首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
Rationale:Chronic myelogenous leukemia (CML) with thrombocytosis and complex chromosomal translocation is extremely rare in clinical setting. Here, we reported the clinical and pathological characteristics of CML patients, which were characterized by thrombocytosis and complex Philadelphia chromosome translocation. Moreover, we also introduced our therapeutic schedule for this patient as well as review relative literature.Patient concerns:A 24-year-old female presented with night sweating, fatigue, and intermittent fever for 1 month.Diagnosis:Fluorescence in situ hybridization results revealed that breakpoint cluster region (BCR)-Abelson (ABL) gene fusion in 62% of the cells and karyotyping showed a complex 3-way 46, XY, t(9;22;11) (q34;q11;q13) [19/20] translocation. This patient was diagnosed with CML complicated with thrombocytosis and complex Philadelphia chromosome translocation.Interventions:The patients received continuously oral imatinib mesylate tablets (400 mg) once a day.Outcomes:After treatment with imatinib for 3 months, the BCR/ABLIS was less than 0.1% and achieved major molecular response. Moreover, the BCR/ABLIS of this patient achieved major molecular response. The BCR/ABLIS values at 6 months and 12 months were less than 0.01% and 0.0032%, respectively. And no BCR/ABL fusion was detected in the next 2 years follow-up period.Lessons:Imatinib might represent a preferred therapeutic option for CML patients with rare thrombocytosis and complex chromosomal translocation. In addition, BCR/ABL fusion gene examination in patients with thrombocytosis might represent an effective strategy to avoid the misdiagnosis of this specific CML population.  相似文献   

4.
Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML will require full eradication of Ph chromosome-positive (Ph+) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34+ cells and also in cord blood CD34+ cells as a consequence of retroviral BCR/ABL1 expression. To test whether IL1RAP expression distinguishes normal (Ph) and leukemic (Ph+) cells within the CML CD34+CD38 cell compartment, we established a unique protocol for conducting FISH on small numbers of sorted cells. By using this method, we sorted cells directly into drops on slides to investigate their Ph-chromosome status. Interestingly, we found that the CML CD34+CD38IL1RAP+ cells were Ph+, whereas CML CD34+CD38IL1RAP cells were almost exclusively Ph. By performing long-term culture-initiating cell assays on the two cell populations, we found that Ph+ and Ph candidate CML stem cells could be prospectively separated. In addition, by generating an anti-IL1RAP antibody, we provide proof of concept that IL1RAP can be used as a target on CML CD34+CD38 cells to induce antibody-dependent cell-mediated cytotoxicity. This study thus identifies IL1RAP as a unique cell surface biomarker distinguishing Ph+ from Ph candidate CML stem cells and opens up a previously unexplored avenue for therapy of CML.  相似文献   

5.
6.
BACKGROUND AND OBJECTIVE: From 5-8% of Philadelphia (Ph) positive patients with chronic myeloid leukemia (CML) show variant translocations in which at least a third chromosome in addition to 9q34 and 22q11 is involved. The formation mechanisms and clinical significance of variant Ph translocations are still unclear. The BCR/ABL chimeric gene encoding for chimeric proteins is always present and maps on the 22q- regardless of the type of translocation. We studied two apparently Ph negative CML patients with unusual karyotypes both showing a typical b3a2 rearrangement. DESIGN AND METHODS: Dual-color fluorescence in situ hybridization (FISH) can visualize BCR and ABL genes and localize the BCR/ABL fusion gene. We used FISH to study the formation mechanisms of variant Ph translocations in two patients. RESULTS: The chimeric BCR/ABL gene was located on a locus other than the expected 22q11 in both patients. In the first case the fusion signal was present on the 9q34 band whereas in the second patient it was detected on chromosome 8, involved in masked Ph formation. INTERPRETATION AND CONCLUSIONS: The location of the hybrid BCR/ABL gene on chromosomes other than 22q- is a rare event which can only be observed using the FISH technique. When these unusual translocations occur the hypothesis most often put forward is that several consecutive cytogenetic events have taken place. The factors which regulate the formation of these breakpoints have yet to be clarified. The FISH technique allows the identification of chromosome rearrangements that could not otherwise be detected by conventional banding procedures. The location of the hybrid BCR/ABL gene on sites other than 22q11 represents a rare type of variant Ph translocation.The real frequency and clinical significance of such rearrangements need to be investigated.  相似文献   

7.
The BCR/ABL1 fusion gene is mainly caused by the t(9; 22)(q34; q11.2) translocation, which results in the Philadelphia (Ph) chromosome. The Ph chromosome is the typical hallmark in chronic myeloid leukemia (CML), but can also be present in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The BCR/ABL1 rearrangement is an important tumor classification marker and a useful prognostic factor allowing an adequate therapy management. Ph chromosome detection by conventional cytogenetics (CC) can be hampered by low quantity and quality of metaphases from tumor cells. Furthermore, BCR/ABL1 rearrangements may be hidden due to cryptic rearrangements or complex aberrations. Therefore, molecular cytogenetic methods turned out to be useful tools for the detection of BCR/ABL1 rearrangements. We performed fluorescent in situ hybridization (FISH) with the recently developed BCR/ABL1 D-FISH probe (QBIOgene, Illkirch, F) on cultured bone marrow and peripheral blood cells of 71 patients with CML, ALL, AML, and myeloproliferative disorder (MPD). FISH results and the results of banding methods were directly compared. Based on the analyses of >200 nuclei per patient, D-FISH correlated closely with CC and allowed an accurate quantification of BCR/ABL1 rearrangements even in a low percentage of aberrant cells. No false-positive or false-negative results were obtained. Furthermore, the D-FISH probe detected three cryptic and one complex BCR/ABL1 rearrangement, which were not visible by CC. We conclude that D-FISH reliably detects standard Ph chromosomes as well as its variant translocations and accurately quantifies BCR/ABL1 rearrangements prior and during cancer treatment as well as in the phase of remission, in daily routine tumor cytogenetic diagnostics.  相似文献   

8.
Chronic myelogenous leukemia (CML) is characterized by Philadelphia (Ph) chromosome with a chimeric gene BCR–ABL created by reciprocal t(9:22) (q34;q11) translocation. Variant Ph chromosome translocations involving chromosomes other than 9 and 22 are found in 5–10% of CML cases. We here report a CML patient who carries a four-way Ph chromosome translocation, t(9;22;15;19) (q34;q11;q15;q13). The patient was diagnosed in 1997 and initially treated with hydroxyurea. In 2002, treatment with imatinib, a selective BCR–ABL tyrosine kinase inhibitor (TKI), was started but Ph-positive chromosomes remained at the levels of 42–65%, indicating imatinib failure. In 2006, the point mutations of F359I and L387M were detected in BCR/ABL gene, which may be related to imatinib failure. Treatment with nilotinib, a TKI with high target specificity, was then started which resulted in durable major molecular response. Administration of nilotinib offered an effective treatment in a CML patient with variant Ph chromosome translocations and BCR–ABL point mutations after imatinib failure.  相似文献   

9.
Chronic myelogenous leukemia: molecular and cellular aspects   总被引:12,自引:0,他引:12  
Chronic myelogenous leukemia (CML) originates in a pluripotent hematopoetic stem cell of the bone marrow and is characterized by greatly increased numbers of granulocytes in the blood. Myeloid and other hematopoetic cell lineages are involved in the process of clonal proliferation and differentiation. After a period of 4–6 years the disease progresses to acute-stage leukemia. On the cellular level, CML is associated with a specific chromosome abnormality, the t(9; 22) reciprocal translocation that forms the Philadelphia (Ph) chromosome. The Ph chromosome is the result of a molecular rearrangement between the c-ABL proto-oncogene on chromosome 9 and the BCR (breakpoint cluster region) gene on chromosome 22. Most of ABL is linked with a truncated BCR. The BCR/ABL fusion gene codes for an 8-kb mRNA and a novel 210-kDa protein which has higher and aberrant tyrosine kinase activity than the normal c-ABL-coded counterpart. Phosphorylation of a number of substrates such as GAP, GRB-2, SHC, FES, CRKL, and paxillin is considered a decisive step in transformation. An etiological connection between BCR/ABL and leukemia is indicated by the observation that transgenic mice bearing a BCR/ABL DNA construct develop leukemia of B, T, and myeloid cell origin. CML cells proliferate and expand in an almost unlimited manner. Adhesion defects in bone marrow stromal cells have been proposed to explain the increased number of leukemic cells in the peripheral blood. However, findings of our laboratory have shown that the BCR/ABL chimeric protein that is expressed in transfected cells may, under certain conditions, also increase the adhesion to fibronectin via enhanced expression of integrin. Our previous immunocytological studies on the expression of β1 and β2 integrins have found no qualitative differences between normal and CML hematopoietic cells in vitro. Even long-term-cultured CML bone marrow or blood cells continuously express those adhesion molecules that are characteristic of the cytological type. Recent experiments indicate that certain early CML progenitors may adhere to the stromal layer in vitro similarly to their normal counterparts. They cannot be completely removed by long-term culture on allogeneic stromal cells. At present, the only curative therapy is transplantation of allogeneic hematopoietic stem cells. Based on the molecular and cellular state of knowledge of CML, new therapies are being developed. BCR/ABL antisense oligonucleotides, inhibitors of tyrosine kinase, peptide-specific adoptive immunotherapy or peptide vaccination, and restoration of hematopoiesis by autologous stem cell transplantation following CML cell purging are examples of important approaches to improving CML treatment. Received: 22 June 1998 / Accepted: 28 August 1998  相似文献   

10.
11.

Background

The t(9;22) translocation leads to the formation of the chimeric breakpoint cluster region/c-abl oncogene 1 (BCR/ABL) fusion gene on der22, the Philadelphia chromosome. The p185BCR/ABL or the p210BCR/ABL fusion proteins are encoded as a result of the translocation, depending on whether a “minor” or “major” breakpoint occurs, respectively. Both p185BCR/ABL and p210BCR/ABL exhibit constitutively activated ABL kinase activity. Through fusion to BCR the ABL kinase in p185BCR/ABL and p210BCR/ABL “escapes” the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. A novel class of compounds including GNF-2 restores allosteric inhibition of the kinase activity and the transformation potential of BCR/ABL. Here we investigated whether there are differences between p185BCR/ABL and p210BCR/ABL regarding their sensitivity towards allosteric inhibition by GNF-2 in models of Philadelphia chromosome-positive acute lymphatic leukemia.

Design and Methods

We investigated the anti-proliferative activity of GNF-2 in different Philadelphia chromosome-positive acute lymphatic leukemia models, such as cell lines, patient-derived long-term cultures and factor-dependent lymphatic Ba/F3 cells expressing either p185BCR/ABL or p210BCR/ABL and their resistance mutants.

Results

The inhibitory effects of GNF-2 differed constantly between p185BCR/ABL and p210BCR/ABL expressing cells. In all three Philadelphia chromosome-positive acute lymphatic leukemia models, p210BCR/ABL-transformed cells were more sensitive to GNF-2 than were p185BCR/ABL-positive cells. Similar results were obtained for p185BCR/ABL and the p210BCR/ABL harboring resistance mutations.

Conclusions

Our data provide the first evidence of a differential response of p185BCR/ABL- and p210BCR/ABL- transformed cells to allosteric inhibition by GNF-2, which is of importance for the treatment of patients with Philadelphia chromosome-positive acute lymphatic leukemia.  相似文献   

12.
Childhood acute lymphoblastic leukemia (ALL) is the most common type of childhood leukemia. Specifically, ALL is a malignant disorder of the lymphoid progenitor cells, with a peak incidence among children aged 2–5 years. The t(12;21)(p13;q22) translocation occurs in 25 % of childhood B cell precursor ALL. In this study, bone marrow samples were obtained from 165 patients with childhood ALL. We analyzed the t(12;21) translocation and other related abnormalities using the fluorescent in situ hybridization (FISH) technique with the ETV6(TEL)/RUNX1(AML1) ES dual color translocation probe. Conventional cytogenetic analyses were also performed. ETV6 and RUNX1 related chromosomal abnormalities were found in 42 (25.5 %) of the 165 patients with childhood ALL. Among these 42 patients, structural changes were detected in 33 (78.6 %) and numerical abnormalities in 9 (21.4 %). The frequency of FISH abnormalities in pediatric ALL cases were as follows: 8.5 % for t(12;21)(p13;q22) ETV6/RUNX1 fusion, 6.0 % for RUNX1 amplification, 3.0 % for tetrasomy/trisomy 21, 1.8 % for ETV6 deletion, 1.21 % for ETV6 deletion with RUNX1 amplification, 1.21 % for ETV6 amplification with RUNX1 amplification, 0.6 % for polyploidy, 0.6 % for RUNX1 deletion, and 0.6 % for diminished ETV6 signal. The most common structural abnormality was the t(12;21) translocation, followed by RUNX1 amplification and ETV6 deletion, while the most commonly observed numerical abnormality was trisomy 21.  相似文献   

13.
Rationale:Until recently, the survival rate in patients with Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) was approximately 30%. Tyrosine kinase inhibitors (TKIs), which are a new class of drugs that target BCR-ABL fusion protein, have shown to be effective in treating Ph+ ALL in adults. However, the resistance mechanisms that promote the disease recurrence have altered the initial success of these revolutionary agents.Patient concerns:A 71-year-old Chinese female patient who suffered from severe shoulder and back pain for 1 week.Diagnosis:The patient was diagnosed with Ph+ ALL (B–cell) because of the following items. Complete blood count showed extremely abnormal white blood cell count (26.26×109/l), hemoglobin concentration (65 g/l) and platelet count (14×109/l). And because that Bone marrow aspirate showed 72.5% lymphoblasts and 59.30% lymphoblasts were confirmed by flow cytometry (FCM). At mean time, Real-time fluorescent quantitative PCR analysis confirmed that the P190 BCR/ABL fusion gene expression was 5.9%. Karyotype analysis indicated the following: 45, XX, −7, t (922) (q34; q11) [cp3].Interventions:The patient was treated with chemotherapy and different TKIs including imatinib, dasatinib, ponatinib, and bosutinib.Outcomes:The patient achieved complete remissions with different TKIs after diagnose but relapsed afterward and died of infection.Lessons:Multidrug-resistant mutations within the BCR-ABL1 kinase domain are an emerging clinical problem for patients receiving sequential TKIs therapy. Acquisition of E255K/V-inclusive mutations is usually associated with ponatinib resistance, thus it is necessary to screen out new real pan-inhibitor compounds for all BCR/ABL mutations and figure out the potential efficacy of asciminib-based drug combinations in the future.  相似文献   

14.
15.
In a previous study, we demonstrated that β1,3-N-acetylglucosaminyltransferase 5 (B3gnt5) is a lactotriaosylceramide (Lc3Cer) synthase that synthesizes a precursor structure for lacto/neolacto-series glycosphingolipids (GSLs) in in vitro experiments. Here, we generated B3gnt5-deficient (B3gnt5−/−) mice to investigate the in vivo biological functions of lacto/neolacto-series GSLs. In biochemical analyses, lacto/neolacto-series GSLs were confirmed to be absent and no Lc3Cer synthase activity was detected in the tissues of these mice. These results demonstrate that β3GnT5 is the sole enzyme synthesizing Lc3Cer in vivo. Ganglioside GM1, known as a glycosphingolipid-enriched microdomain (GEM) marker, was found to be up-regulated in B3gnt5−/− B cells by flow cytometry and fluorescence microscopy. However, no difference in the amount of GM1 was observed by TLC-immunoblotting analysis. The GEM-stained puncta on the surface of B3gnt5−/− resting B cells were brighter and larger than those of WT cells. These results suggest that structural alteration of GEM occurs in B3gnt5−/− B cells. We next examined whether BCR signaling-related proteins, such as BCR, CD19, and the signaling molecule Lyn, had moved into or out of the GEM fraction. In B3gnt5−/− B cells, these molecules were enriched in the GEM fraction or adjacent fraction. Moreover, B3gnt5−/− B cells were more sensitive to the induction of intracellular phosphorylation signals on BCR stimulation and proliferated more vigorously than WT B cells. Together, these results suggest that lacto/neolacto-series GSLs play an important role in clustering of GEMs and tether-specific proteins, such as BCR, CD19, and related signaling molecules to the GEMs.  相似文献   

16.
BACKGROUND AND OBJECTIVES: Around 5% of chronic myeloid leukemias (CML) are characterized by complex variant Philadelphia (Ph) translocations involving one or more chromosomal regions in addition to 9 and 22. The BCR/ABL1 fusion gene is usually found on der(22). The additional gene(s) involved in complex variant Ph rearrangements have not been characterized. DESIGN AND METHODS: We performed fluorescent in situ hybridization (FISH) in three complex variant Ph translocations involving the short arm of chromosome 6 in addition to 9 and 22. The BCR/ABL1 D-FISH probe was applied to localize the BCR/ABL1 fusion gene as well as the 5'ABL1 and the 3'BCR. Locus-specific probes were used to narrow the 6p breakpoint. RESULTS: In all cases the BCR/ABL1 fusion gene was located on the Ph chromosome whereas the reciprocal ABL1/BCR gene was detected only in patient #2. On 6p, breakpoints were narrowed to three different regions: centromeric to the human major histocompatibility complex (MHC), between PAC 524E15 and PAC162J16, in the first patient, and telomeric to the MHC, between PAC 329A5 and PAC 145H9, and between PAC 136B1 and PAC 206F19, in the second and third patients, respectively. In patients #2 and 3 a chromosomal rearrangement different from a true complex variant was discovered. In both cases, a classical t(9;22) was associated with an additional translocation involving the der(9)t(9;22). INTERPRETATION AND CONCLUSIONS: Rearrangements at 6p in complex Ph aberrations involve more than one gene/locus. Classical t(9;22), masked by additional chromosomal rearrangements, can resemble complex variant Ph translocations, and can be detected only using appropriate FISH probes.  相似文献   

17.
The BCR/ABL1 fusion gene, usually carried by the Philadelphia chromosome (Ph) resulting from t(9;22)(q34;q11) or variants, is pathognomonic for chronic myeloid leukaemia (CML). It is also occasionally found in acute lymphoblastic leukaemia (ALL) mostly in adults and rarely in de novo acute myeloid leukaemia (AML). Array Comparative Genomic Hybridization (aCGH) was used to study six Ph(+)AML, three bi‐lineage and four Ph(+)ALL searching for specific genomic profiles. Surprisingly, loss of the IKZF1 and/or CDKN2A genes, the hallmark of Ph(+)ALL, were recurrent findings in Ph(+)AML and accompanied cryptic deletions within the immunoglobulin and T cell receptor genes. The latter two losses have been shown to be part of ‘hot spot’ genome imbalances associated with BCR/ABL1 positive pre‐B lymphoid phenotype in CML and Ph(+)ALL. We applied Significance Analysis of Microarrays (SAM) to data from the ‘hot spot’ regions to the Ph(+)AML and a further 40 BCR/ABL1(+) samples looking for differentiating features. After exclusion of the most dominant markers, SAM identified aberrations unique to de novo Ph(+)AML that involved relevant genes. While the biological and clinical significance of this specific genome signature remains to be uncovered, the unique loss within the immunoglobulin genes provides a simple test to enable the differentiation of clinically similar de novo Ph(+) AML and myeloid blast crisis of CML.  相似文献   

18.
19.
Previous studies concerning BCR‐ABL mRNA levels by quantitative real‐time RT‐PCR (Q‐PCR) for chronic myelogenous leukemia (CML) have shown a significant concordance between peripheral blood (PB) and bone marrow (BM) assays. The objective of this study was to determine whether molecular monitoring using PB was comparable to using BM for CML. A comparative study was performed that analyzed the Q‐PCR results of 712 simultaneous PB and BM samples from 330 patients before and during imatinib therapy. For the 78 paired pretreatment samples, the level of BCR‐ABL mRNA in PB was lower than that in BM (P = 0.007). Although the overall amounts of BCR‐ABL mRNA in the PB and BM were comparable (P= 0.072) and there was a strong correlation (r = 0.839, P < 0.001) with the 634 paired on‐treatment samples, the depth of the molecular response in PB was lower than that in BM (P < 0.001). The level of BCR‐ABL mRNA in PB was lower than that in BM where the BM BCR‐ABL mRNA < 1 log reduction (P < 0.001) or ≥ 1–< 2 log‐reductions (P = 0.008) from the baseline, and higher than that where the BM BCR‐ABL mRNA ≥ 2 log‐reductions (P < 0.001). A strong correlation (r = 0.811, P < 0.001) was only found where the BM BCR‐ABL mRNA < 1 log reduction. We conclude that the differences and correlations of BCR‐ABL mRNA between PB and BM assays depend on the depth of the molecular response in BM for CML during imatinib therapy. Am. J. Hematol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号