首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we investigated the possible tick vectors that can transmit Theileria orientalis in eastern Hokkaido, Japan. Questing ticks collected from three different districts, Taiki, Otofuke, and Shin-Hidaka, of Hokkaido included Ixodes persulcatus, Haemaphysalis megaspinosa, Haemaphysalis douglasi, and Ixodes ovatus, while all the ticks collected from Yonaguni island of Okinawa were identified as Haemaphysalis longicornis. When the ticks were screened by polymerase chain reaction (PCR) for T. orientalis, the parasite was commonly detected among all tick species. Genotype-specific PCR assays revealed that all tick species in Hokkaido were predominantly detected with type 2, while ticks collected from Okinawa (H. longicornis) were predominantly detected with type 1. Consistent with the genetic diversity of T. orientalis in ticks, genotyping PCR assays from cattle grazed in the same Hokkaido sampling locations identified type 2 as the most prevalent genotype. This study provides the first identification of I. persulcatus, H. megaspinosa, H. douglasi, and I. ovatus as possible tick vectors of T. orientalis, and finds that the variety of vectors apparently capable of transmitting T. orientalis is wider in Japan than expected. The authors suggest that tick control strategies should be modified in Hokkaido based on the seasonal activities of ticks identified in the present study.  相似文献   

2.
Hybridization of ticks of the genus Ixodes has been described for several species under laboratory conditions although no molecular genetics evidence confirming interspecific hybridization in nature is available. We have designed a real time PCR targeted on nuclear (ITS2) and mitochondrial (cox1) markers to accurately identify tick species and to detect interspecific hybrids of Ixodes persulcatus and Ixodes pavlovskyi in their sympatric populations in Western Siberia. A survey of 783 individual ticks from a suburb of Tomsk showed that 44.2% of ticks belong to I. pavlovskyi species and 55.8% to I. persulcatus, based on the mtDNA data. Results obtained with the nuclear marker were not consistent, indicating that approximately 10% of the ticks were hybrids and about 5% revealed mtDNA introgression. Both hybridization and introgression have been shown to occur bidirectionally but more efficiently in the mating pair female I. pavlovskyi × male I. persulcatus than vice versa. The existence of the first generation hybrids and backcrosses challenges the existing view about effective reproductive barriers between I. pavlovskyi and I. persulcatus. While using only mitochondrial markers can lead to errors in determining tick species, we propose to use nuclear or both markers instead. The results obtained in the present paper and published earlier suggest that hybridization between closely related tick species in their sympatric zones is common rather than exceptional. The role of hybrid populations of vectors in the evolution of transmitted pathogens is also discussed.  相似文献   

3.
To study Babesia diversity in Ixodid ticks in Russia, Ixodes persulcatus, Haemaphysalis japonica, Haemaphysalis concinna, Dermacentor silvarum, and Dermacentor nuttalli ticks collected in the Far East and Baikal region were assayed for the presence of Babesia spp. using nested PCR. In total, Babesia DNA was detected in 30 of the 1125 (2.7%) I. persulcatus, 17 of the 573 (3.0%) H. concinna, and 12 of the 543 (2.2%) H. japonica but was undetectable in any of the 294 analyzed Dermacentor spp. Partial 18S rRNA gene sequences were determined for all of the positive samples. Among the positive ticks, nine I. persulcatus were infected by Babesia microti ‘US’-type, five I. persulcatus were infected by Babesia divergens-like parasites, and 11 I. persulcatus were infected by Babesia venatorum. For all three of these species, the determined 18S rRNA gene sequences were identical to those of the Babesia genetic variants found previously in I. persulcatus in Russia. In addition, five I. persulcatus from the Baikal region and all of the positive Haemaphysalis spp. ticks carried 13 different sequence variants of Babesia sensu stricto belonging to distinct phylogenetic clusters. Babesia spp. from 29 ticks of different species collected in distinct locations belonged to the cluster of cattle and ovine parasites (Babesia crassa, Babesia major, Babesia motasi, Babesia bigemina, etc.). Babesia spp. from four H. japonica ticks in the Far East belonged to the cluster formed by parasites of carnivores. One more Babesia sequence variant detected in an I. persulcatus tick from the Baikal region belonged to the cluster formed by parasites of cattle and wild cervids (B. divergens, Babesia capreoli, B. venatorum, Babesia odocoilei, etc.).  相似文献   

4.
The tick Ixodes persulcatus Schulze, 1930, has a wide distribution from the Baltic to the Far East and is a vector of a number of human pathogens. Thus, the study of the genetic structure and evolution of this species is of great epidemiological importance. rRNA genes were used as genetic markers to identify the phylogeographical structure of the ticks. The sequences of gene fragments of 28S (expansion segment D3) and mitochondrial 12S rRNA for 25 and 76 ticks, respectively, that had been collected in various regions of Russia in 2007–2011, were obtained. The sequences of the 28S rRNA D3 segment were identical for all ticks within the studied area. Analysis of the sequences of the mitochondrial 12S rRNA fragment revealed 4 haplotypes with one occurring at a frequency of 0.96. It is shown that the ‘deep’ population structure of I. persulcatus (McLain et al., 2001) was erroneous because of the inclusion of contaminating fungi sequences of 28S rRNA in the phylogenetic analysis. This was, possibly, due to the use of universal PCR primers that amplify the DNA of a wide range of eukaryotes, particularly of fungi which are common in samples of ticks. The influence of PCR conditions on the preferential amplification of the DNA of different organisms is also demonstrated.  相似文献   

5.
《Ticks and Tick》2022,13(6):102045
Ixodid ticks (Acarina, Ixodidae) are vectors of dangerous human infections. The main tick species that determine the epidemiological situation for tick-borne diseases in northern Europe are Ixodes ricinus and Ixodes persulcatus. In recent years, significant changes in the number and distribution of these species have been observed, accompanied by an expansion of the sympatric range. This work summarizes the data of long-term studies carried out in Karelia since 2007 on the infection of I. persulcatus and I. ricinus ticks with various pathogens, including new viruses with unclear pathogenic potential. As a result, tick-borne encephalitis virus (TBEV, Siberian genotype), Alongshan virus, several representatives of the family Phenuiviridae, Borrelia afzelii, Borrelia garinii, Ehrlichia muris, Candidatus Rickettsia tarasevichiae and Candidatus Lariskella arthropodarum were identified. Data were obtained on the geographical and temporal variability of tick infection rates with these main pathogens. The average infection rates of I. persulcatus with TBEV and Borrelia burgdorferi sensu lato were 4.4% and 23.4% and those of I. ricinus were 1.1% and 11.9%, respectively. We did not find a correlation between the infection rate of ticks with TBEV, B. burgdorferi s.l. and Ehrlichia muris/chaffeensis with the sex of the vector. In general, the peculiarities of the epidemiological situation in Karelia are determined by the wide distribution and high abundance of I. persulcatus ticks and by their relatively high infection rate with TBEV and B. burgdorferi s.l. in most of the territory, including the periphery of the range.  相似文献   

6.
《Ticks and Tick》2022,13(1):101832
High-throughput sequencing (HTS) technology has profoundly been involved in sequencing whole genomes of several organisms in a fast and cost-effective manner. Although HTS provides an alternative biomonitoring method to the time-consuming and taxonomy-expertise dependent morphological approach, still we cannot rule out the possibility of the impediment and misidentification biases. In this article we aim to retrieve whole mitochondrial genome (mitogenome) sequences from publicly available raw sequencing data for phylogenetic comparison of Ixodes persulcatus. For this comparison, we sequenced whole mitogenomes of four I. persulcatus ticks from Japan and constructed mitogenomes from raw sequencing data of 74 I. persulcatus ticks from China. Bayesian phylogenetic trees were inferred by the concatenated fifteen mitochondrial genes. We further tested our results by the phylogenetic analysis of cytochrome c oxidase subunit 1 (cox1) gene and internal transcribed spacer 2 (ITS2) sequences. Our findings showed that 70 constructed mitogenomes from China were clustered with the sequenced four mitogenomes of I. persulcatus from Japan. We also revealed that mitogenome sequences retrieved from two data sets CRR142297 and CRR142298 were clustered with Ixodes nipponensis. Moreover, other two mitogenome sequences from CRR142310 and CRR142311 formed a clade with Ixodes pavlovskyi. The phylogenetic analysis of cox1 gene and ITS2 sequences confirmed the identification errors of these four samples. The overall phylogenetics in our study concluded that accurate morphological identification is necessary before implementing HTS to avoid any misidentification biases.  相似文献   

7.
《Ticks and Tick》2023,14(6):102244
Environmental and climatic changes in northern Europe have shaped a geographical area in which new tick species may become established and introduce new tick-borne pathogens. In recent decades, ticks have expanded their latitudinal and altitudinal range limits in northern Sweden. In this study, ticks were collected in 2018 and 2019 in northern Sweden from different hosts, mainly from dogs, cats and humans. The ticks in 2018 (n = 2141, collected from 65 municipalities in 11 provinces) were identified as Ixodes ricinus (n = 2108, 98.5%), Ixodes persulcatus (n = 18, 0.8%), Ixodes trianguliceps (n = 14, 0.7%) and Hyalomma marginatum (n = 1, 0.05%). The ticks collected in 2019 (n = 519, across a smaller area than in 2018, i.e. Sweden's four northernmost provinces) were identified as I. ricinus (n = 242, 46.6%) and I. persulcatus (n = 277, 53.4%). Among those collected in 2019, the majority of I. ricinus (n = 111, 45.9%) were submitted from the province of Västerbotten, while most I. persulcatus (n = 259, 93.5%) were collected in the province of Norrbotten. This study provides updated figures on the geographical distribution of two Ixodes species in northern Sweden. The results confirmed I. ricinus to be the dominant species and that I. persulcatus has enlarged its distributional area compared with previous reports. Updated knowledge of tick distribution is fundamental for the creation of risk maps and will allow relevant advice to be provided to the general public, suggesting measures to prevent tick bites and consequently tick-borne diseases.  相似文献   

8.
Ixodes persulcatus Schulze, 1930 (I. persulcatus) is distributed from the western to the eastern borders of Russia where it is found in the taiga and in mixed forests of the European type. This tick is a known vector of viral (tick-borne encephalitis virus), spirochetal (Borrelia spp.), and protozoan (Babesia spp.) agents. In this work, we analyzed the phylogenetic position of I. persulcatus within the Prostriata based on its 18S rRNA gene. Furthermore, we review the relationship of this tick with 9 Alphaproteobacteria from the genera Rickettsia, Ehrlichia, and Anaplasma which are found in I. persulcatus in the territory of Russia. These observations suggest that I. persulcatus may be one of the more important vectors and reservoirs of Alphaproteobacteria and other microorganisms in Russia.  相似文献   

9.
Totally, 2590 questing adult Ixodes persulcatus ticks and 1458 small mammals from Ural, Siberia, and the Far East as well as 53 Haemaphysalis concinna, 136 Haem. japonica, and 43 Dermacentor silvarum ticks – exclusively adults – from the Far East were examined for the presence of Ehrlichia and Anaplasma by nested PCR based on the 16S rRNA gene. Both Anaplasma phagocytophilum and Ehrlichia muris were found in I. persulcatus and small mammals from all the studied regions. Myodes spp., Microtus spp., Sorex araneus, Apodemus peninsulae, and Tamias sibiricus were naturally infected with An. phagocytophilum and E. muris. Five of the examined I. persulcatus and 5 of the examined wild rodents from Siberia and the Far East were infected with ‘Candidatus Neoehrlichia mikurensis’. The determined 16S rRNA gene sequences of ‘Candidatus Neoehrlichia mikurensis’ were identical to the sequences of Japanese isolates, while the determined groESL sequences were unique. A new Ehrlichia sp. variant closely related to the Ehrlichia sp. EHf669 found in Haem. flava from Japan was detected in 11% of Haem. japonica ticks. New Anaplasmataceae bacteria genetically distinct from the known species of this family were found in 3 adult Derm. silvarum from the Far East and in 2 I. persulcatus from Siberia and the Far East. In the Far East, about 15% of the captured small mammals were naturally infected with recently discovered Ehrlichia sp. Khabarovsk. Ehrlichia sp. Khabarovsk was found in about 20% of Myodes spp. and S. araneus but was undetectable in any of the 236 studied Ap. peninsulae. A three-year study has demonstrated that An. phagocytophilum and E. muris were detectable in small mammals from the Far East captured only after the beginning of the tick activity season, from May to November. Ehrlichia sp. Khabarovsk was found in mammals trapped in all the examined periods, from February to November.  相似文献   

10.
《Ticks and Tick》2020,11(1):101284
Genetic variability of I. apronophorus from Western Siberia, Russia was examined using the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial 16S rRNA and cytochrome c oxidase subunit 1 (cox1) genes and compared to those of Ixodes persulcatus and Ixodes trianguliceps from the same site. The I. apronophorus sequences demonstrated the highest nucleotide and haplotype diversity for both mitochondrial genes, whereas I. persulcatus was more variable in the nuclear ITS2. Phylogenetic analysis of the molecular sequence data showed that I. apronophorus differed from other Ixodes species, including Romanian I. apronophorus. The level of identity between 16S rRNA gene sequences of Siberian and Romanian I. apronophorus was only 91%; these sequences did not form a monophyletic group, indicating that I. apronophorus from Siberia and Romania could be different tick species. The analysis of morphological features of the Siberian I. apronophorus confirmed their consistency with those for the previously described I. apronophorus species. Based on the 16S rRNA and ITS2 sequences, Siberian I. apronophorus clustered together with Ixodes kazakstani and Ixodes scapularis, which are the recognized members of the Ixodes ricinus-I. persulcatus species complex within the subgenus Ixodes, and can be assigned to this complex.  相似文献   

11.
《Ticks and Tick》2020,11(5):101449
In 2015 a long-term, nationwide tick and tick-borne pathogen (TBP) monitoring project was started by the Finnish Tick Project and the Finnish Research Station network (RESTAT), with the goal of producing temporally and geographically extensive data regarding exophilic ticks in Finland. In the current study, we present results from the first four years of this collaboration.Ticks were collected by cloth dragging from 11 research stations across Finland in May–September 2015–2018 (2012–2018 in Seili). Collected ticks were screened for twelve different pathogens by qPCR: Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, Borrelia burgdorferi sensu stricto, Borrelia miyamotoi, Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Francisella tularensis, Bartonella spp. and tick-borne encephalitis virus (TBEV).Altogether 15 067 Ixodes ricinus and 46 Ixodes persulcatus were collected during 68 km of dragging. Field collections revealed different seasonal activity patterns for the two species. The activity of I. persulcatus adults (only one nymph detected) was unimodal, with activity only in May–July, whereas Ixodes ricinus was active from May to September, with activity peaks in September (nymphs) or July–August (adults). Overall, tick densities were higher during the latter years of the study. Borrelia burgdorferi sensu lato were the most common pathogens detected, with 48.9 ± 8.4% (95% Cl) of adults and 25.3 ± 4.4% of nymphs carrying the bacteria. No samples positive for F. tularensis, Bartonella or TBEV were detected.This collaboration project involving the extensive Finnish Research Station network has ensured enduring and spatially extensive, long-term tick data collection to the foreseeable future.  相似文献   

12.
Rickettsia spp. are the causative agents of a number of diseases in humans. These bacteria are transmitted by arthropods, including ixodid ticks. DNA of several Rickettsia spp. was identified in Ixodes persulcatus ticks, however, the association of Ixodes trianguliceps ticks with Rickettsia spp. is unknown. In our study, blood samples of small mammals (n = 108), unfed adult I. persulcatus ticks (n = 136), and I. persulcatus (n = 12) and I. trianguliceps (n = 34) ticks feeding on voles were collected in two I. persulcatus/I. trianguliceps sympatric areas in Western Siberia. Using nested PCR, ticks and blood samples were studied for the presence of Rickettsia spp. Three distinct Rickettsia species were found in ticks, but no Rickettsia species were found in the blood of examined voles. Candidatus Rickettsia tarasevichiae DNA was detected in 89.7% of unfed I. persulcatus, 91.7% of engorged I. persulcatus and 14.7% of I. trianguliceps ticks. Rickettsia helvetica DNA was detected in 5.9% of I. trianguliceps ticks. In addition, a new Rickettsia genetic variant was found in 32.4% of I. trianguliceps ticks. Sequence analysis of the 16S rRNA, gltA, ompA, оmpB and sca4 genes was performed and, in accordance with genetic criteria, a new Rickettsia genetic variant was classified as a new Candidatus Rickettsia species. We propose to name this species Candidatus Rickettsia uralica, according to the territory where this species was initially identified. Candidatus Rickettsia uralica was found to belong to the spotted fever group. The data obtained in this study leads us to propose that Candidatus Rickettsia uralica is associated with I. trianguliceps ticks.  相似文献   

13.
《Ticks and Tick》2020,11(2):101332
Tick saliva contains immunosuppressants which are important to obtain a blood meal and enhance the infectivity of tick-borne pathogens. In Japan, Ixodes persulcatus is a major vector for Lyme borreliosis pathogens, such as Borrelia garinii, as well as for those causing relapsing fever, such as B. miyamotoi. To date, little information is available on bioactive salivary molecules, produced by this tick. Thus, in this study, we identified two proteins, I. persulcatus derived sialostatin L1 (Ip-sL1) and sL2 (Ip-sL2), as orthologs of I. scapularis derived sL1 and sL2. cDNA clones of Ip-sL1 and Ip-sL2 shared a high identity with sequences of sL1 and sL2 isolated from the salivary glands of I. scapularis. Semi-quantitative PCR revealed that Ip-sL1 and Ip-sL2 were expressed in the salivary glands throughout the life of the tick. In addition, Ip-sL1 and Ip-sL2 were expressed even before the ticks started feeding, and their expression continued during blood feeding. Recombinant Ip-sL1 and Ip-sL2 were developed to characterize the proteins via biological and immunological analyses. These analyses revealed that both Ip-sL1 and Ip-sL2 had inhibitory effects on cathepsins L and S. Ip-sL1 and Ip-sL2 inhibited the production of IP-10, TNFα, and IL-6 by LPS-stimulated bone-marrow-derived dendritic cells (BMDCs). Additionally, Ip-sL1 significantly impaired BMDC maturation. Taken together, these results suggest that Ip-sL1 and Ip-sL2 confer immunosuppressive functions and appear to be involved in the transmission of pathogens by suppressing host immune responses, such as cytokine production and dendritic cell maturation. Therefore, further studies are warranted to investigate the immunosuppressive functions of Ip-sL1 and Ip-sL2 in detail to clarify their involvement in pathogen transmission via I. persulcatus.  相似文献   

14.
《Ticks and Tick》2023,14(2):102101
Novel Haseki tick virus (HSTV) was detected in ixodid ticks and patients in the Asian part of Russia. Sequencing of the genome fragments corresponding whole polyprotein and viral RdRp demonstrated that HSTV is genetically close to unclassified Flavi-like viruses. Phylogenetic analysis of HSTV sequences showed that these viruses were close to Bole tick virus 4 (BLTV 4), which was detected early in Asia, Europe, Africa and the Caribbean region. The organization of the genome predicts that HSTV and BLTV 4 may also be classified as putative new genera within Flaviviridae with enlarged Flavi-like positive-sense ssRNA viral genomes. Cases of HSTV putative human incidents after Ixodes persulcatus attack were discovered in hospital patients with tick-borne infections in Vladivostok (Russia). The illness was associated with 3–5 days of fever, accompanied by acute respiratory lesions. Mixed human tick-borne infections (TBIs) were also detected for these patients as dual or triple coinfections for tick-borne encephalitis virus, Borrelia spp., Anaplasma spp., and HSTV. Thus, it is necessary to study HSTV antibody tests, virus isolation, and surveillance for HSTV sequences in different species of ticks, different geographical regions and patients after tick attacks.  相似文献   

15.
The tick receptor for outer surface protein A (TROSPA) is an Ixodes scapularis (I. scapularis) receptor for Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease in North America. The blockade of TROSPA has been shown to reduce B. burgdorferi adherence to the I. scapularis gut in vivo. Thus, TROSPA is one of the potential targets for the development of vector–antigen-based vaccines to prevent the transmission of B. burgdorferi. The aim of this study is to identify the TROSPA gene in I. persulcatus Schulze, the specific vector for human Lyme borreliosis in Japan. The cDNA clone encoding the TROSPA-like sequence with 483 nucleotides was obtained from whole-body homogenates of fed nymphs of I. persulcatus. The putative amino acid sequence of I. persulcatus TROSPA was 88.2% and 87.8% identical to that of I. scapularis and I. ricinus, respectively. This finding will facilitate investigations on the role of I. persulcatus TROSPA and its interaction with Borrelia spp. and will have important implications on endeavors to develop a tick vaccine.  相似文献   

16.
《Ticks and Tick》2023,14(1):102075
Four genospecies from the Borrelia burgdorferi sensu lato complex were detected in Ixodes persulcatus and Ixodes pavlovskyi ticks from Siberia and genetically characterized. The presence of Borrelia spp. in Ixodes apronophorus and Ixodes trianguliceps ticks found in Asia has never been studied. In this study, genetic diversity of B. burgdorferi s.l. was investigated in three I. persulcatus / I. trianguliceps / I. apronophorus sympatric habitats in Western Siberia. Three groups of samples were examined: (i) ticks that were taken from rodents and molted in a laboratory; (ii) non-molted ticks collected from rodents; (iii) specimens from small mammals. Expectedly, Borrelia afzelii and Borrelia bavariensis were detected in I. persulcatus and in small mammals from the studied locations. Borrelia bavariensis was first found in molted I. apronophorus and I. trianguliceps. Identical genovariants of B. bavariensis were found in I. apronophorus, I. trianguliceps, and I. persulcatus. In addition, a new Borrelia genovariant was discovered in non-molted and molted I. apronophorus and non-molted I. persulcatus and I. trianguliceps, as well as in small mammals. This new genovariant was genetically characterized using MLST and single locus sequence analysis, which indicated that the new Borrelia genovariant significantly differs from all known Borrelia species. We propose the name "Candidatus Borrelia sibirica" for this putative new species.  相似文献   

17.
《Ticks and Tick》2023,14(3):102136
Ticks play an important role in the evolution and transmission of Anaplasmataceae bacteria which are agents of emerging infectious diseases. In this study, a total of 1286 adult ticks belonging to five species were collected from cattle, goats, horses and vegetation in Harbin area, Heilongjiang province, northeastern China. The tick-borne Anaplasmataceae bacteria were identified by amplifying and sequencing the 16S rRNA (rrs) and heat shock protein-60 encoding (groEL) genes. The results showed that Ixodes persulcatus was dominant (38.8%, 499/1283) among the five tick species, and Anaplasmataceae bacteria were detected in all tick species with an overall prevalence of 7.4%. Four species of Anaplasmataceae bacteria (Anaplasma phagocytophilum, Anaplasma ovis, Anaplasma bovis, and “Candidatus Neoehrlichia mikurensis”), which are pathogenic to humans and/or animals, were identified from tick samples by phylogenetic analyzes of the rrs and groEL gene sequences. Interestingly, the cluster 1 strains were first identified in Asian, and a novel cluster was also detected in this study. These data revealed the genetic diversity of Anaplasmataceae bacteria circulating in ticks in Harbin area, highlighting the need to investigate these tick-borne pathogens and their risks to human and animal health.  相似文献   

18.
《Ticks and Tick》2022,13(3):101908
Tick-borne diseases are recognized as a growing public health concern and cause significant issues in humans and animals by serving as dispersal agents of ticks and their associated pathogens. Birds contribute to the spread of ticks and tick-borne diseases, with migratory birds playing a role in regional dispersal. Only a few studies have been carried out in Germany so far to investigate tick fauna on birds and the pathogens they harbour. In 2017 and 2018, we collected ticks from a total of 358 birds in the northern region of the Federal State of Hesse, Germany. Most ticks were Ixodes ricinus larvae and nymphs (95.4%). However, two ornithophilic species were also collected: Ixodes frontalis (larvae, nymphs and females) and Ixodes arboricola (larvae and nymphs). Ticks were tested individually or in pools, depending on the tick life stage and species for each bird host, in order to detect tick-borne encephalitis (TBE) virus and Rickettsia spp. All samples tested negative for TBE virus. Of 684 investigated tick pools, 162 tested positive for Rickettsia spp. by screening PCR. Of these, 117 carried Rickettsia helvetica detected by specific real-time PCR. The samples which were negative in the R. helvetica PCR were further investigated using five targets (gltA, 16S, ompA IV, ompB, 23S-5S intergenic spacer region) using multi locus sequence typing and phylogenetic analysis. The obtained sequences showed strong phylogenetic relationship to Candidatus Rickettsia vini, which is most closely related to R. japonica and R. heilongjiangensis, and occur in I. arboricola. Three more sequences were determined as R. helvetica in I. ricinus and I. frontalis. This is the first detection of Ca. R. vini in Germany and the first 23S-5S data published for Ca. R. vini, a useful target for Rickettsia species identification.  相似文献   

19.
《Ticks and Tick》2023,14(6):102225
Changing climatic conditions and other anthropogenic influences have altered tick distribution, abundance and seasonal activity over the last decades. In Germany, the two most important tick species are Ixodes ricinus and Dermacentor reticulatus, the latter of which has expanded its range across the country during the past three decades. While I. ricinus was rarely found during the colder months in the past, D. reticulatus is known to be active at lower temperatures. To quantify tick appearance during winter, specimens were monitored in quasi-natural tick plots three times a week. Additionally, the questing activities of these two tick species were observed throughout the year at nine field collection sites that were regularly sampled by the flagging method from April 2020 to April 2022. Furthermore, tick winter activity in terms of host infestation was analysed as part of a nationwide submission study from March 2020 to October 2021, in which veterinarians sent in ticks mainly collected from dogs and cats. All three study approaches showed a year-round activity of I. ricinus and D. reticulatus in Germany. During the winter months (December to February), on average 1.1% of the inserted I. ricinus specimens were observed at the tops of rods in the tick plots. The average questing activity of I. ricinus amounted to 2 ticks/100 m² (range: 1-17) in the flagging study, and 32.4% (211/651) of ticks found infesting dogs and cats during winter 2020/21 were I. ricinus. On average 14.7-20.0% of the inserted D. reticulatus specimens were observed at the tops of rods in the tick plots, while the average winter questing activity in the field study amounted to 23 specimens/100 m² (range: 0-62), and 49.8% (324/651) of all ticks collected from dogs and cats during winter 2020/21 were D. reticulatus. Additionally, the hedgehog tick Ixodes hexagonus was found to infest dogs and cats quite frequently during the winter months, accounting for 13.2% (86/651) of the collected ticks. A generalized linear mixed model identified significant correlations of D. reticulatus winter activity in quasi-natural plots with climatic variables. The combined study approaches confirmed a complementary main activity pattern of I. ricinus and D. reticulatus with climate change-driven winter activity of both species. Milder winters and a decrease of snowfall, and consequently high winter activity of D. reticulatus, among other factors, may have contributed to the rapid spread of this tick species throughout the country. Therefore, an effective year-round tick control is strongly recommended to not only efficiently protect dogs and cats with outdoor access from ticks and tick-borne pathogens (TBPs), but also to limit the further geographical spread of ticks and TBPs to so far non-endemic regions. Further measures, including information of the public, are necessary to protect both, humans and animals, in a One Health approach.  相似文献   

20.
Ixodes ricinus is one the most abundant tick species in Europe and these ticks transmit pathogens causing human and animal diseases. The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Development of vaccines directed against tick proteins may reduce tick infestations and the transmission of tick-borne pathogens. However, a limiting step in tick vaccine development has been the identification of tick protective antigens. Herein, the tick iron metabolism pathway was targeted in an effort to identify new tick protective antigens. Recombinant I. ricinus (IrFER2) and Rhipicephalus microplus (RmFER2) ferritin 2 proteins were expressed in Escherichia coli and used to immunize rabbits and cattle, respectively. Vaccination with IrFER2 reduced I. ricinus tick numbers, weight and fertility in rabbits with an overall vaccine efficacy (E) of 98%. Control of cattle tick, R. microplus and Rhipicephalus annulatus infestations was obtained in vaccinated cattle with overall E of 64% and 72%, respectively. Notably, the efficacy of the RmFER2 vaccine was similar to that obtained with Bm86 against R. microplus. These collective results demonstrated the feasibility of using ferritin 2 to develop vaccines for the control of tick infestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号