首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TRH was administered as a 5-h constant rate iv infusion (5 micrograms/min) to seven healthy adult men. Serum samples were collected at regular intervals for measurement of PRL, TSH, and T3. Serum levels of PRL during TRH infusion increased sharply to maximum level by 40 min, and then, despite continued TRH stimulation, PRL levels declined gradually to a plateau value after 100 min. No further rise in serum PRL was observed when a bolus of 200 micrograms TRH was administered to three subjects after 240 min of infusion. Conversely, an iv bolus of sulpiride (25 mg), a dopaminergic antagonist, given to four subjects after 240 min, brought about a marked increase in serum PRL values above the plateau level. These results are consistent with the interpretation that down-regulation in PRL secretion which follows the initial peak of response most likely represents pituitary desensitization to TRH. During the infusion serum TSH increases in two phases. A first phase of secretion was observed by 40 min followed by a plateau, with a second phase of increase occurring between 80-180 min.  相似文献   

2.
To determine whether the 29 amino-acid fragment of growth hormone releasing hormone (GHRH) can be combined with other hypothalamic releasing hormones in a single test of anterior pituitary reserve, the responses of anterior pituitary hormones to combinations of an i.v. bolus of GHRH(1-29)NH2 or saline with an i.v. bolus of either LH releasing hormone (LHRH) plus TRH, ovine CRH(oCRH) or saline were studied. Each infusion of GHRH(1-29)NH2 resulted in a rapid increment of the plasma GH value. Infusion of GHRH(1-29)NH2 also caused a small and transient rise in plasma PRL, but no change in the integrated PRL response. The combination of GHRH(1-29)NH2 with LHRH plus TRH caused a larger increment of peak and integrated plasma TSH levels than LHRH plus TRH alone. GHRH(1-29)NH2 did not affect the release of other anterior pituitary hormones after infusion with oCRH or LHRH plus TRH. Because of the finding of potentiation of the TSH-releasing activity of LHRH plus TRH by GHRH(1-29)NH2, the study was extended to the investigation of TSH release after infusion of TRH in combination with either GHRH(1-29)NH2 or GHRH(1-40). In this study the combination of TRH with both GHRH preparations also caused a larger increment of the peak and integrated plasma TSH levels than TRH alone. It is concluded that GHRH(1-29)NH2 possesses moderate PRL-releasing activity apart from GH-releasing activity. In addition, GHRH potentiates the TSH-releasing activity of TRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have tested the influence of a new calcium ion channel antagonist, diltiazem, on hypothalamic releasing hormone-stimulated secretion of LH and other anterior pituitary hormones in man. To this end, six normal men received a continuous infusion of GnRH (1 microgram/min) and TRH (2 micrograms/min) for 3 h under three different experimental conditions: 1) saline (control) infusion; 2) iv diltiazem (0.3 mg/kg bolus dose, and 0.002 mg/kg . min) infusion for 4 h beginning 1 h before releasing hormone injection; and 3) oral diltiazem (60 mg, every 6 h) administration for 1 week before pituitary stimulation. Blood was sampled at 10-min intervals for the subsequent immunoassay of LH, FSH, TSH, PRL, and GH concentrations and at hourly intervals for the assay of plasma diltiazem concentrations by high performance liquid chromatography. Despite sustained plasma diltiazem concentrations of 80-120 ng/ml during either iv or oral drug administration, the GnRH/TRH-stimulated release of LH, FSH, TSH, and PRL or the basal secretion of GH did not differ significantly from that during saline infusion. In contrast, when these subjects underwent the same infusion schedule using a structurally dissimilar calcium influx blocker, verapamil (5-mg bolus dose and 15 mg/h, continuous infusion), there was significant suppression of the delayed component of GnRH/TRH-stimulated LH release, with simultaneous enhancement of PRL secretion. We conclude that exogenously stimulated anterior pituitary hormone secretion in man exhibits differential susceptibility to the structurally discrete calcium entry blockers diltiazem and verapamil. Moreover, the differential influence of these two calcium ion channel antagonists on gonadotropes is distinct from that described in cardiac and smooth muscle cells.  相似文献   

4.
In a group of 5 healthy subjects salmon CT (sCT) infusion was unable to induce significant variations on basal secretory levels of LH, FSH, PRL and TSH. In a second group of 5 normal subjects, GnRH and TRH tests were performed both during sCT and saline infusion; a clear inhibition of TSH-stimulated levels and of PRL area was documented, while gonadotropin secretion was not significantly affected by sCT infusion. These results suggest that CT effect might be attributed to a change in intracellular calcium of pituitary cells; however the different behavior between TRH-and GnRH-stimulated hormones might be due to a different hormonal release mechanism. Furthermore the widespread recognition of CT-like immunoreactivity in adenohypophysis and in portions of the central nervous system suggests that CT may be a neurotransmitter or paracrine regulator.  相似文献   

5.
Dopamine (DA) infused at pharmacological doses in man inhibits thyrotrophin (TSH) secretion, although the physiological significance of this observation is unclear. The effect of low-dose DA infusion (0.1 microgram/kg/min) on TSH and prolactin (PRL) concentrations during stimulation with thyrotrophin releasing hormone (TRH) in normal male subjects is reported. Six subjects were given intravenous DA or placebo infusions for 165 min on separate days. A bolus of TRH (7.5 micrograms) was given at + 90 min, followed by infusion of the tripeptide (750 ng/min) for 45 min during both DA and placebo studies. In all subjects TRH administration caused a small rise in TSH which was partially inhibited by DA (peak 5.73 +/- 0.85 mU/l vs 4.58 +/- 1.09, P less than 0.05). PRL response to TRH was almost totally inhibited by DA (620 +/- 164 mU/l vs 234 +/- 96, P less than 0.05); integrated TSH and PRL responses to TRH were similarly inhibited by DA. Circulating plasma DA concentration during infusion of the catecholamine was 3.46 +/- 1.00 ng/ml, which is within the range reported in pituitary stalk plasma of other species. These data support the hypothesis that DA is a physiological modulator of TSH secretion in normal man. Major differences in the time course of TSH and PRL responses to TRH, and in the suppressive effect of DA on these responses suggest that there are fundamental differences in stimulus-secretion coupling for TRH and the lactotroph and thyrotroph.  相似文献   

6.
To investigate the influence of calcium ions on the secretion of anterior pituitary hormones in response to stimulation by exogenous hypothalmic releasing factors in man, we measured serum concentrations of pituitary hormones serially during a continuous infusion of combined TRH (2 micrograms/min) and GnRH (1 microgram/min), with concomitant iv saline or calcium administration. Compared to saline, calcium administration was associated with a significant increase in GnRH-TRH-stimulated LH and FSH release and a corresponding rise in serum testosterone concentrations. The effect of calcium ions on gonadotropin secretion was specific, because releasing factor-stimulated secretion of TSH and PRL was suppressed by hypercalcemia. Serum concentrations of GH were not significantly altered under these conditions. In summary, the present results provide the first in vivo evidence that acute infusion of calcium ions augments GnRH-TRH-stimulated secretion of LH and FSH, with an accompanying increase in serum testosterone levels. In contrast, hypercalcemia did not alter serum GH concentrations, and it suppressed GnRH-TRH-stimulated release of PRL and TSH. We conclude that calcium ions can selectively influence releasing factor-stimulated secretion of certain anterior pituitary hormones in man.  相似文献   

7.
The existence of a short-loop feedback inhibition of pituitary ACTH release by administration of beta-endorphin was postulated. However, data on the effect of peripherally administered beta-endorphin in humans are highly controversial. We infused human synthetic beta-endorphin at a constant rate of 1 microgram.kg-1.min-1 or normal saline to 7 normal volunteers for 90 min. Thirty min after starting the beta-endorphin or placebo infusion, releasing hormones were injected as a bolus iv (oCRH and GHRH 1 microgram/kg, GnRH 100 micrograms, TRH 200 micrograms) and blood was drawn for measurements of beta-endorphin immunoreactivity, all other pituitary hormones, and cortisol. Infusion of beta-endorphin resulted in high beta-endorphin plasma levels with a rapid decrease after the infusion was stopped. During the control infusion, beta-endorphin plasma levels rose in response to CRH. Plasma ACTH and serum cortisol levels in response to the releasing hormone were not different in subjects infused with beta-endorphin or placebo. The PRL response to TRH was significantly higher after beta-endorphin than after placebo (area under the stimulation curve 1209 +/- 183 vs 834 +/- 104 micrograms.l-1.h). There was no difference in the response of all other hormones measured. Our data on ACTH and cortisol secretion do not support the concept of a short-loop negative feedback of beta-endorphin acting at the site of the pituitary.  相似文献   

8.
The two hypothalamic releasing factors, luteinizing hormone releasing hormone (LHRH) and thyrotropin releasing hormone (TRH), have been shown to stimulate pituitary prolactin (PRL) release as well as their respective pituitary hormones, luteinizing hormone (LH) and thyrotropin (TSH). In this study the influence of LH and TSH regulatory mechanisms on nocturnal PRL secretion was investigated by evaluating whether the coincidence of PRL with LH and TSH pulses occurred more frequently than would be expected if the hormone generators were not coupled. Thirty night studies were conducted in twelve healthy male subjects. Six subjects underwent 3 studies and 6 subjects 2 studies. Blood was collected into aliquots at 10 min intervals throughout the night and plasma concentrations of PRL, TSH, and LH were determined. From the plasma profiles, hormone secretory rates were calculated using a method of deconvolution. Significant plasma and secretory hormone pulses were identified by a peak detection computer program. For statistical analysis the night studies of each subject were concatenated. Concomitance between the plasma pulses of both TSH and LH with PRL was insufficient to reject the null hypothesis of random coincidence. An increase in the number of subjects demonstrating significant coincidence between the hormone pulses was obtained when secretory pulses were analysed. Seven of the 12 and 10 of the 12 subjects showed significant concomitance between PRL and respectively TSH and LH. This proportion was sufficient to confirm copulsatility between PRL and LH. These results suggest that LH regulatory mechanisms are involved in the generation of the nocturnal pulsatile PRL profile, TRH may also play a role in the secretion of PRL at a central level, but was not reflected in the plasma or secretory profiles because of other overriding regulatory factors.  相似文献   

9.
Four different modes of TRH application (400 micrograms iv, 1 mg nasal, 10 mg buccal and 40 mg oral) were investigated in young healthy subjects for evaluation of thyrotropin (TSH) and prolactin (PRL) stimulation. Plasma TSH, PRL, T4, T3, thyroxine-binding-globulin (TBG) were measured by radioimmunoassay. There were significant increases of TSH and PRL following TRH stimulation by all test forms. Bolus injection of TRH led to maximal TSH and PRL plasma levels within 20 min to 30 min, compared with 30 min to 45 min following nasal administration. Buccal and oral application produced more prolonged TSH and PRL increases, achieving plateau levels after 120 min to 180 min. Stimulated PRL levels were higher in women than in men. Uniformity of PRL response was better after iv or nasal than buccal and oral TRH stimulation. Known side effects were lower after nasal than iv TRH application. Buccal and oral administration provoked no side effects. Nasal TRH application seems to be a well suited test form for TSH and PRL stimulation.  相似文献   

10.
OBJECTIVE: Our aim has been to evaluate the effects of i.v. infusion of recombinant human erythropoietin (rhEPO) on the responses of growth hormone (GH), prolactin (PRL) and thyrotropin (TSH) to thyrotropin-releasing hormone (TRH) stimulation in acromegalic patients. METHODS: We studied 16 patients (8 females, aged 29-68 years) with active acromegaly and 12 control subjects (7 females, 24-65 years). All participants were tested with TRH (400 microg i.v. as bolus) and with TRH plus rhEPO (40 U/kg at a constant infusion rate for 30 min, starting 15 min before TRH injection) on different days. Blood samples were obtained between -30 and 120 min for GH and PRL determinations, and between -30 and 90 min for TSH determinations. Hormone responses were studied by a time-averaged (area under the secretory curve (AUC)) and time-independent (peak values) analysis. RESULTS: Twelve patients exhibited a paradoxical GH reaction after TRH administration with great interindividual variability in GH levels. When patients were stimulated with rhEPO plus TRH there were no changes in the variability of GH responses or in the peak and AUC for GH secretion. Infusion with rhEPO did not induce any significant change in GH secretion in normal subjects. Baseline and TRH-stimulated PRL concentrations in patients did not differ from those values found in controls. When TRH was injected during the rhEPO infusion, a significant (P<0.05) increase in PRL concentrations at 15-120 min was found in acromegalic patients. Accordingly, the PRL peak and the AUC for PRL secretion were significantly increased in patients. Infusion with rhEPO had no effect on TRH-induced PRL release in control subjects. Baseline TSH concentrations, as well as the TSH peak and the AUC after TRH, were significantly lower in patients than in controls. Infusion with rhEPO modified neither the peak TSH reached nor the AUC for TSH secretion after TRH injection in acromegalic patients and in healthy volunteers. CONCLUSION: Results in patients with acromegaly suggest that (i) the paradoxical GH response to TRH is not modified by rhEPO infusion, (ii) rhEPO has no effect on TRH-induced TSH release, and (iii) acute rhEPO administration increases the TRH-induced PRL release in acromegalic patients.  相似文献   

11.
Although the role of the neurotransmitter, dopamine (DA), in the regulation of PRL has been well documented, controversy exists regarding its participation in the regulation of the other pituitary hormones. Consequently, we infused DA into six healthy male subjects (ages 19-32) and studied its effects on both basal pituitary hormone levels and augmented hormonal release induced by insulin hypoglycemia (ITT), TRH, and gonadotropin-releasing hormone (GnRH). DA alone produced a modest though significant increase in GH concentration from 2.2 +/- 0.5 to 11.9 +/- 3.7 ng/ml (P less than 0.05) by 60 min, but the peak incremental GH response to ITT was significantly inhibited by DA (43.5 +/- 5.0 vs. 16.3 +/- 3.3 ng/ml; P less than 0.01). PRL concentrations fell during the DA infusion (20.4 +/- 3.0 to 10.6 +/- 1.5 ng/ml; P less than 0.02) at 235 min, and the PRL responses to both ITT and TRH were completely abolished. Although the basal LH and FSH concentrations were unaffected by DA, the incremental LH response to GnRH was inhibited (45.5 +/- 10.6 to 24.4 +/- 5.4 mIU/ml; P less than 0.05), while the FSH response was unchanged. DA significantly reduced the basal TSH concentration from 3.9 +/- 0.2 to 2.5 +/- 0.2 micro U/ml (P less than 0.01) at 230 min and blunted the peak incremental TSH response to TRH (6.0 +/- 1.5 vs. 2.9 +/- 0.9 microU/ml; P less than 0.01). DA had no effect on basal cortisol levels, the cortisol response to ITT, basal plasma glucose, or the degree of hypoglycemia after ITT. Our data provide new evidence that DA has an inhibitory as well as a stimulatory role in the regulation of GH secretion in normal humans. It inhibits centrally as well as peripherally mediated PRL secretion and blunts the LH response to GnRH. In addition, DA lowers both basal and TRH-mediated TSH release, confirming the reports of other investigators.  相似文献   

12.
The effect of estradiol and thyroid hormone treatment on pituitary TRH binding and TSH and PRL responses to the neurohormone was studied. A significant increase in the number of pituitary TRH binding sites was observed between 2 and 4 days after daily administration of estradiol benzoate with a plateau at 300% of control being reached at 7 days. Plasma PRL levels showed a similar early pattern of response. In animals rendered hypothyroid by a 2-month treatment with propylthiouracil or 1 month after surgical thyroidectomy, the level of pituitary TRH receptors was increased approximately 2-fold, this elevation being completely reversed by treatment with thyroid hormone. Estradiol-17beta administered with L-thyroxine partially reversed the inhibitory effect of thyroid hormone on TRH receptor levels in hypothyroid animals. The antagonism between estrogens and thyroid hormone is also apparent on the TSH response to TRH since estrogen administration can reverse the marked inhibition by thyroxine of the TSH response to TRH either partially or completely in intact and hypothyroid animals, respectively. The PRL response to TRH is 55 and 40% inhibited in hypothyroid and intact rats, respectively, by thyroid hormone when combined with estrogen treatment. The present data clearly show that estrogens and thyroid hormones can affect TSH and PRL secretion, the effect of estrogens being predominantly on PRL secretion while thyroid hormone affects mainly TSH. The close correlation observed between the level of TRH receptors and PRL and TSH responses to TRH suggests that estrogens and, to a lesser extent, thyroid hormones, exert their action by modulation of the level of receptors for the neurohormone in both thyrotrophs and mammotrophs.  相似文献   

13.
The GHRH test represents a new tool in the study of secretion in man. Nine normal fasting males received on separate occasions in random order 1) GHRH 1-40 (1 microgram/Kg bw) iv at time 0; 2) TRH (6 micrograms/min) infusion between -30 and +120 min; 3) GHRH 1-40 (1 microgram/Kg bw) iv at time 0 plus TRH (6 micrograms/min) infusion between -30 and +120 min. Blood samples were drawn for GH, PRL and TSH at -90, -60, -30, 0 min and then every 15 min for 2 h. GHRH significantly increased GH in all subjects. The same GH response was found during GHRH plus TRH test. No effect was found either on PRL and TSH secretion after GHRH administration, or on GH pattern after TRH administration. A significant decrease of TSH, but not of PRL response was observed after GHRH plus TRH administration in comparison to TRH alone. These results underline that the inhibitory effect exerted by TRH on GH secretion during some experimental conditions is not linked to a pituitary interference between GHRH and TRH. The difference in TSH secretion, following GHRH plus TRH in comparison with TRH alone, could be due to a GHRH-induced central inhibitory mechanism, probably GHRH-related.  相似文献   

14.
Galanin (GAL), a 29-amino acid peptide, affects the secretion of several anterior pituitary hormones, including PRL and GH. Since GAL coexists with vasopressin and CRH in the hypothalamic paraventricular nucleus (PVN), we have studied the pharmacological and physiological actions of GAL on ACTH and TSH secretion in freely moving male rats. Cannulae were surgically implanted in the right atria and brain, intraventricular or adjacent to the PVN, of adult Sprague-Dawley rats. Seven days later, GAL (500 or 1000 ng) or saline was infused into the PVN, and serial blood samples were obtained 5, 10, 20, and 40 min after the infusion. Some animals were also stressed by the inhalation of ether vapors for 2 min after the PVN infusion. Basal ACTH concentrations were increased 2-fold in saline-treated rats; however, plasma ACTH levels were unchanged after GAL infusion. The exposure of rats to ether vapors for 2 min after the infusion of saline into the PVN increased plasma ACTH concentrations from 22.8 +/- 6.0 to 596.6 +/- 59.9 pg/ml 10 min later. However, the infusion of GAL into the PVN attenuated stress-induced ACTH secretion. After GAL infusion, peak ACTH levels (332.7 +/- 84.0 pg/ml) were attained 5 min after ether exposure, followed by a rapid decline at 10 min (P less than 0.001) and 20 min (P less than 0.05). Plasma TSH concentrations were unchanged by GAL or saline infusion and were not affected by ether vapor inhalation. To determine the physiological significance of GAL in the control of ACTH and TSH secretion, endogenous GAL was immunoneutralized by the infusion of 3 microliters GAL antiserum (GAL-AS) into the third cerebral ventricle 25 and 1 h before withdrawing blood samples every 15 min for 6 h. Animals treated with normal rabbit serum (NRS) served as controls. Plasma ACTH concentrations were unchanged by NRS during the 6-h period. However, infusion of GAL-AS raised plasma ACTH concentrations to over 400 pg/ml 75 min after infusion in some animals. In general, plasma ACTH concentrations were increased 4 h of the 6-h sampling period compared to levels in NRS-treated controls. In contrast, GAL-AS reduced TSH concentrations by 50% compared to control values. In contrast to these marked actions of centrally administered GAL, ACTH secretion from dispersed anterior pituitary cells in vitro was unaffected by GAL in concentrations up to 10(-6) M. Furthermore, GAL did not alter CRH (1 nM)-induced ACTH secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The influence of fenoldopam, a dopamine (DA) D-1 receptor agonist, on basal and GnRH/TRH stimulated PRL, GH, LH, TSH, testosterone and thyroid hormone secretion was studied in nine normal men. All men received 4-h infusions of either 0.9% saline or fenoldopam at an infusion rate of 0.5 microgram/kg min, 12-16 ml/h, adjusted according to weight. After 3 h of infusion, 50 micrograms GnRH and 100 micrograms TRH was given i.v. Blood samples were collected every 15 min from 1 h before to 1 h after the infusion for a total of 6 h for measurements of PRL, LH, FSH, GH, TSH, testosterone, T4 and T3. The median PRL concentration increased significantly (P less than 0.01) to 128%, range 87-287, of preinfusion levels, compared to the decline during control infusion (85%, 78-114). Basal TSH levels declined significantly to 71% (60-91) during fenoldopam compared with 82% (65-115) during control infusion (P less than 0.05). Basal LH, FSH, GH and thyroid hormones were similar during fenoldopam and control infusions (P greater than 0.05). The LH response to GnRH/TRH was significantly (P less than 0.02) increased by fenoldopam infusion. Basal and stimulated testosterone concentration was lower during fenoldopam (P less than 0.01) infusion compared with control. Other hormones were similar after GnRH/TRH stimulation during fenoldopam and saline infusions. These results suggest that DA D-1 receptors are involved in the modulation of pituitary hormone secretion. We suggest that the effect of fenoldopam on PRL and TSH is mainly at the hypothalamic level. Regarding the effect on LH concentrations, an additional direct effect of fenoldopam on testosterone regulation can not be excluded.  相似文献   

16.
To determine the impact of induced hypo- and hypercalcemia on TRH (400 micrograms)-stimulated TSH and PRL release, healthy subjects (n = 11) were infused with 5% glucose in water (n = 11), disodium EDTA (n = 11), or calcium gluconate (n = 7). TRH was given as an iv bolus 60 min (5% glucose and EDTA) and 120 min (calcium) after initiation of the respective infusion. Basal plasma concentrations of TSH remained unchanged during induced hypo- and hypercalcemia, whereas those of PRL fell during the latter (P less than 0.05). The mean sum of increments (0-90 min) in PRL and TSH was considerably greater during hypocalcemia than during hypercalcemia (PRL, P less than 0.002; TSH, P less than 0.005). The increments in the plasma hormone concentration above basal after iv TRH were increased compared to those in normocalcemia (PRL, 98.4 +/- 37.9 ng/ml; TSH, 38.9 +/- 11.8 microU/ml) during hypocalcemia [PRL, 128 +/- 47.8 ng/ml (P less than 0.002); TSH, 46.7 +/- 12.8 microU/ml; (P less than 0.005)], but were impaired during hypercalcemia [PRL, 70.1 +/- 27 ng/ml (P less than 0.002); TSH, 28.9 +/- 8.5 microU/ml (P less than 0.025)]. The mean sum of increments in PRL was related to concentrations of both serum calcium (r = -0.59; P less than 0.01) and PTH (r = 0.51; P less than 0.05). A relation was also seen between the incremental responses of TSH and serum calcium (r = -0.52; P less than 0.05), PTH (r = 0.55; P less than 0.01), and phosphorus (r = -0.55; P less than 0.01). We conclude that in healthy man, TRH-mediated release of both PRL and TSH are inversely related to serum calcium concentrations in such a manner that hormone secretion is enhanced by acute hypocalcemia, but blunted by hypercalcemia.  相似文献   

17.
Although it has been well established that Ca2+ plays an essential role in the release of several hormones, very little is known of the interactions between Ca2+ and secretagogues in the process of pituitary hormone release. One possible way of studying the mechanism of action of hypothalamic releasing hormones is to study how organic calcium antagonists affect their action. Consequently, we infused the commonly used calcium antagonist, verapamil, into 20 normal subjects (10 men and 10 women; aged 19-37 yr) and studied its effects on both basal pituitary hormone levels and augmented hormonal release induced by gonadotropin-releasing hormone (GnRH) and TRH. Verapamil, infused at a rate of 5 mg/h for 3 h, induced a significant and marked suppression of circulating LH and FSH levels in both men and women. By the end of the infusion, the suppression of release was greater for LH (60%) than for FSH (54%). After the termination of the infusion, plasma gonadotropin concentrations returned progressively to basal levels within 2 h. Verapamil was also capable of blunting the peak incremental gonadotropin response to GnRH. Although the basal TSH concentration was apparently unaffected by verapamil, the incremental TSH response to TRH was significantly inhibited in both men and women. Verapamil infusion did not affect either the basal PRL concentration or the PRL response to TRH. Our data provide evidence that verapamil exerts different effects on the release of pituitary hormones in normal subjects. It inhibits the centrally mediated as well as the peripherally mediated gonadotropin release and blunts the TSH response to TRH. On the contrary, verapamil does not seem to affect basal or TRH-mediated PRl release. The use of organic calcium antagonists in experimental models in vitro as well as in vivo appears to offer a promising tool for further studies on the mechanism of action of secretagogues in the process of hormone release.  相似文献   

18.
Effect of estradiol on the spontaneous and thyrotropin-releasing hormone (TRH)-stimulated release of prolactin (PRL) and thyrotropin (TSH) in young and aged ovariectomized (Ovx) rats was investigated. Old (22-26 months) and young (3 months) female rats were Ovx 3 weeks before use. They were injected subcutaneously with estradiol benzoate (EB, 25 micrograms/kg) or sesame oil for 3 days and were catheterized via the right jugular vein. Twenty hours after the last administration of EB, rats were injected with TRH (10 micrograms/kg) through the catheter. Blood samples were collected before and 5, 10, 20, 40 and 60 min after TRH injection. On the day following blood sampling, all rats were decapitated. The anterior pituitary glands (APs) were excised, and incubated with or without TRH (10 ng/ml) at 37 degrees C for 30 min. The basal level of PRL concentration in plasma samples was 5-fold higher in old Ovx rats than in young Ovx rats. Five min after TRH injection, the increase in plasma PRL was greater in old animals than in young animals. Plasma PRL remained higher in old animals than in young animals at 10, 20, 40 and 60 min following TRH challenge. Administration of EB to old and to young Ovx rats produced increases in both basal and TRH-stimulated secretions of PRL, but did not affect the difference in plasma PRL patterns between old and young animals. The release of PRL from APs was increased significantly in all rats after a 30-min incubation with TRH. In Ovx rats injected with oil, the basal release of PRL in vitro was increased with age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The mechanism by which estrogen enhances prolactin (PRL) secretion and induces hyperplasia of lactotrophs is not defined clearly. The objective of this study was to examine hypothalamic monoaminergic PRL regulatory systems and pituitary hormone secretion in the early and later stages of estrogen-induced hyperprolactinemia and pituitary hyperplasia. Dopamine (DA) and serotonin (5-HT) turnover were determined in microdissected brain regions 3 and 30 days after a single subcutaneous dose of estradiol (2 mg) to male ACI rats. Plasma samples were collected in animals with indwelling intra-atrial cannulae. 3 days after estrogen there was a significant increase in plasma PRL, pituitary PRL and growth hormone (GH), and DA turnover in the median eminence and arcuate nucleus. Plasma concentrations and pituitary content of PRL increased at 30 days. The responsiveness of PRL to thyrotropin-releasing hormone (TRH) was enhanced at both times. Concentrations of DA decreased considerably in the median eminence and arcuate nucleus by 30 days, and turnover decreased in the median eminence. 5-HT turnover was not affected in the early stages of hyperprolactinemia. Plasma GH increased and TSH was unchanged, even though pituitary content of both hormones decreased at 30 days. Estrogen had no effect on plasma corticosterone. These findings support the hypothesis that estrogen induces pituitary hyperplasia by antagonizing DA inhibition of PRL-secreting cells and by enhancing their responsiveness to TRH.  相似文献   

20.
Holstein heifers were treated with synthetic thyrotropin-releasing hormone (TRH) or saline twice daily from one week through 6 mo of age. Plasma concentrations of prolactin (PRL) and thyrotropin (TSH) were elevated (P less than .01) within 30 min after the first TRH injection (1 week of age). At 1 and 3 mo of treatment, PRL and TSH increased in response to TRH, although the TSH response was reduced (P less than .01) as compared to the first day of treatment. Although plasma growth hormone (GH) appeared to be elevated following the first TRH injection, this effect was not statistically significant (P less than .05), nor was it significantly influenced by treatment following subsequent TRH injections. None of the 3 hormones, PRL, TSH or GH, was elevated following the final TRH injection at 6 mo of age. In contrast, plasma concentrations of PRL and TSH were increased in a control heifer injected with TRH at 6 mo. These data indicate that hormonal responsiveness to TRH stimulation decreases with continued twice daily treatment at doses of TRH used in the present studies. Examination of weight gains indicated that chronic treatment with TRH was associated with increased growth rate through 6 mo of age (10.6% increased average daily gains P less than .10), which was exhibited in a steeper slope (P less than .05) of the growth curve in the TRH group. Feed intake was slightly greater in TRH heifers, although feed efficiency (kg feed/kg gain) was not different between the two groups. Plasma concentrations of PRL increased (P less than .01) with age (r = +0.938) in control heifers while plasma TSH and GH were not significantly related to age. This observation establishes a positive correlative relationship between PRL secretion and the approach of puberty in the dairly heirfer. It was also noted that elevation of PRL secretion by TRH treatment was associated with significant advancement of age at first observed estrus (9.4 vs. - 10.5 mo) suggesting that a functional relationship between PRL secretion and puberty may exist in dairy heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号