首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine the effect of promegakaryocytopoietic murine hormone prolactin-like protein E (PLP-E) on human megakaryocytopoiesis. Human bone marrow CD34+ cells, cultured in serum-free medium with combinations of thrombopoietin (TPO), stem cell factor (SCF), Flt-3 ligand (Flt-3L), and PLP-E, were analyzed via microscopy, flow cytometry, and clonogenic assay. Unlike the situation with mouse cells, PLP-E alone did not promote human megakaryocyte (MK) differentiation, but instead synergizes with TPO to increase colony-forming unit megakaryocyte (CFU-MK), burst-forming unit erythroid (BFU-E), and and colony-forming unit granulocyte erythroid macrophage mixed (CFU-GEMM) expansion, as well as total MK production. These effects can be attributed to an increase in colony frequency, combined with a significantly greater total cell expansion induced by adding PLP-E along with TPO. The number of cells in each CFU-MK colony is an indication of the maturity of the progenitor population, with larger colonies deriving from a more immature progenitor cell. PLP-E significantly expanded immature, intermediate, and mature CFU-MK subsets at 3 days of culture, as well as the intermediate and mature subsets at day 6. PLP-E combined with TPO induced significant expansion of all CFU-MK subsets at all time points. PLP-E further increased the effect of SCF and Flt-3L on TPO-induced total cell and CFU-MK expansion.PLP-E may act as a survival factor for primitive human megakaryocytic and erythroid progenitors. It appears to preserve the highly proliferative immature fraction of the progenitor compartment but by itself does not promote total cell proliferation or human MK production. PLP-E may prove useful in combination with TPO and other cytokines for ex vivo expansion of hematopoietic progenitors to be used in a clinical setting.  相似文献   

2.
BACKGROUND AND OBJECTIVE: Thrombopoietin (TPO), the ligand for the c-mpl receptor, regulates in vivo platelet production and increases the number of colony-forming unit megakaryocytes (CFU-MK). Other cytokines including interleukin (IL) -3, IL-6, IL-11 and stem cell factor (SCF) can stimulate megakaryopoiesis. The aim of this study was to evaluate the effects of different combinations of cytokines involved in megakaryocytopoiesis on stroma-free liquid cultures of purified human CD34+ cells. DESIGN AND METHODS: Peripheral blood cells were collected after mobilization with granulocyte colony-stimulating factor (G-CSF). Purified CD34+ cells were then cultured with different combinations of TPO, SCF, IL-3, IL-6 and IL-11. RESULTS: The addition of TPO and SCF alone generated a population positive for the antigens CD41 (5.5+/-2.9%) and CD61 (6. 1+/-2.2%) but induced a low amplification of cell number (8.1+/-0.9 fold expansion). The presence of IL-6 or IL-11 was associated with MK progenitor cell expansion, and up to 7-10% of cultured cells were found to be CD41 and CD61 positive by flow cytometry. Conversely, the addition of IL-3 to this cytokine combination was associated with a prominent expansion of the myeloid lineage (70+/-10% of CD33+ cells) but only 0.9% and 2% of cultured cells were positive for CD61 and CD41 respectively. INTERPRETATION AND CONCLUSIONS: Our study supports the idea that IL-6 and IL-11 play crucial roles in the proliferation of MK progenitors and the use of SCF, TPO, IL-6 and IL-11 for ex vivo expansion of this cell population.  相似文献   

3.
A human megakaryocyte cell line (B1647) has been established from bone marrow cells obtained from a patient with acute myelogenous leukaemia (FAB M2). The cells were CD34, CD33+, HLA-DR+, CD38+, and expressed the immunophenotypic markers of the megakaryocyte lineage (CD41 and von Willebrand factor). Moreover the cells expressed the c-mpl (thrombopoietin receptor) mRNA and protein. On the other hand, the B1647 cells also possessed erythroid lineage characteristics: the vast majority of cells were glycophorin positive, and about 10% of unstimulated cells stained with an anti-globin γ chain MoAb. In addition, S1 protection analysis demonstrated expression of β-globin mRNA, and Epo receptor (Epo-R) protein was detected by cytofluorimetric assay. Several growth factors, when tested alone or in combination, failed to influence the B1647 cell growth. A significant increase of cell proliferation was observed only after the addition, in serum-free culture, of recombinant human megakaryocyte growth development factor (MGDF), a recombinant c-mpl ligand encompassing the receptor-binding domain and identical to thrombopoietin (TPO), at concentrations ranging from 0.01 to 1 ng/ml. Interestingly, MGDF failed to induce megakaryocytic differentiation of the B1647 cells, but significantly increased the synthesis of the globin γ-chain.
B1647 cells could be a useful model for studying the biological effect of TPO on common megakaryocyte and erythroid progenitors.  相似文献   

4.
Infusion of ex vivo expanded megakaryocytic (MK) progenitor cells is a strategy for shortening the duration of thrombocytopenia after haematopoietic stem cell transplantation. The cell dose after expansion has emerged as a critical factor for achieving the desired clinical outcomes. This study aimed to establish efficient conditions for the expansion of the MK lineage from enriched CD34(+) cells of umbilical cord blood and to investigate the effect of platelet-derived growth factor (PDGF) in this system. Our results demonstrated that thrombopoietin (TPO) alone produced a high proportion of CD61(+)CD41(+) cells but a low total cell count and high cell death, resulting in an inferior expansion. The addition of interleukin-1 beta (IL-1 beta), Flt-3 ligand (Flt-3L) and to a lesser extent IL-3 improved the expansion outcome. The treatment groups with three to five cytokines produced efficient expansions of CFU-MK up to 400-fold with the highest yield observed in the presence of TPO, IL-1 beta, IL-3, IL-6 and Flt-3L. CD34(+) cells were expanded by five to 22-fold. PDGF improved the expansion of all cell types with CD61(+)CD41(+) cells, CFU-MK and CD34(+) cells increased by 101%, 134% and 70%, respectively. On day 14, the CD61(+) population consisted of diploid (86.5%), tetraploid (11.8%) and polyploid (8N--32N; 1.69%) cells. Their levels were not affected by PDGF. TPO, IL-1 beta, IL-3, IL-6, Flt-3L and PDGF represented an effective cytokine combination for expanding MK progenitors while maintaining a moderate increase of CD34(+) cells. This study showed, for the first time, that PDGF enhanced the ex vivo expansion of the MK lineage, without promoting their in vitro maturation. PDGF might be a suitable growth factor to improve the ex vivo expansion of MK progenitors for clinical applications.  相似文献   

5.
Dolzhanskiy  A; Basch  RS; Karpatkin  S 《Blood》1996,87(4):1353-1360
CD34 is expressed by essentially all human hematopoietic progenitors including cells of the megakaryocyte (MK) lineage. We have previously reported CD4 expression by some human MK (Blood 81:2,664, 1993). To study the role of maturation on CD4 expression by MK, we examined CD34+ bone marrow cells for their expression of CD41 (GPIIb-GPIIIa) and CD4 with specific monoclonal antibody (MoAb)-fluorochrome conjugates and for DNA polyploidization with propidium iodide or 7-aminoactinomycin D (7-AAD). Surprisingly, MK were at least 20-fold more common in the CD34+ progenitor pool (approximately 10%) than in the more mature CD34+ population (approximately 0.5%) of low density bone marrow cells. CD4 expression correlated with markers of immaturity in that CD4 was enriched among CD34+ cells, and the proportion of CD4+ MK declined with increasing ploidy. Almost all CD34+ polyploid ( > or = 8N) cells were CD4+. Despite these correlations with immaturity, CD34+CD4+ MK precursors were unable to produce MK colony-forming units (CFU-MK) when cultured under conditions that supported the growth of CFU-MK from CD34+CD4- MK lineage cells. MK became polyploid before the loss of either CD34 or CD4 expression. The presence of CD4 on these cells correlates with the onset of endomitotic reduplication and is associated with the loss of the ability of these cells to undergo normal mitotic division. The role of CD4 on immature MK as a differentiation antigen and/or receptor for the human immunodeficiency virus (HIV)-1 virus remains to be determined.  相似文献   

6.
CD4 expression is not limited to T cells and monocytes. In both mouse and man the antigen has been detected on some early haemopoietic progenitors and we have shown that some mature megakaryocytes (MK) express CD4, the surface molecule that serves as the high-affinity receptor for human immunodeficiency virus, type-1 (HIV-1). Using a serum-free culture system in which sorted CD34+ haemopoietic progenitors are cultured with thrombopoietin (TPO), IL-3, IL-6 and SCF, we now show that CD4 expression is induced in virtually all developing haemopoietic cells. This phenomenon was particularly striking in the MK lineage, where CD4 expression began whilst the cells were still CD34+ but after they expressed CD41 (GPIIb/IIIa). CD4 expression and endomitotic polyploidization occur at the same time in MK development. In culture, maximum CD4 expression occurred 4–6 d after CD41 expression and lasted for a few days. Expression of CD4 declined gradually thereafter and most MK were CD4 by the end of the culture period. The amount of CD4 on the surface of some MK, as measured by intensity of fluorescence staining, exceeded that of normal monocytes and approached the brightness of T cells. Appearance of the surface antigen correlated with the presence of mRNA for CD4, as measured by RT-PCR.  相似文献   

7.
Congenital amegakaryocytic thrombocytopenia (CAMT) is an uncommon disorder in newborns and infants, characterized by isolated thrombocytopenia and megakaryocytopenia in the first year without physical anomalies. The defect of thrombopoiesis is not well understood. Recently, thrombopoietin (TPO), the ligand for the c-mpl receptor, was cloned. Accumulating evidence from in vitro and in vivo studies indicate that TPO plays a key role in the regulation of megakaryocytopoiesis. In this study we examined the effect of TPO on megakaryocyte colony formation from a patient with CAMT using a plasma-containing methylcellulose clonal culture. The in vitro results demonstrated a defective response to TPO in megakaryocyte colony formation from bone marrow mononuclear cells (MNC) of the patient, although interleukin-3 (IL-3) but not stem cell factor (SCF) induced only a small number of megakaryocyte colonies. These findings indicated that thrombocytopenia in CAMT could not be corrected by administration of TPO in vitro. Additionally, clonal cultures containing SCF, IL-3, IL-6 and erythropoietin showed decreased numbers of erythroid and myelocytic progenitors in the bone marrow of the patient. The serum TPO level measured by enzyme-linked immunosorbent assay was significantly higher than that in healthy controls. By PCR, marrow MNC from healthy children and from a patient with essential thrombocytosis expressed c-mpl mRNA, whereas no c-mpl mRNA was detected in marrow MNC from the patient with CAMT. There was no difference in the CD34 expression and c-kit mRNA between the CAMT patient and healthy children. The results of this study suggest that the pathophysiology in CAMT may be a defective response to TPO in haemopoietic cells through impaired expression of c-mpl mRNA.  相似文献   

8.
9.
Although granulocyte colony-stimulating factor (G-CSF) has been reported to act on cells of neutrophilic lineage, the administration of G-CSF to induce the mobilization of various haematopoietic progenitors into the circulation. We analysed the expression of receptors for G-CSF (G-CSFR) on human bone marrow and G-CSF-mobilized peripheral blood CD34+ cells, and examined the proliferation and differentiation capabilities of sorted CD34+G-CSFR+ and CD34+G-CSFR- cells using methylcellulose clonal culture. Flow cytometric analysis showed that G-CSFR was expressed on 14.9 +/- 4.9% of bone marrow CD34+ cells, most of which were included in CD34+CD33+ and CD34+CD38+ cell fractions. In clonal cultures, CD34+G-CSFR+ cells produced only myeloid colonies, whereas CD34+G-CSFR- cells produced erythroid bursts, megakaryocyte and multilineage colonies. When incubated with the cytokine cocktail for 5 d, CD34+G-CSFR- cells generated CD34+G-CSFR+ myeloid progenitors. In G-CSF-mobilized peripheral blood, CD34+ cells contained 10.8 +/- 5.8% of G-CSFR+ cells, most of which were also myeloid progenitors, although CD34+G-CSFR- cells contained a substantial number of myeloid progenitors. These results indicated that the expression of G-CSFR on CD34+ cells is restricted to myeloid progenitors, suggesting that the specific activity of G-CSF on myelopoiesis depends on the exclusive expression of its receptor on myeloid progenitors, and that the mobilization of various haematopoietic progenitors is not a direct effect of G-CSF in humans.  相似文献   

10.
CD109 is a monomeric cell surface glycoprotein of 170 kD that is expressed on endothelial cells, activated but not resting T-lymphocytes, activated but not resting platelets, leukemic megakaryoblasts, and a subpopulation of bone marrow CD34+ cells. Observing an apparent association between CD109 expression and the megakaryocyte lineage (MK), we sought to determine whether CD109 was expressed on MK progenitors. In fetal bone marrow (FBM), a rich source of MK progenitors, CD109 is expressed on a mean of 11% of CD34- cells. Fluorescence activated cell sorting (FACS) of FBM CD34+ cells into CD109+ and CD109- fractions revealed that the CD34+CD109+ subset contained virtually all assayable MK progenitors, including the colony-forming unit-MK (CFU-MK) and the more primitive burst-forming unit-MK (BFU-MK). The CD34+CD109+ subset also contained all the assayable burst-forming units-erythroid (BFU-E), 90% of the colony-forming units-granulocyte/macrophage (CFU-GM), and all of the more primitive mixed lineage colony-forming units (CFU-mix). In contrast, phenotypic analysis of the CD34+CD109- cells in FBM, adult bone marrow (ABM) and cytokine-mobilized peripheral blood (MPB) demonstrated that this subset comprises lymphoid-committed progenitors, predominantly of the B-cell lineage. CD109 was expressed on the brightest CD34 cells identifiable not only in FBM, but also in ABM and MPB indicating that the most primitive, candidate hematopoietic stem cells (HSC) might also be contained in the CD109+ subset. In long-term marrow cultures of FBM CD34+ cells, all assayable cobblestone area forming cell (CAFC) activity was contained within the CD109+ cell subset. Further phenotypic analysis of the CD34+CD109+ fraction in ABM indicated that this subset included candidate HSCs that stain poorly with CD38, but express Thy-1 (CD90) and AC133 antigens, and efflux the mitochondrial dye Rhodamine 123 (Rho123). When selected CD34+ cells were sorted for CD109 expression and Rho123 staining, virtually all CAFC activity was found in the CD109+ fraction that stained most poorly with Rho123. CD34+ cells were also sorted into Thy-1 CD109+ and Thy-1 CD109+ fractions and virtually all the CAFC activity was found in the Thy-1+CD109+ subset. In contrast, the Thy-1-CD109+ fraction contained most of the short-term colony-forming cell (CFC) activity. CD109, therefore, is an antigen expressed on a subset of CD34+ cells that includes pluripotent HSCs as well as all classes of MK and myelo-erythroid progenitors. In combination with Thy-1, CD109 can be used to identify and separate myelo-erythroid and all classes of MK progenitors from candidate HSCs.  相似文献   

11.
The glycoprotein (Gp) IIb/IIIa integrin, also called CD41, is the platelet receptor for fibrinogen and several other extracellular matrix molecules. Recent evidence suggests that its expression is much wider in the hematopoietic system than was previously thought. To investigate the precise expression of the CD41 antigen during megakaryocyte (MK) differentiation, CD34(+) cells from cord blood and mobilized blood cells from adults were grown for 6 days in the presence of stem cell factor and thrombopoietin. Two different pathways of differentiation were observed: one in the adult and one in the neonate cells. In the neonate samples, early MK differentiation proceeded from CD34(+)CD41(-) through a CD34(-)CD41(+)CD42(-) stage of differentiation to more mature cells. In contrast, in the adult samples, CD41 and CD42 were co-expressed on a CD34(+) cell. The rare CD34(+)CD41(+)CD42(-) cell subset in neonates was not committed to MK differentiation but contained cells with all myeloid and lymphoid potentialities along with long-term culture initiating cells (LTC-ICs) and nonobese diabetic/severe combined immune-deficient repopulating cells. In the adult samples, the CD34(+)CD41(+)CD42(-) subset was enriched in MK progenitors, but also contained erythroid progenitors, rare myeloid progenitors, and some LTC-ICs. All together, these results demonstrate that the CD41 antigen is expressed at a low level on primitive hematopoietic cells with a myeloid and lymphoid potential and that its expression is ontogenically regulated, leading to marked differences in the surface antigenic properties of differentiating megakaryocytic cells from neonates and adults. (Blood. 2001;97:2023-2030)  相似文献   

12.
We examined the effects of recombinant human thrombopoietin (TPO, c-Mpl ligand) on the proliferation and differentiation of human haemopoietic progenitors other than megakaryocytic progenitors using serum-free cultures. TPO alone supported the generation of not only megakaryocytic (MK) but also blast cell (blast) colonies from cord blood CD34+ cells. Delayed addition of a cytokine cocktail (cytokines; interleukin (IL)-3, IL-6, stem cell factor, erythropoietin, granulocyte-macrophage colony-stimulating factor, and TPO) to cultures with TPO alone on day 7 induced various colonies including granulocyte-macrophage (GM) colonies, erythroid bursts (E), granulocyte-erythrocyte-macrophage-megakaryocyte (GEMM) colonies. Replating experiments of blast colonies supported by TPO alone for culture with cytokines revealed that approximately 60% of the blast colonies contained various haemopoietic progenitors. Single cell cultures of clone-sorted CD34+ cells indicated that TPO supported the early proliferation and/or survival of both primitive and committed haemopoietic progenitors. In serum-free suspension cultures, TPO alone significantly stimulated the production of progenitors for MK, GM, E and GEMM colonies as well as long-term culture-initiating cells. These effects were completely abrogated by anti-TPO antibody. These results suggest that TPO is an important cytokine in the early proliferation of human primitive as well as committed haemopoietic progenitors, and in the ex vivo manipulation of human haemopoietic progenitors.  相似文献   

13.
Thrombocytopenia is typically observed in patients undergoing cord blood transplantation. We hypothesized that delayed recovery of the platelet count might be caused by defects in the megakaryocytic differentiation pathway of cord blood progenitors. To test this hypothesis, we compared the features of in vitro megakaryocytopoiesis between cord blood progenitors and those in bone marrow cells after isolation of CD34+ cells as progenitors. The proliferative responses of the progenitors in cord blood are higher than those in bone marrow cells in the presence of interleukin (IL)-3, stem cell factor (SCF) and thrombopoietin (TPO). However, the ability to generate mature megakaryocytes was higher in bone marrow progenitors than in cord blood in the same in vitro culture system, when examined by the expression of CD41, polyploidy and proplatelet formation. Furthermore, an earlier induction of c-mpl protein, a receptor for TPO, was observed in the progenitors from bone marrow than in those from cord blood in the presence of SCF and IL-3. Therefore, the ability to generate mature megakaryocytes in bone marrow progenitors is superior to that in cord blood, and the delayed engraftment of platelets after cord blood transplantation might be attributed to the features of cord blood megakaryocyte progenitors.  相似文献   

14.
Endoreplication and maturation of the megakaryocyte (MK) may be retarded or delayed during ontogenesis. In this study, CD34+ cells were isolated from both human fetal liver and adult bone marrow and incubated with thrombopoietin (TPO). The cell number, morphological characteristics, platelet-associated antigen phenotype, maturation stage and DNA ploidy of CD41+ cells were examined from day 0 to day 12 in culture. 1) TPO stimulated the proliferation of fetal liver (FL)-derived CD34+ cells with a mean 73.14-fold increase of CD41+ cells after 12 d in culture. Adult BM-derived CD34+ cells increased only slightly, with a mean 8.18-fold increase of CD41+ cells. 2) Although the membrane phenotype of both FL CD34+-derived MKs and BM CD34+ -derived MKs analyzed with CD41a, CD42a, CD61 and CD34 were similar, all FL CD34+-derived MKs were in maturation stage I and II and in low ploidy (<4N) class. By comparison, BM CD34+ MKs possessed 15% MKs in maturation stage III and IV and with 23% MKs in high ploidy class ( > 4N). 3) Most of cultured FL-derived CD34+ cells did not have a well developed demarcation system (DM) and numerous alpha-granules after 12 d incubation. von Willebrand factor (vWF) appeared earlier on the cultured BM-derived CD34+ cells than on FL-derived CD34+ cells. 4) The expression of both cyclin E and cyclin B1 progressively increased in FL CD34+ cells induced by TPO during 12 d in culture. 5) The expression of cyclin D1 gradually decreased in FL CD34+ cells induced by TPO over 12 d incubation. 6) Immunocytochemical analysis showed that cyclin D3 was detected only in cytoplasm of cultured FL-derived CD34+ cells, whereas in both cytoplasm and nuclei of cultured BM-derived CD34+ cells. These data suggest that FL-derived CD34+ cells contain a high proportion of immature megakaryocytic progenitor cells. It further suggests that TPO can push these progenitor cells into proliferation by upregulating the expression of cyclins B1 and E, and drive a high proportion of cells into megakaryocytic lineage.  相似文献   

15.
Thrombopoietin (TPO), the primary regulator of megakaryocytopoiesis, plays important roles in early haematopoiesis. Previously, we have demonstrated that TPO induces a characteristic pattern of apoptosis during ex vivo expansion of cord blood (CB) CD34+ cells. In this study, we have demonstrated that the TPO-induced apoptotic cells belong to the megakaryocytic (MK) lineage and that initially expanding MK progenitors declined along with the appearance of TPO-induced apoptosis. Human CB CD34+ cells were expanded in serum-free conditions with TPO. Multidimensional flow cytometry using simultaneous measurement of apoptosis and immunophenotyping showed that the TPO-induced apoptotic cells appeared in CD61+ fractions. Immunocytochemical analysis of the fluorescent activated cell-sorted fractions showed that the apoptosis-associated CD44low fraction expressed CD61. Clonogenic assay revealed 7.4 +/- 0.50-fold increase of total megakaryocyte colony-forming units (CFU-MKs) during the initial 9 d. Thereafter, the number of CFU-MKs decreased in parallel with the increase of apoptosis. When the MK colonies were subdivided according to size, the proportion of large colonies progressively decreased, while that of medium and small colonies increased. In particular, from d 6 small colonies became predominant. These results suggested that the MK progenitors matured as they expanded during ex vivo expansion with TPO and then proceeded to apoptosis.  相似文献   

16.
Paulus JM  Debili N  Larbret F  Levin J  Vainchenker W 《Blood》2004,104(8):2291-2298
To assess the variation of thrombopoietin (TPO) responsiveness associated with megakaryocyte (MK) progenitor amplification, TPO dose-response curves were obtained for normal human, single-cell plated CD34(+)CD41(+) cells. The number of MKs per well was determined in situ and expressed as number of doublings (NbD). Dose-response curves of the mean frequency of clones of each size versus log TPO concentration showed highly significant differences in the TPO concentration needed for half-maximum generation of clones of different sizes (TPO(50)): 1.89 +/- 0.51 pg/mL for 1 MK clones; 7.75 +/- 0.81 pg/mL for 2 to 3 MK clones; 38.5 +/- 5.04 pg/mL for 4 to 7 MK clones, and 91.8 +/- 16.0 pg/mL for 8 to 15 MK clones. These results were consistent with a prediction of the generation-age model, because the number of previous doublings in vivo was inversely correlated with the number of residual doublings in vitro. TPO responsiveness decreased in vitro by a factor of 3.5 per doubling, reflecting the recruitment of progressively more ancestral progenitors. In support of this hypothesis, the more mature CD34(+)CD41(+)CD42(+) cell fraction had a lower TPO(50) (P < .001), underwent fewer NbD (P < .001), and expressed a 2.8-fold greater median Mpl receptor density (P < .001) than the CD34(+)CD41(+)CD42(-) fraction. Progenitors that have completed their proliferative program have maximum factor responsiveness and are preferentially induced to terminal differentiation.  相似文献   

17.
Stromal cell-derived factor-1 (SDF-1) is a CXC chemokine that acts as a stimulator of pre-B lymphocyte cell growth and as a chemoattractant for T cells, monocytes, and hematopoietic stem cells. More recent studies also suggest that megakaryocytes migrate in response to SDF-1. Because genetic elimination of SDF-1 or its receptor lead to marrow aplasia, we investigated the effect of SDF-1 on megakaryocyte progenitors (colony-forming units-megakaryocyte [CFU-MK]). We report that SDF-1 augments the growth of CFU-MK from whole murine bone marrow cells when combined with thrombopoietin (TPO). The addition of SDF-1 to interleukin-3 (IL-3) or stem cell factor (SCF) had no effect. Specific antagonists for CXCR4 (the sole receptor for SDF-1), T22, and 1-9 (P2G) SDF-1 reduced megakaryocyte colony growth induced by TPO alone, suggesting that many culture systems contain endogenous levels of the chemokine that contributes to the TPO effect. To examine whether SDF-1 has direct effects on CFU-MK, we developed a new protocol to purify megakaryocyte progenitors. CFU-MK were highly enriched in CD41(high) c-kit(high) cells generated from lineage-depleted TPO-primed marrow cells. Because the growth-promoting effects of SDF-1 were also observed when highly purified populations of CFU-MK were tested in serum-free cultures, these results suggest that SDF-1 directly promotes the proliferation of megakaryocytic progenitors in the presence of TPO, and in this way contributes to the favorable effects of the bone marrow microenvironment on megakaryocyte development.  相似文献   

18.
Thrombopoietin (TPO), the ligand for the c-mpl receptor, has been shown to be the major regulator of platelet production. Mice deficient in either c-mpl or TPO generated by homologous recombination show a dramatic decrease in platelet counts, but other blood cell counts are normal. Because TPO treatment of myelosuppressed mice not only enhances the recovery of platelets but also accelerates erythroid recovery, we investigated the levels of myeloid and erythroid progenitor cells in TPO-or c-mpl-deficient mice. Our results show that the number of megakaryocyte, granulocyte-macrophage, erythroid, and multilineage progenitors are significantly reduced in the bone marrow, spleen, and peripheral blood of either TPO-or c-mpl-deficient mice. Administration of recombinant murine TPO to TPO-deficient mice and control littermate mice significantly increased the absolute number of myeloid, erythroid, and mixed progenitors in bone marrow and spleen. This increase was especially apparent in TPO-deficient mice where numbers were increased to a level greater than in diluent-treated control mice and approached or equaled that in the TPO-treated control mice. Moreover, TPO- administration greatly increased the number of circulating progenitors as well as platelets in both TPO-deficient and control mice. Furthermore, the megakaryocytopoietic activity of other cytokines in the absence of a functional TPO or c-mpl gene was shown both in vitro and in vivo.  相似文献   

19.
Young  JC; Bruno  E; Luens  KM; Wu  S; Backer  M; Murray  LJ 《Blood》1996,88(5):1619-1631
Thrombopoietin (TPO) or MpI ligand is known to stimulate megakaryocyte (MK) proliferation and differentiation. To identify the earliest human hematopoietic cells on which TPO acts, we cultured single CD34+Thy- 1+Lin- adult bone marrow cells in the presence of TPO alone, with TPO and interleukin-3 (IL-3), or with TPO and c-kit ligand (KL) in the presence of a murine stromal cell line (Sys1). Two distinct growth morphologies were observed: expansion of up to 200 blast cells with subsequent differentiation to large refractile CD41b+ MKs within 3 weeks or expansion to 200-10,000 blast cells, up to 25% of which expressed CD34. The latter blast cell expansions occurred over a 3- to 6-week period without obvious MK differentiation. Morphological staining, analysis of surface marker expression, and colony formation analysis revealed that these populations consisted predominantly of cells committed to the myelomonocytic lineage. The addition of IL-3 to TPO-containing cultures increased the extent of proliferation of single cells, whereas addition of KL increased the percentage of CD34+ cells among the expanding cell populations. Production of multiple colony- forming unit-MK from single CD34+Thy-1+Lin- cells in the presence of TPO was also demonstrated. In limiting dilution assays of CD34+Lin- cells, TPO was found to increase the size and frequency of cobblestone areas at 4 weeks in stromal cultures in the presence of leukemia inhibitory factor and IL-6. In stroma-free cultures, TPO activated a quiescent CD34+Lin-Rhodamine 123lo subset of primitive hematopoietic progenitor cells into cycle, without loss of CD34 expression. These data demonstrate that TPO acts directly on and supports division of cells more primitive than those committed to the MK lineage.  相似文献   

20.
The MPL (W515L and W515K) mutations have been detected in granulocytes of patients suffering from certain types of primitive myelofibrosis (PMF). It is still unknown whether this molecular event is also present in lymphoid cells and therefore potentially at the hematopoietic stem cell (HSC) level. Toward this goal, we conducted MPL genotyping of mature myeloid and lymphoid cells and of lymphoid/myeloid progenitors isolated from PMF patients carrying the W515 mutations. We detected both MPL mutations in granulocytes, monocytes, and platelets as well as natural killer (NK) cells but not in T cells. B/NK/myeloid and/or NK/myeloid CD34(+)CD38(-)-derived clones were found to carry the mutations. Long-term reconstitution of MPL W515 CD34(+) cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice was successful for as long as 12 weeks after transplantation, indicating that MPL W515 mutations were present in HSCs. Moreover, the 2 MPL mutations induced a spontaneous megakaryocytic growth in culture with an overall normal response to thrombopoietin (TPO). In contrast, erythroid progenitors remained EPO dependent. These results demonstrate that in PMF, the MPL W515L or K mutation induces a spontaneous megakaryocyte (MK) differentiation and occurs in a multipotent HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号