首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: Transporters in the plasma membrane have been exploited successfully for the delivery of drugs in the form of prodrugs and nanoparticles. Organic cation/carnitine transporter 2 (OCTN2, SLC22A5) has emerged as a viable target for drug delivery. OCTN2 is a Na+-dependent high-affinity transporter for L-carnitine and a Na+-independent transporter for organic cations. OCTN2 is expressed in the blood-brain barrier, heart, liver, kidney, intestinal tract and placenta and plays an essential role in L-carnitine homeostasis in the body.

Areas covered: In recent years, several studies have been reported in the literature describing the utility of OCTN2 to enhance the delivery of drugs, prodrugs and nanoparticles. Here we summarize the salient features of OCTN2 in terms of its role in the cellular uptake of its physiological substrate L-carnitine in physiological and pathological context; the structural requirements for recognition and the recent advances in OCTN2-targeted drug delivery systems, including prodrugs and nanoparticles, are discussed.

Expert opinion: This transporter has great potential to be utilized as a target for drug delivery to improve oral absorption of drugs in the intestinal tract. It also has potential to facilitate the transfer of drugs across the biological barriers such as the blood-brain barrier, blood-retinal barrier, and maternal-fetal barrier.  相似文献   


2.
Amino acid transporters,which play a vital role in transporting amino acids for the biosynthesis of mammalian cells,are highly expressed in types of tumors.Increasing studies have shown the feasibility of amino acid transporters as a component of tumortargeting therapy.In this review,we focus on tumor-related amino acid transporters and their potential use in tumor-targeting therapy.Firstly,the expression characteristics of amino acid transporters in cancer and their relationship with tumor growth are reviewed.Secondly,the recognition requirements are discussed,focusing on the“acidbase”properties,conformational isomerism and structural analogues.Finally,recent developments in amino acid transporter-targeting drug delivery strategies are highlighted,including prodrugs and nanocarriers,with special attention to the latest findings of molecular mechanisms and targeting efficiency of transporter-mediated endocytosis.We aim to offer related clues that might lead to valuable tumor-targeting strategies by the utilization of amino acid transporters.  相似文献   

3.
The intestinal epithelium is the main barrier to the oral delivery of poorly water-soluble drugs. Based on the specific transporters expressed on the apical membrane of the intestinal epithelium, novel polymer micelles targeting to the organic cation transporter 2 (OCTN2) were constructed by combining carnitine conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (Car-PEOz-PLA) with monomethoxy poly(ethylene glycol)-poly(D,L-lactide) (mPEG-PLA). The structure of the synthesized Car-PEOz-PLA was confirmed by 1H NMR, TLC and ammonium reineckate precipitation reaction, and the number-average molecular weight determined by GPC was 7260 g/mol with a low PDI of 1.44. Coumarin 6-loaded carnitine modified polymeric micelles prepared by film hydration method were characterized to have a nano-scaled size of about 31 nm in diameter, uniform spherical morphology, high drug loading content of 0.098%±0.03% and encapsulation efficiency of 92.67%±2.80%. Moreover, the carnitine-modified micelles exhibited the similar in vitro release behavior in SGF and SIF, and evidently enhanced intestinal absorption of poorly water-soluble agent. Therefore, the designed OCTN2-targeted micelles might have a promising potential for oral delivery of poorly water-soluble drugs.  相似文献   

4.
5.
While the oral exposure continues to be the major focus, the chemical space of recent drug discovery is apparently trending towards more hydrophilic libraries, due to toxicity and drug-interactions issues usually reported with lipophilic drugs. This trend may bring in challenges in optimizing the membrane permeability and thus the oral absorption of new chemical entities. It is now apparent that the influx transporters such as peptide transporter 1 (PepT1), organic-anion transporting polypeptides (OATPs), monocarboxylate transporters (MCT1) facilitate, while efflux pumps (e.g. P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)) limit oral absorption of drugs. This review will focus on intestinal transporters that may be targeted to achieve optimal clinical oral plasma exposure for hydrophilic and polar drugs. The structure, mechanism, structure-activity relationships and the clinical examples on the functional role of these transporters in the drug absorption was discussed. Physicochemical properties, lipophilicity and hydrogen-bonding ability, show good correlation with transport activity for efflux pumps. Although several attempts were made to describe the structural requirements based on pharmacophore modeling, lack of crystal structure of transporters impeded identification of definite properties for transporter affinity and favorable transport activity. Furthermore, very few substrate drug datasets are currently available for the influx transporters to derive any clear relationships. Unfortunately, gaps also exist in the translation of in vitro end points to the clinical relevance of the transporter(s) involved. However, it may be qualitatively generalized that targeting intestinal transporters are relevant for drugs with high solubility and/or low passive permeability i.e. a class of compounds identified as Class III and Class IV according to the Biopharmaceutic Classification System (BCS) and the Biopharmaceutic Drug Disposition Classification System (BDDCS). A careful considerations to oral dose based on the transporter clearance (V(max)/K(m)) capacity is needed in targeting a particular transporter. For example, low affinity and high capacity uptake transporters such as PEPT1 and MCT1 may be targeted for high oral dose drugs.  相似文献   

6.
Nucleoside analogues are widely used for the treatment of antiviral infections and anticancer chemotherapy. However, many nucleoside analogues suffer from poor oral bioavailability due to their high polarity and low intestinal permeability. In order to improve oral absorption of these polar drugs, prodrugs have been employed to increase lipophilicity by chemical modification of the parent. Alternatively, prodrugs targeting transporters present in the intestine have been exploited to facilitate the transport of the nucleoside analogues. Valacyclovir and valganciclovir are two successful valine ester prodrugs transported by the PepT1 transporter. Recently, research efforts have focused on design of prodrugs for tissue specific delivery to improve efficacy and safety. This review presents advances of prodrug approaches for improved oral absorption of nucleoside analogues and recent developments in tissue targeting.  相似文献   

7.
Transporters play important roles in tissue distribution and urinary- and biliary-excretion of drugs and transporter molecules involved in those processes have been elucidated well. Furthermore, an involvement of efflux transporters such as P-glycoproteins, multidrug resistance associated protein 2, and breast cancer resistance protein as the intestinal absorption barrier and/or intestinal luminal secretion mechanisms has been demonstrated. However, although there are many suggestions for the contribution of uptake/influx transporters in intestinal absorption of drugs, information on the transporter molecules responsible for the intestinal absorptive process is limited. Among them, most studied absorptive drug transporter is peptide transporter PEPT1. However, utilization of PEPT1 for oral delivery of drugs may not be high due to the chemical structural requirement of PEPT1 limited to peptide-mimetics. Recently, organic anion transporting polypeptide (OATP) family such as OATP1A2 and OATP2B1 has been suggested to mediate intestinal absorption of several drugs. Since OATPs exhibit species difference in expressed tissues and functional properties between human and animals, human studies are essential to clarify the intestinal absorption mechanisms of drugs via OATPs. Recent pharmacogenomic studies demonstrated that OATP2B1 is involved in the drug absorption in human. In addition, information of drug-juice interaction in the intestine also uncovered the contribution of OATP1A2 and OATP2B1 in drug absorption. Since OATP1A2 and OATP2B1 exhibit broader substrate selectivity compared with PEPT1, their potential to be applied for oral delivery should be high. In this review, current understanding of characteristics and contribution as the absorptive transporters of OATPs in small intestine in human is described. Now, it is getting clearer that OATPs have significant roles in intestinal absorption of drugs, therefore, there are higher possibility to utilize OATPs as the tools for oral delivery.  相似文献   

8.
To determine the transport mechanism of sulpiride in an in vitro model of the human intestine, we investigated the transepithelial transport of this agent in Caco-2 cells. The transepithelial transport and intracellular accumulation of sulpiride were measured using Caco-2 cell monolayers cultured on a permeable membrane. The transepithelial transport of sulpiride in Caco-2 cells showed temperature dependence, and the transport was enhanced at weakly acidic pH on the apical side. These results demonstrate that the transepithelial transport of sulpiride is carrier mediated. To identify the drug transporter species that take part in the transepithelial transport of sulpiride, we examined the effects with the addition and preloading with specific substrates and inhibitors of various drug transporters. The results obtained from these examinations indicated that the apical-to-basolateral transport of sulpiride is mediated by the peptide transporter PEPT1, organic cation transporters OCTN1 and OCTN2 on the apical membrane, and the basolateral peptide transporter on the basolateral membrane. The basolateral-to-apical transport is mediated by the basolateral peptide transporter and organic cation transporter OCT1 on the basolateral membrane and by P-glycoprotein on the apical membrane. A decrease in the absorption of sulpiride may occur in coadministration protocols involving PEPT1-, OCTN1-, and OCTN2-transported drugs. Coadministration using the P-glycoprotein-transported drugs, in contrast, may enhance the absorption of sulpiride.  相似文献   

9.
Nucleoside analogues are first line chemotherapy in various severe diseases: AIDS (acquired immunodeficiency disease syndrome), cytomegalovirus infections, cancer, etc. However, many nucleoside analogues exhibit poor oral bioavailability because of their high polarity and low intestinal permeability. In order to get around this drawback, prodrugs have been utilized to improve lipophilicity by chemical modification of the parent drug. Alternatively, prodrugs targeting transporters present in the intestine have been applied to promote the transport of the nucleoside analogues. Valacyclovir and valganciclovir are two classic valine ester prodrugs transported by oligopeptide transporter 1. The ideal prodrug achieves delivery of a parent drug by attaching a non-toxic moiety that is stable during transport, but is readily degraded to the parent drug once at the target. This article presents advances of prodrug approaches for enhancing oral absorption of nucleoside analogues.  相似文献   

10.
ABSTRACT

Introduction: Most anticancer drugs have poor aqueous solubility and low permeability across the gastrointestinal tract. Furthermore, extensive efflux by P-glycoproteins (P-gp) in the small intestine also limits the efficient delivery of anticancer drugs via oral route.

Area covered: This review explores the prodrug strategy for oral delivery of anticancer drugs. Different categories of oral anticancer prodrugs along with recent clinical studies have been comprehensively reviewed here. Furthermore, novel anticancer prodrugs such as polymer-prodrugs and lipid-prodrugs have been discussed in detail. Finally, various nanocarrier-based approaches employed for oral delivery of anticancer prodrugs have also been discussed.

Expert opinion: Premature degradation of anticancer prodrugs in the gastrointestinal tract could lead to variable pharmacokinetics and undesired toxicity. Despite their increased aqueous solubility, the oral bioavailability of several anticancer prodrugs are limited by their poor permeability across the gastrointestinal tract. These limitations can be overcome by the use of functional excipients (polymers, lipids, amino acids/dipeptides), which are specifically absorbed via transporters and receptor-mediated endocytosis. Oral delivery of anticancer prodrugs using nanocarrier-based drug delivery system is a recent development; however it should be justified based on the comparative advantages of encapsulating prodrug in a nanocarrier versus the use of anticancer prodrug molecule itself.  相似文献   

11.
It is well established that the expression and function of drug transporters at the blood-brain barrier are altered in Alzheimer's disease (AD). However, we recently demonstrated in a mouse model of AD that the expression of key drug transporters and metabolizing enzymes was modified in peripheral organs, such as the small intestine and liver, suggesting that systemic drug absorption may be altered in AD. The purpose of this study was to determine whether the expression of drug transporters in the kidneys differed between 8- to 9-month-old wild-type mice and APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a mouse model of familial AD, using a quantitative targeted absolute proteomics approach. The protein expression of the drug transporters—multidrug resistance-associated protein 2, organic anion transporter 3, and organic cation transporter 2—was upregulated 1.6-, 1.3-, and 1.4-fold, respectively, in kidneys from APP/PS1 mice relative to wild-type mice. These results suggest that in addition to modified oral absorption of certain drugs, it is possible that the renal excretion of drugs that are multidrug resistance-associated protein 2, organic anion transporter 3, and organic cation transporter 2 substrates could be altered in AD. These changes could affect the interpretation of studies conducted during drug development using this mouse model of AD and potentially impact dosage regimens of such drugs prescribed in this patient population.  相似文献   

12.
l-Carnitine, obligatory for oxidation of fatty acids, is transported into cells by the Na+-coupled transporter OCTN2 and the Na+/Cl-coupled transporter ATB0,+. Here we investigated the potential of L-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) to deliver chemotherapeutic drugs into cancer cells by targeting the nanoparticles to both OCTN2 and ATB0,+. The cellular uptake of LC-PLGA NPs in the breast cancer cell line MCF7 and the colon cancer cell line Caco-2 was increased compared to unmodified nanoparticles, but decreased in the absence of co-transporting ions (Na+ and/or Cl) or in the presence of competitive substrates for the two transporters. Studies with fluorescently labeled nanoparticles showed their colocalization with both OCTN2 and ATB0,+, confirming the involvement of both transporters in the cellular uptake of LC-PLGA NPs. As the expression levels of OCTN2 and ATB0,+ are higher in colon cancer cells than in normal colon cells, LC-PLGA NPs can be used to deliver chemotherapeutic drugs selectively into cancer cells for colon cancer therapy. With 5-fluorouracil-loaded LC-PLGA NPs, we were able to demonstrate significant increases in the uptake efficiency and cytotoxicity in colon cancer cells that were positive for OCTN2 and ATB0,+. In a 3D spheroid model of tumor growth, LC-PLGA NPs showed increased uptake and enhanced antitumor efficacy. These findings indicate that dual-targeting LC-PLGA NPs to OCTN2 and ATB0,+ has great potential to deliver chemotherapeutic drugs for colon cancer therapy.

Dual targeting LC-PLGA NPs to OCTN2 and ATB0,+ can selectively deliver chemotherapeutics to colon cancer cells where both transporters are overexpressed, preventing targeting to normal cells and thus avoiding off-target side effects.  相似文献   


13.
Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, which possess transport activity, have been identified. The transporters are not drug targets per se, but due to uniquely broad substrate specificity they have proven to be relevant in drug therapy at the level of drug transport. Therapeutic agents such as orally active β-lactam antibiotics, bestatin, prodrugs of acyclovir and gancyclovir have oral bioavailabilities, which are largely a result of their interaction with PepT1. The transporters have therefore received considerable attention in relation to drug delivery. The aim of the present review is to highlight structural requirements for binding to peptide transporters, as well as their role in drug delivery and in potential future drug design and targeted tissue delivery of peptides and peptidomimetics.  相似文献   

14.
From routine in vitro drug-transporter inhibition assays, observed inhibition is typically assumed from direct interaction with the transporter. Other mechanisms that possibly reduce substrate uptake are not frequently fully examined. The objective of this study was to investigate the association of transporter inhibition with drug cytotoxicity. From a pool of drugs that were identified as known ASBT or OCTN2 inhibitors, 21 drugs were selected to screen inhibitory potency of their prototypical substrate and cytotoxicity against three human sodium-dependent solute carrier (SLC) transporters: apical sodium-dependent bile acid transporter (ASBT), organic cation/carnitine transporter (OCTN2), and the excitatory amino acid transporter 4 (EAAT4) in stable cell lines. Twenty drugs showed apparent inhibition in OCTN2-MDCK and ASBT-MDCK. Four dihydropyridine calcium channel blockers were cytotoxic to MDCK cells, and the observed cytotoxicity of three of them accounted for their apparent OCTN2 inhibition, and consequently were classified as non-OCTN2 inhibitors. Meanwhile, since their cytotoxicity only moderately contributed to ASBT inhibition, these three were still considered ASBT inhibitors. Four other drugs showed apparent inhibition in EAAT4-HEK cells, and cytotoxicity of three drugs corresponded with their inhibition of this transporter. Therefore, cytotoxicity significantly affected EAAT4 observations. Results showed the potential of cytotoxicity as a mechanism that can account for apparent in vitro transporter inhibition. Drug cytotoxicity varied in different cell lines, which could increase false positives for pharmacophore development.  相似文献   

15.
16.
Intestinal absorption of drugs, nutrients, and other compounds is mediated by uptake transporters expressed at the apical enterocyte membrane. These compounds are returned to the intestinal lumen or released into portal circulation by intestinal efflux transporters expressed at apical or basolateral membranes, respectively. One important transporter superfamily, multiple members of which are intestinally expressed, are the solute carriers (SLCs). SLC expression levels may determine the pharmacokinetics of drugs that are substrates of these transporters. In this study we characterize the distribution of 15 human SLC transporter mRNAs in histologically normal biopsies from five regions of the intestine of 10 patients. The mRNA expression levels of CNT1, CNT2, apical sodium-dependent bile acid transporter (ABST), serotonin transporter (SERT), PEPT1, and OCTN2 exhibit marked differences between different regions of the intestine: the first five are predominantly expressed in the small intestine, whereas OCTN2 exhibits strongest expression in the colon. Two transporter mRNAs studied (OCTN1, OATP2B1) are expressed at similar levels in all gut sections. In addition, ENT2 mRNA is present at low levels across the colon, but not in the small intestine. The other six SLC mRNAs studied are not expressed in the intestine. Quantitative knowledge of transporter expression levels in different regions of the human gastrointestinal tract could be useful for designing intestinal delivery strategies for orally administered drugs. Furthermore, changes in transporter expression that occur in pathological states, such as inflammatory bowel disease, can now be defined more precisely by comparison with the expression levels measured in healthy individuals.  相似文献   

17.
Membrane transporters are integral membrane proteins typically having 12 transmembrane domains. Most of the SLC family transporters consist of 300-800 amino acid residues with a molecular mass of 40-90 kDa, while the corresponding values of ABC family transporters are 1,200-1,500 residues and 140-180 kDa, respectively. Each transporter has a characteristic tissue distribution and subcellular localization. I have isolated cDNAs of various transporters, including oligopeptide transporter PEPT1, monocarboxylic acid transporter MCT1 and organic cation/carnitine transporters (OCTNs), and determined their tissue distribution and subcellular localization. I have also determined the absolute expression levels of transporters to evaluate their relative contributions to drug transport in various tissues. It is important to note that expression levels of transporters can be changed under various physiological conditions and by administration of drugs. Changes in expression level, subcellular localization and functional properties can all be involved in inter-individual differences in drug pharmacokinetics. Transporters are among the key determinants of drug disposition.  相似文献   

18.
Classical prodrug design often represents a nonspecific chemical approach to mask undesirable drug properties such as limited bioavailability, lack of site specificity, and chemical instability. On the other hand, targeted prodrug design represents a new strategy for directed and efficient drug delivery. Particularly, targeting the prodrugs to a specific enzyme or a specific membrane transporter, or both, has potential as a selective drug delivery system in cancer chemotherapy or as an efficient oral drug delivery system. Site-selective targeting with prodrugs can be further enhanced by the simultaneous use of gene delivery to express the requisite enzymes or transporters. This review highlights evolving strategies in targeted prodrug design, including antibody-directed enzyme prodrug therapy, genedirected enzyme prodrug therapy, and peptide transporter-associated prodrug therapy.  相似文献   

19.
口服前药研究:机遇与挑战   总被引:3,自引:0,他引:3  
操锋  平其能  陈军 《药学学报》2008,43(4):343-349
前药研究是提高生物药剂学分类系统中第III和IV类药物口服吸收的有效途径之一。本文综述了近年来口服前药研究的进展,主要包括经典前药设计和靶向前药设计。经典前药设计重在改善母体药物的油水分配系数或减少药物的代谢。靶向前药设计重在主动利用胃肠道的生理特性靶向组织、酶及肠内流转运器,其中靶向小肠内流转运器-肽类转运器的口服前药成为目前研究的热点。前药研究还面临选题,设计和体内研究等方面的挑战。  相似文献   

20.
The accumulating evidence has revealed that drug transporters have essential roles in the delivery and excretory processes of drugs and their metabolites. Inhibition or induction of drug transporters can affect pharmacokinetic properties and therapeutic efficacy of a drug. Thus, the characterization of drug-transporter interactions becomes important for the selection of compounds to avoid transporter associated absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) issues. Additionally, the potential use of absorptive transporters for drug delivery has been recognized for drug design. In vitro and in vivo approaches have been developed for studying the transporter activities. In vitro assays can rapidly provide the information for identifying interaction of a compound and a particular transporter and have proved to be amenable to high throughput approaches. Therefore, the studies are conducted in early drug discovery. In this article, in vitro methods are reviewed, including cell free and cell-based assays. Their applications, limitations and impact on drug discovery are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号