -epsilon by translocating them from cytosol to membrane. This was accompanied by the activation of phospholipase A(2) (PLA(2)) and the increase of cell adhesion, which were abrogated by chelerythrine chloride, 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide and 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (GO 6976) (PKC inhibitors). Similarly, bromoenol lactone (a Ca(2+)-independent PLA(2) inhibitor) and methyl arachidonyl fluorophosphonate (an inhibitor of cytosolic PLA(2) and Ca(2+)-independent PLA(2)) inhibited LacCer-induced PLA(2) activity. Bromophenacyl bromide (a PLA(2) inhibitor) abrogated LacCer-induced PECAM-1 expression, and this was bypassed by arachidonic acid. Furthermore, the arachidonate-induced up-regulation of PECAM-1 was abrogated by indomethacin [a cyclooxygenase (COX)-1 and -2 inhibitor] or N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (a COX-2 inhibitor) but not nordihydroguaiaretic acid (a lipoxygenase inhibitor). In sum, PKCalpha/epsilon are the primary targets for the activation of LacCer. Downstream activation of intracellular Ca(2+)-independent PLA(2) and/or cytosolic PLA(2) results in the production of arachidonic acid, which in turn serves as a precursor for prostaglandins that subsequently stimulate PECAM-1 expression and cell adhesion. These findings may be relevant in explaining the role of LacCer in the regulation of PECAM-1 and related pathophysiology.  相似文献   

3.
4.
Notch receptors are important mediators of cell fate during embryogenesis, but their role in adult physiology, particularly in postnatal angiogenesis, remains unknown. Of the Notch receptors, only Notch1 and Notch4 are expressed in vascular endothelial cells. Here we show that blood flow recovery and postnatal neovascularization in response to hindlimb ischemia in haploinsufficient global or endothelial-specific Notch1(+/-) mice, but not Notch4(-/-) mice, were impaired compared with wild-type mice. The expression of vascular endothelial growth factor (VEGF) in response to ischemia was comparable between wild-type and Notch mutant mice, suggesting that Notch1 is downstream of VEGF signaling. Treatment of endothelial cells with VEGF increases presenilin proteolytic processing, gamma-secretase activity, Notch1 cleavage, and Hes-1 (hairy enhancer of split homolog-1) expression, all of which were blocked by treating endothelial cells with inhibitors of phosphatidylinositol 3-kinase/protein kinase Akt or infecting endothelial cells with a dominant-negative Akt mutant. Indeed, inhibition of gamma-secretase activity leads to decreased angiogenesis and inhibits VEGF-induced endothelial cell proliferation, migration, and survival. Overexpression of the active Notch1 intercellular domain rescued the inhibitory effects of gamma-secretase inhibitors on VEGF-induced angiogenesis. These findings indicate that the phosphatidylinositol 3-kinase/Akt pathway mediates gamma-secretase and Notch1 activation by VEGF and that Notch1 is critical for VEGF-induced postnatal angiogenesis. These results suggest that Notch1 may be a novel therapeutic target for improving angiogenic response and blood flow recovery in ischemic limbs.  相似文献   

5.
To explore the role of prostaglandin E(2) (PGE(2)) in angiogenesis in the developing corpus luteum, luteal microvascular endothelial-like cells (luteal ECs) were prepared from highly luteinizing ovaries of rats using the percoll density gradient method. The cells abundantly expressed the mRNAs of the endothelial markers CD31 (PECAM-1) and responded to the vascular endothelial growth factor (VEGF) to form in vitro tube structures on Matrigel. Cyclooxygenase (COX) inhibitors significantly suppressed tube formation in luteal ECs, whereas PGE(2) counteracted the COX inhibitor-induced blockage. PGE(2)-induced tube formation was blocked by a cyclic AMP-dependent protein kinase A (PKA) inhibitor, H89. The antagonist against the PGE receptor type 2 (EP2 receptor), AH6809, completely inhibited PGE(2)-induced tube formation and partly suppressed the VEGF-induced tube formation but did not attenuate PGE(2)-induced phosphorylation of both AKT kinase and extracellular signal-regulated kinase 1/2. VEGF significantly enhanced the expression of COX-2 mRNAs detected by real-time RT-PCR and PGE(2) secretion into the media measured by ELISA in luteal ECs. In turn, PGE(2) stimulated VEGF expression. In vitro co-culture of luteal ECs with steroidogenic luteal cells (SLCs) promoted tube formation. Pre-treatment of SLCs with VEGF further enhanced tube formation of ECs, and this effect was blocked by the COX-2 inhibitor. This stimulatory effect was inhibited by treatment with AH6809. These data indicate that PGE(2) exerts a direct stimulatory effect on tube formation mainly via the EP2 receptor/PKA signaling in luteal ECs. Our results suggest the possibility that the endogenous PGE(2) that is produced from luteinizing follicular cells as well as ECs may stimulate luteal angiogenesis.  相似文献   

6.
The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2-associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases.  相似文献   

7.
ObjectiveSince diabetes-induced vascular endothelial growth factor (VEGF) is implicated in retinal angiogenesis, we aimed to examine the role of aldose reductase (AR) in VEGF-induced human retinal endothelial cells (HREC) growth and tube formation.Materials and MethodsHRECs were stimulated with VEGF and cell-growth was determined by MTT assay. AR inhibitor, fidarestat, to block the enzyme activity and AR siRNA to ablate AR gene expression in HREC were used to investigate the role of AR in neovascularization using cell-migration and tube formation assays. Various signaling intermediates and angiogenesis markers were assessed by Western blot analysis. Immuno-histochemical analysis of diabetic rat eyes was performed to examine VEGF expression in the retinal layer.ResultsStimulation of primary HREC with VEGF caused increased cell growth and migration, and AR inhibition with fidarestat or ablation with siRNA significantly prevented it. VEGF-induced tube formation in HREC was also significantly prevented by fidarestat. Treatment of HREC with VEGF also increased the expression of VCAM, AR, and phosphorylation and activation of Akt and p38-MAP kinase, which were prevented by fidarestat. VEGF-induced expression of VEGFRII in HREC was also prevented by AR inhibition or ablation.ConclusionsOur results indicate that inhibition of AR in HREC prevents tube formation by inhibiting the VEGF-induced activation of the Akt and p38-MAPK pathway and suggest a mediatory role of AR in ocular neovascularization generally implicated in retinopathy and AMD.  相似文献   

8.
Endothelial cells (ECs) are the critical cellular element responsible for postnatal angiogenesis. Since the calcium channel blocker (CCB) nifedipine indirectly upregulates endothelial superoxide dismutase expression by stimulating the production of vascular endothelial growth factor (VEGF) from smooth muscle cells (SMCs), we examined whether nifedipine would induce human coronary artery endothelial cell (HCEC) tube formation via an increase in VEGF production from human coronary artery SMCs (HCSMCs) in an in vitro model. Nifedipine stimulated VEGF production from HCSMCs, and this stimulation was abolished by protein kinase C (PKC) inhibitors and a bradykinin B2 receptor antagonist. In addition, supernatant derived from nifedipine-treated HCSMCs induced HCEC tube formation. This tube formation was inhibited by pretreatment with a specific inhibitor of kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1) tyrosine kinase and an inhibitor of nitric oxide (NO) synthase. In conclusion, nifedipine increases VEGF secretion through PKC activation via the B2 receptor. The VEGF secretion directly induces HCEC tube formation via the KDR/Flk-1/NO pathway. CCBs may thus have novel beneficial effects in improving coronary microvascular blood flow in addition to their main effect of reducing blood pressure.  相似文献   

9.
OBJECTIVE: Cyclooxygenase-2 (COX-2) is induced by hypoxic stimuli and is also involved in the process of angiogenesis. We previously demonstrated that vascular endothelial growth factor (VEGF) is one of the principal factors produced by hypoxic myocytes and is responsible for the induction of COX-2 expression in endothelial cells. Yet the signaling pathways by which VEGF modulates COX-2 gene expression are still less well defined. We therefore examined the regulation of VEGF-induced COX-2 expression by the mitogen-activated protein kinase (MAPK) family in endothelial cells. METHODS AND RESULTS: Human umbilical vascular endothelial cells (HUVECs) were incubated with U0126 (ERK1/2 inhibitor, 10 microM), SB203580 (p38 inhibitor, 20 microM), and SP600125 (JNK inhibitor, 20 microM), as well as the COX-2 selective inhibitor, NS398, for 1 h before treating with VEGF (20 ng/ml). COX-2 expression induced by VEGF at both mRNA and protein levels was significantly inhibited by selective p38 and JNK inhibitors but not by the ERK1/2 inhibitor. The phosphorylation of p38 and JNK kinases was observed as early as 5 min in HUVECs after VEGF stimulation. Furthermore, the biological significance of the COX-2 gene in endothelial cells was examined by over-expressing or knocking down COX-2 gene expression. (3)H-Thymidine incorporation and Matrigel techniques were used to determine cell proliferation and vascular structure formation. VEGF-induced cell proliferation was significantly reduced when HUVECs were either pre-treated with NS398 (21.52+/-3.6%) or transfected with COX-2 siRNA (34.12+/-5.81%). In contrast, in HUVECs with over-expression of COX-2, VEGF-induced cell proliferation was increased 42.56+/-7.69%. Moreover, the formation of vascular structure assayed by Matrigel demonstrated that VEGF-induced vascular structure formation was accelerated in COX-2 over-expressing cells but attenuated in COX-2 siRNA-transfected cells. CONCLUSION: COX-2 plays an important role in VEGF-induced angiogenesis via p38 and JNK kinase activation pathways. These findings suggest that the cardioprotective role of COX-2 may be, at least in part, through its angiogenic activity.  相似文献   

10.
Angiogenesis plays a critical role in wound repair. Endothelial cells present CXC receptor 3 (CXCR3) for chemokines expressed late in wound regeneration. To understand the physiological role CXCR3 plays in regulating endothelial function, we analyzed the ability of a CXCR3 ligand, IP-10 (CXCL10), to influence endothelial cell tube formation. Treatment of endothelial cells with IP-10 in the presence of vascular endothelial growth factor (VEGF) inhibited tube formation on growth factor-reduced Matrigel and in a subcutaneous Matrigel plug. Furthermore, IP-10 significantly inhibited VEGF-induced endothelial motility, a response critical for angiogenesis. Previous work showed that CXCR3 ligandation initiates protein kinase A (PKA) phosphorylation-dependent inhibition of m-calpain, required for induced cell motility, in fibroblasts but not epithelial cells. Here we show that CXCR3 activation in endothelial cells induces an increase in cAMP and PKA activation. Treatment of endothelial cells with Rp-8-Br-cAMP, an inhibitor of PKA, or small interference RNA to PKA was able to reverse the inhibitory effects of IP-10 on VEGF-mediated tube formation and motility. Importantly, treatment of endothelial cells with VEGF induced the activation of m-calpain, but costimulation with IP-10 significantly decreased this activity. Using Rp-8-Br-cAMP, we show blocking PKA reversed the IP-10 inhibition of VEGF-induced m-calpain activity. These data indicate that the activation of CXCR3 inhibits endothelial tube formation through a PKA mediated inhibition of m-calpain. This provides a means by which late wound repair signals limit the angiogenesis driven early in the wound response process.  相似文献   

11.
Vascular endothelial growth factor (VEGF) binding induces phosphorylation of VEGF receptor (VEGFR)2 in tyrosine, which is followed by disruption of VE-cadherin-mediated cell-cell contacts of endothelial cells (ECs), thereby stimulating EC proliferation and migration to promote angiogenesis. Tyrosine phosphorylation events are controlled by the balance of activation of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Little is known about the role of endogenous PTPs in VEGF signaling in ECs. In this study, we found that PTP1B expression and activity are markedly increased in mice hindlimb ischemia model of angiogenesis. In ECs, overexpression of PTP1B, but not catalytically inactive mutant PTP1B-C/S, inhibits VEGF-induced phosphorylation of VEGFR2 and extracellular signal-regulated kinase 1/2, as well as EC proliferation, whereas knockdown of PTP1B by small interfering RNA enhances these responses, suggesting that PTP1B negatively regulates VEGFR2 signaling in ECs. VEGF-induced p38 mitogen-activated protein kinase phosphorylation and EC migration are not affected by PTP1B overexpression or knockdown. In vivo dephosphorylation and cotransfection assays reveal that PTP1B binds to VEGFR2 cytoplasmic domain in vivo and directly dephosphorylates activated VEGFR2 immunoprecipitates from human umbilical vein endothelial cells. Overexpression of PTP1B stabilizes VE-cadherin-mediated cell-cell adhesions by reducing VE-cadherin tyrosine phosphorylation, whereas PTP1B small interfering RNA causes opposite effects with increasing endothelial permeability, as measured by transendothelial electric resistance. In summary, PTP1B negatively regulates VEGFR2 receptor activation via binding to the VEGFR2, as well as stabilizes cell-cell adhesions through reducing tyrosine phosphorylation of VE-cadherin. Induction of PTP1B by hindlimb ischemia may represent an important counterregulatory mechanism that blunts overactivation of VEGFR2 during angiogenesis in vivo.  相似文献   

12.
Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [l-N(6)-(1-iminoethyl) lysine, l-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) > or = WT with l-NIL or iNOS(-/-) > eNOS(-/-) > or = eNOS(-/-) with l-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS- and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS(-/-) mice but not in eNOS(-/-) mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.  相似文献   

13.
Ito TK  Ishii G  Saito S  Yano K  Hoshino A  Suzuki T  Ochiai A 《Blood》2009,113(10):2363-2369
Vascular endothelial growth factor (VEGF) signaling in endothelial cells serves a critical role in physiologic and pathologic angiogenesis. Endothelial cells secrete soluble VEGF receptor-1 (sVEGFR-1/sFlt-1), an endogenous VEGF inhibitor that sequesters VEGF and blocks its access to VEGF receptors. This raises the question of how VEGF passes through this endogenous VEGF trap to reach its membrane receptors on endothelial cells, a step required for VEGF-driven angiogenesis. Here, we show that matrix metalloproteinase-7 (MMP-7) degrades human sVEGFR-1, which increases VEGF bioavailability around the endothelial cells. Using a tube formation assay, migration assay, and coimmunoprecipitation assay with human umbilical vein endothelial cells (HUVECs), we show that the degradation of sVEGFR-1 by MMP-7 liberates the VEGF(165) isoform from sVEGFR-1. The presence of MMP-7 abrogates the inhibitory effect of sVEGFR-1 on VEGF-induced phosphorylation of VEGF receptor-2 on HUVECs. These data suggest that VEGF escapes the sequestration by endothelial sVEGFR-1 and promotes angiogenesis in the presence of MMP-7.  相似文献   

14.
15.
Aquaporin 1 (AQP1) was first purified from red blood cell membranes and is now known to be an osmolarity-driven water transporter that is widely expressed in many epithelial and endothelial cells outside the brain. Several recent studies have shown strong expression of AQP1 in proliferating tumor microvessels, suggesting that AQP1 may have an important role in tumor angiogenesis. Hypoxia is thought to be a common precursor to neovascularization in many retinal diseases, including diabetic retinopathy, and therefore we analyzed the expression pattern and function of AQP1 in human retinal vascular endothelial cells cultured under hypoxic conditions. The levels of AQP1 mRNA and protein expression significantly increased under hypoxia, and inhibition of VEGF signaling did not affect AQP1 expression. To examine the effect of AQP1 on hypoxia-inducible angiogenesis, a tube formation assay was performed. Reduction of AQP1 expression using siRNA and inhibition of VEGF signaling both significantly inhibited tube formation, and these effects were additive. Therefore, our data suggest that AQP1 is involved in hypoxia-inducible angiogenesis in retinal vascular endothelial cells through a mechanism that is independent of the VEGF signaling pathway.  相似文献   

16.
VEGF receptor-2 plays a critical role in endothelial cell proliferation during angiogenesis. However, regulation of receptor activity remains incompletely explained. Here, we demonstrate that VEGF stimulates microvascular endothelial cell proliferation in a dose-dependent manner with VEGF-induced proliferation being greatest at 5 and 100 ng/ml and significantly reduced at intermediate concentrations (>50% at 20 ng/ml). Neutralization studies confirmed that signaling occurs via VEGFR-2. In a similar fashion, ERK/MAPK is strongly activated in response to VEGF stimulation as demonstrated by its phosphorylation, but with a decrease in phosphoryation at 20 ng/ml VEGF. Immunoblotting analysis revealed that VEGF did not cause a dose-dependent change in expression of VEGFR-2 but instead resulted in reduced phosphorylation of VEGFR-2 when cells were exposed to 10 and 20 ng/ml of VEGF. VEGFR-2 dephosphorylation was associated with an increase in the protein tyrosine phosphatase, SH-PTP1, and endothelial nitric oxide synthase (eNOS). Immunoprecipitation and selective immunoblotting confirmed the association between VEGFR-2 dephosphorylation and the upregulation of SH-PTP1 and eNOS. Transfection of endothelial cells with antisense oligonucleotide against VEGFR-2 completely abolished VEGF-induced proliferation, whereas anti SH-PTP1 dramatically increased VEGF-induced proliferation by 1 and 5-fold at 10 and 200 ng/ml VEGF, respectively. Suppression of eNOS expression only abolished endothelial cell proliferation at VEGF concentrations above 20 ng/ml. Taken together, these results indicate that activation of VEGFR-2 by VEGF enhances SH-PTP1 activity and eNOS expression, which in turn lead to two diverse events: one is that SH-PTP1 dephosphorylates VEGFR-2 and ERK/MAPK, which weaken VEGF mitogenic activity, and the other is that eNOS increases nitric oxide production which in turn lowers SH-PTP1 activity via S-nitrosylation.  相似文献   

17.
OBJECTIVES: Reduced capillary density occurs early in cardiovascular diseases. Oxidant stress is implicated in endothelial apoptosis. We investigated the effects of xanthine oxidase (XO) on endothelial survival signaling: protein kinase B/Akt, its cross-talk with p38 MAPK and apoptosis pathways, and its effect on vascular tube formation in vascular endothelial growth factor (VEGF)-simulated human umbilical vein cells. METHODS: We studied primary cultured human endothelial cells from the umbilical cord. Reactive oxygen species (ROS) production was detected by dihydroethidium staining, cell-signaling pathways by western blots, cell survival by western blots, and nuclear chromatin and angiogenesis response by MTT proliferation assay and three-dimensional Matrigel cultures. RESULTS: Exogenous XO increased cellular ROS production and caused superoxide-dependent inhibition of Akt phosphorylation and enhancement of p38 MAPK phosphorylation in a time-and dose-dependent manner. In contrast, application of the XO inhibitor oxypurinol or allopurinol inhibited VEGF-stimulated Akt phosphorylation, indicating that endogenous XO promotes VEGF-induced endothelial cell (EC) survival signaling. Exogenous XO induced activation of caspase-3 and reduced expression of the anti-apoptosis protein Bcl-2. Exogenous XO also reduced EC viability, proliferation, and vascular tube formation by p38 MAPK-dependent, phosphoinositide 3-kinase (PI3-K) reversible mechanisms; whereas VEGF promoted EC survival by PI3-K-dependent, p38 MAPK-independent effects. CONCLUSIONS: Exogenous XO activity is an important contributor to endothelial mechanisms for microvascular rarefaction, by modulation of cell survival signaling pathways; however, endogenous XO is necessary for maintaining EC survival.  相似文献   

18.
Sprouting and invasive migration of endothelial cells are important steps of the angiogenic cascade. Vascular endothelial growth factor (VEGF) induces angiogenesis by activating intracellular signal transduction cascades, which regulate endothelial cell morphology and function. BTB-kelch proteins are intracellular proteins that control cellular architecture and cellular functions. The BTB-kelch protein KLEIP has been characterized as an actin-binding protein that interacts with the nucleotide exchange factor ECT2. We report that KLEIP is preferentially expressed in endothelial cells, suggesting that it may play a critical role in controlling the functions of migrating, proliferating, and invading endothelial cells during angiogenesis. KLEIP mRNA level in endothelial cells is strongly regulated by hypoxia which is controlled by hypoxia-inducible factor-1alpha. Functional analysis of KLEIP in endothelial cells revealed that it acts as an essential downstream regulator of VEGF- and basic fibroblast growth factor-induced migration and in-gel sprouting angiogenesis. Yet, it is not involved in controlling VEGF- or basic fibroblast growth factor-mediated proliferative responses. The depletion of KLEIP in endothelial cells blunted the VEGF-induced activation of the monomeric GTPase RhoA but did not alter the VEGF-stimulated activation of extracellular signal-regulated kinase 1/2. Moreover, VEGF induced a physical association of KLEIP with the guanine nucleotide-exchange factor ECT2, the depletion of which also blunted VEGF-induced sprouting. We conclude that the BTB-kelch protein KLEIP is a novel regulator of endothelial function during angiogenesis that controls the VEGF-induced activation of Rho GTPases.  相似文献   

19.
AIMS: Protein kinase C (PKC) plays an important role in the regulation of angiogenesis. However, downstream targets of PKC in endothelial cells are poorly defined. METHODS AND RESULTS: mRNA expression of vascular endothelial growth factor (VEGF) was analysed by quantitative real-time RT-PCR in human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells. siRNA was used to knockdown PKC isoforms and VEGF. Matrigel tube formation assay was used to analyse the angiogenic activity of endothelial cells. Phorbol-12-myristate-13-acetate (PMA) enhanced the ability of HUVEC to organize into tubular networks when plated on Matrigel, a phenomenon that could be prevented by PKC inhibitors. PMA markedly increased the expression of VEGF in HUVEC and EA.hy 926 cells. The enhancement in VEGF expression was prevented by PKC inhibitors and by an inhibitor of the Erk1/2 pathway. PMA-induced tube formation was reduced by inhibition of the VEGF receptor kinase, or by VEGF knockdown. PMA led to an activation of PKC isoforms alpha, delta and epsilon in HUVEC. Knockdown of PKC alpha diminished PMA-induced VEGF expression and angiogenesis. Also endothelial progenitor cells isolated from human peripheral blood showed enhanced VEGF expression and improved angiogenic activity in response to PKC activation. Moreover, incubation of HUVEC with VEGF led to PKC alpha activation and PKC-dependent VEGF upregulation. CONCLUSIONS: PKC alpha activation promotes angiogenic activity of human endothelial cells. This is likely to be largely mediated by induction of VEGF. VEGF enhances its own expression via a PKC alpha-dependent positive feedback mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号