首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Grigg AP  Bhathal PS 《Pathology》2001,33(1):44-49
Iron overload has been proposed as a cause of liver dysfunction after BMT Factors which could be relevant to iron overload include the number of red cell transfusions and mutations within the haemochromatosis gene (HFE). Two point mutations, Cys282Tyr and His63Asp, have been described within HFE. Cys282Tyr homozygosity is associated with haemochromatosis; the effect of compound heterozygosity, Cys282Tyr/His63Asp, on iron status is variable. We analysed HFE status in 52 allograft patients surviving more than 6 months. Compound heterozygosity was identified in three patients (Cases 1-3). Iron status and liver function were evaluated and, in Cases 1 and 2, liver histology and iron content as well. Case 3 who received 12 units of red cells had a normal ferritin and liver function. Cases 1 and 2 received 29 and 59 units, respectively, and had high serum ferritins and transferrin saturations, abnormal liver function and significant hepatic iron overload on biopsy. Iron overload in Case 1 patient progressed in the context of GVHD and in the absence of further transfusion, suggesting that liver GVHD may increase hepatic iron accumulation. These cases demonstrate the variable phenotypic expression of HFE compound heterozygosity in BMT recipients, which may be only partly explained by transfusional iron loading. Venesection or chelation therapy should be considered in patients with coexistent hepatic GVHD and iron overload.  相似文献   

2.
Abstract: A simple PCR-SSOP approach based on a single PCR product has been developed to screen the HFE gene for the haemochromatosis-associated mutations Cys 282 Tyr and His 63 Asp. Using this approach the prevalence of these mutations in a cohort (30) of haemochromatosis patients and normal controls (404) was determined. Ninety percent of the haemochromatosis patients were homozygous for the Cys 282 Tyr mutation. In the normal population we found an increased incidence of the Cys 282 Tyr mutation (17.3%; 95% confidence limits 0.136–0.209) which was also reflected in the higher frequency of Cys 282 Tyr homozygotes (1.24%; 95% confidence limits 0.0015–0.0232). Linkage disequilbrium analysis confirmed the association between A*03 and Cys 282 Tyr. However, strong linkage disequilibrium occurred with the HLA-A*03-associated allele HLA-B*14 but not the HLA-A*03-associated allele HLA-B*07. The His 63 Asp was found to be in linkage disquilibrium with HLA-A*29.  相似文献   

3.
Haemochromatosis (HC) is an autosomal recessive disease with progressive iron overload leading to midlife onset of clinical complications. The causal gene (HFE) maps to 6p, in close linkage with the HLA class I genes. An HFE candidate gene recently identified has two missense mutations (C282Y and H63D) associated with the disease. Here we document the phenotypic and genetic analysis of a nuclear family comprising two sibs with symptomatic and massive iron overload before the age of 25. The disease seemed to be recessively transmitted and fitted the agreed criteria for haemochromatosis, but was neither associated with the C282Y and H63D mutations nor linked with HLA markers. Our data strongly support locus heterogeneity in haemochromatosis by showing evidence that the gene responsible for juvenile haemochromatosis (JH) does not map to 6p. In the absence of clear cut phenotypic distinction from typical haemochromatosis, patients below 30 years of age and C282Y negative should be considered as putative juvenile cases. This has practical implications in genetic counselling and family management.  相似文献   

4.
Background: Genetic testing can determine those at risk for hereditary haemochromatosis (HH) caused by HFE mutations before the onset of symptoms. However, there is no optimum screening strategy, mainly owing to the variable penetrance in those who are homozygous for the HFE Cys282Tyr (C282Y) mutation. The objective of this study was to identify the majority of individuals at serious risk of developing HFE haemochromatosis before they developed life threatening complications.  相似文献   

5.
Global prevalence of putative haemochromatosis mutations.   总被引:44,自引:4,他引:44       下载免费PDF全文
Haemochromatosis is a genetic disease associated with progressive iron overload, and is common among populations of northern European origin. HLA-H is a recently reported candidate gene for this condition. Two mutations have been identified, a substitution of cysteine for tyrosine at amino acid 282 (C282Y, nucleotide 845) and of histidine for aspartate at amino acid 63 (H63D, nucleotide 187). Over 90% of UK haemochromatosis patients are homozygous for the C282Y mutation. We have examined 5956 chromosomes (2978 people) for the presence of HLA-H C282Y and H63D by PCR followed by restriction enzyme analysis. We have found world wide allele frequencies of 1.9% for C282Y and 8.1% for H63D. The highest frequencies were 10% for C282Y in 90 Irish chromosomes and 30.4% for H63D in 56 Basque chromosomes. C282Y was most frequent in northern European populations and absent from 1042 African chromosomes, 484 Asian chromosomes, and 644 Australasian chromosomes. The distribution of the C282Y mutation coincides with that of populations in which haemochromatosis has been reported and is consistent with the theory of a north European origin for the mutation. The H63D polymorphism is more widely distributed and its connection with haemochromatosis remains unclear.  相似文献   

6.
The HFE gene contains two main missense mutations: C282Y and H63D. Individuals with these mutations carry a risk of developing hereditary haemochromatosis (HH). The common form of this disease is due to homozygosity for the C282Y mutation. Population studies have shown the variation of the prevalence of these mutations in different countries and ethnic groups. The purposes of this current study were to determine the prevalence of the C282Y and H63D mutations in the Balearic Islands and the genotypic characterization of patients diagnosed with HH, as well as those with iron overload and liver diseases. A total of 1330 Balearic chromosomes were analyzed. The results showed that the populations of the Balearic Islands were not homogeneous. No C282Y carriers were observed in a group of descendants of Majorcan Jews (Chuetas) and the frequency was very low in Minorca (1.2%) in comparison with the other islands of Majorca (4.7%) and Ibiza (6.5%). The carrier frequency of the H63D mutation was similar in the three islands and very high (43.1%) in the descendants of Majorcan Jews. The study of patients was carried out in 129 individuals. The homozygous C282Y genotype was the principal one involved in hereditary haemochromatosis (90%), whereas the other HH patients were C282Y/H63D compound heterozygous and H63D homozygous.  相似文献   

7.
HFE-related hemochromatosis (HFE hemochromatosis) or type 1 hemochromatosis is an autosomal recessive disease characterized by progressive iron overload usually expressed in adulthood. The HFE gene, located on the short arm of chromosome 6 (6p21.3), encodes a protein that plays a crucial role in iron metabolism by modulating hepcidin synthesis in the liver. Homozygosity for the p.Cys282Tyr mutation accounts for nearly 80% of cases of hemochromatosis in France. Genetic testing is the key investigation to confirm the diagnosis of HFE hemochromatosis. A survey on routine practices was carried out among the eight reference laboratories of the French national network on genetic iron disorders. The main findings from this survey are as follows: 1) the p.Cys282Tyr mutation must be searched for as an initial step to establish the diagnosis of HFE hemochromatosis. This is in agreement with the recommendations of the French Health Authority (HAS) published in 2005. In these recommendations, homozygosity for the p.Cys282Tyr mutation with at least elevated transferrin saturation, is considered the only genotype that confirms of the diagnosis of HFE hemochromatosis; 2) in combination with the p.Cys282Tyr mutation (compound heterozygous genotypes), the p.Ser65Cys and the p.His63Asp variants may contribute to the occurrence of mild iron overload; 3) family screening is mandatory following the detection of homozygous individuals for the p.Cys282Tyr mutation.  相似文献   

8.
Glycogen storage disease type Ia (GSD-Ia) is caused by deleterious mutations in the glucose-6-phosphatase gene (G6PC). A molecular study of this gene was carried out in 11 Argentinean patients from 8 unrelated families. Four missense (p.Gln54Pro, p.Arg83Cys, p.Thr16Arg, and p.Tyr209Cys) and one deletion (c.79delC) mutations have been identified. Two novel mutations, p.Thr16Arg (c.47C>G) located within the amino-terminal domain and p.Tyr209Cys (c.626A>G) situated in the sixth transmembrane helix, were uncovered in this study. Site-directed mutagenesis and transient expression assays demonstrated that both p.Thr16Arg and p.Tyr209Cys mutations abolished enzymatic activity as well as reduced G6Pase stability.  相似文献   

9.
Abstract: Genetic hemochromatosis (GH) is closely associated with genes of the major histocompatibility complex (MHC) on chromosome 6. Recently, a candidate gene for GH, with structural similarities to MHC class I genes, designated HLA-H and presently named HFE, has been cloned. The HFE gene is localized telomeric to the MHC and several reports have indicated that the HFE gene is mutated in GH patients. In the present study we have analyzed the relationship of HFE gene variants and disease manifestation in GH patients and family members. Fifty-seven patients with GH, 73 family members and 153 healthy blood donors were studied for the amino acid dimorphism at codon 63 (His63Asp=H63D) and codon 282 (Cys282Tyr= C282Y) of the HFE gene. The codon 63 and 282 dimorphism were defined by PCR amplification of genomic DNA samples and restriction enzyme digestion using RsaI/SnaBI for C282Y and Bcll/Mbo 1 for H63D. Ferritin, transferrin serum levels and total iron-binding capacity were determined prior to therapeutic intervention. The Tyr-282 substitution occurred in 53 (93%) of patients compared with 8 (5.2%) of controls (OR=169, P >0.0001). Fifty-one (90%) patients were Tyr-282 homozygous. In contrast, the Asp-63 substitution was present in 5 (8.8%) of the patients compared with 34 (22%) of controls (OR=0.39, P =NS) with none of the patients being homozygous. In Tyr-282 homozygous GH patients serum ferritin levels, transferrin saturation, liver iron and liver iron index were elevated significantly compared to Tyr-282-negative patients, whereas no difference was observed between Tyr/Cys-282 heterozygous and Tyr-282-negative patients.  相似文献   

10.
The molecular basis of Glanzmann thrombasthenia (GT) was studied in 40 families from southern India. Of 23 identified mutations (13 in the alphaIIb (ITGA2B) gene and 10 in the beta3 (ITGB3) gene), 20 were novel and three were described previously. Three mutations in the beta3 gene-p.Leu143Trp (Leu117Trp), p.Tyr307Stop (Tyr281Stop), and p.Arg119Gln (Arg93Gln)-were detected in 12, three, and two families, respectively, with definite founder effects observed for the first two mutations. Alternative splicing was predicted in silico for the normal variant and a missense variant of the beta3 gene, and for 10/11 frameshift or nonsense mutations in alphaIIb or beta3. The prediction was confirmed experimentally for a c.2898_2902dupCCCCT mutation in exon 28 of the alphaIIb gene that induced exon skipping. Seven out of nine missense mutations substituted highly conserved amino acids buried in the proteins' cores, predicting structural abnormalities. Among these, a beta3 substitution, p.Cys39Gly (Cys13Gly) was found to cause intracellular degradation of the beta3 subunit, in contrast to previous findings that mutations at Cys435, the partner of Cys13 in a disulfide bond, cause constitutive activation of alphaIIbbeta3. The two patients with a beta3 Arg93Gln mutation had normal clot retraction, consistent with a recent finding that this substitution is associated with normal surface expression of alphaIIbbeta3. In conclusion, this study demonstrates that a variety of mutations account for GT in southern Indian patients, provides new insights into mRNA splicing, and highlights the role of specific amino acids in structure-function correlations of alphaIIbbeta3.  相似文献   

11.
Haemochromatosis (HH) is a clinically and genetically heterogeneous disease caused by inappropriate iron absorption. Most HH patients are homozygous for the C282Y mutation in the HFE gene. However, penetrance of the C282Y mutation is incomplete, and other genetic factors may well affect the HH phenotype. Ferroportin and TFR2 mutations also cause HH, and two HAMP mutations have recently been reported that causes juvenile haemochromatosis (JH) in the homozygous state. Here, we report evidence for digenic inheritance of HH. We have detected two new HAMP mutations in two different families, in which there is concordance between severity of iron overload and heterozygosity for HAMP mutations when present with the HFE C282Y mutation. In family A, the proband has a JH phenotype and is heterozygous for C282Y and a novel HAMP mutation Met50del IVS2+1(-G). This is a four nucleotide ATGG deletion which causes a frameshift. The proband's unaffected mother is also heterozygous for Met50del IVS2+1(-G), but lacks the C282Y mutation and is heterozygous for the HFE H63D mutation. Met50del IVS2+1(-G) was absent from 642 control chromosomes. In family B, a second novel, less severe HAMP mutation, G71D, was identified. This was detected in the general population at an allele frequency of 0.3%. We propose that the phenotype of C282Y heterozygotes and homozygotes may be modified by heterozygosity for mutations which disrupt the function of hepcidin in iron homeostasis, with the severity of iron overload corresponding to the severity of the HAMP mutation.  相似文献   

12.
Mutation analysis was performed on DNA samples of 965 individuals from four different ethnic groups in South Africa, in an attempt to determine the spectrum of sequence variants in the haemochromatosis ( HFE ) gene. This population screening approach, utilizing a combined heteroduplex and single-strand conformation polymorphism (HEX-SSCP) method, revealed three previously described and four novel missense mutations. Novel variants V53M and V59M were identified in exon 2, Q127H in exon 3 and R330M in exon 5. The exon 5 variant was identified in one of 13 patients referred for a molecular diagnosis of hereditary haemochromatosis (HH), who tested negative for the known C282Y and H63D mutations. Mutation Q127H was detected in exon 3 of the HFE gene together with mutation H63D in an apparently severely affected patient previously shown to carry the protoporphyrinogen oxidase ( PPOX ) gene mutation R59W, which accounts for dominantly inherited variegate porphyria (VP) in >80% of affected South Africans. The mutant allele frequency of the C282Y mutation was found to be significantly lower in 73 apparently unrelated VP patients with the R59W mutation than in 102 controls drawn from the same population ( P = 0.005). The population screening approach used in this study revealed considerable genotypic variation in the HFE gene and supports previous data on the involvement of this gene in the porphyria phenotype.  相似文献   

13.
Abstract: Hereditary haemochromatosis (HH), a condition of abnormal iron metabolism which leads to iron overload and organ damage, previously known as bronze diabetes or idiopathic haemochromatosis, is the most common disease-producing genetic disorder among Europeans. Two mutations, C282Y and H63D, are described for the candidate gene, HFE, reported as being responsible for the disease. Since molecular testing of these mutations will be of value in early diagnosis of haemochromatosis, the aim of this study was to develop a simple, fast and inexpensive technique for the determination of the polymorphism in the HFE gene on a large scale. We designed sequence-specific primers for polymerase chain reaction (PCR-SSP) and tested 200 randomly selected healthy Danes and found the result completely comparable to results obtained by a previously described method, PCR-RFLP. The gene frequencies in the Danish population are similar to reported results for the White population, with a frequency of 0.068 for the C282Y mutation and a frequency of 0.128 for the H63D mutation.  相似文献   

14.
Morquio A syndrome (MPS IVA) is a recessive lysosomal storage disorder (LSD) caused by mutations in the GALNS gene leading to the deficiency of lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Patients show a broad spectrum of phenotypes ranging from classical severe type to mild forms. Classical forms are characterized by severe bone dysplasia and usually normal intelligence. So far, more than 170 unique mutations have been identified in the GALNS gene of MPS IVA patients. We report on a Morquio A patient with a classical phenotype who was found to be homozygous for a missense mutation (c.236 G>A; p.Cys79Tyr) in the GALNS gene. This alteration affects the highly conserved p.Cys79 that is transformed into formylglycine, the catalytic residue of the active site. The mutation was present in the proband's mother, but not in the father, whose paternity was confirmed by microsatellite analysis. In order to test the hypothesis of maternal uniparental disomy (UPD), we investigated the segregation of sixteen microsatellite markers from chromosome 16. The results showed a condition of maternal UPD due to an error in meiosis I. Maternal isodisomy of the 16q24 region led to homozygosity for the GALNS mutant allele, causing the patient's disease. These findings allow to add for the first time the LSD Morquio A syndrome to the list of conditions that can be caused by UPD. The possibility of UPD is relevant when giving genetic counseling to couples since the recurrent risk in future pregnancies is dramatically reduced.  相似文献   

15.
Background:Patients with hereditary haemochromatosis (HH) are usually homozygous for the C282Y mutation in the HFE gene. They have variable expression of iron overload and present with a variety of complications, including liver disease, diabetes, arthropathy, fatigue, and cardiomyopathy. The mitochondrial 16189 variant is associated with diabetes, dilated cardiomyopathy, and low body fat at birth, and might contribute to genetic predisposition in further multifactorial disorders. The objective of this study was to determine the frequency of the 16189 variant in a range of patients with haemochromatosis, who had mutations in the HFE gene.

Methods:Blood DNA was analysed for the presence of the 16189 variant in British, French, and Australian C282Y homozygotes and controls, with known iron status, and in birth cohorts.

Results:The frequency of the mitochondrial 16189 variant was found to be elevated in individuals with haemochromatosis who were homozygous for the C282Y allele, compared with population controls and with C282Y homozygotes who were asymptomatic (42/292 (14.4%); 102/1186 (8.6%) (p = 0.003); and 2/64 (3.1%) (p = 0.023), respectively).

Conclusions:Iron loading in C282Y homozygotes with HH was exacerbated by the presence of the mitochondrial 16189 variant.

  相似文献   

16.
《Genetics in medicine》2018,20(4):383-389
Iron overload (hemochromatosis) can cause serious, symptomatic disease that is preventable if detected early and managed appropriately. The leading cause of hemochromatosis in populations of predominantly European ancestry is homozygosity of the C282Y variant in the HFE gene. Screening of adults for iron overload or associated genotypes is controversial, largely because of a belief that severe phenotypes are uncommon, although cascade testing of first-degree relatives of patients is widely endorsed. We contend that severe liver disease (cirrhosis or hepatocellular cancer) is not at all uncommon among older males with hereditary hemochromatosis. Our review of the published data from a variety of empirical sources indicates that roughly 1 in 10 male HFE C282Y homozygotes is likely to develop severe liver disease during his lifetime unless iron overload is detected early and treated. New evidence from a randomized controlled trial of treatment allows for evidence-based management of presymptomatic patients. Although population screening for HFE C282Y homozygosity faces multiple barriers, a potentially effective strategy for increasing the early detection and prevention of clinical iron overload and severe disease is to include HFE C282Y homozygosity in lists of medically actionable gene variants when reporting the results of genome or exome sequencing.  相似文献   

17.
Mitochondrial encephalopathies are a heterogeneous group of disorders that, usually carry grave prognosis. Recently a homozygous mutation, Gly372Ser, in the TIMM50 gene, was reported in an abstract form, in three sibs who suffered from intractable epilepsy and developmental delay accompanied by 3‐methylglutaconic aciduria. We now report on four patients from two unrelated families who presented with severe intellectual disability and seizure disorder, accompanied by slightly elevated lactate level, 3‐methylglutaconic aciduria and variable deficiency of mitochondrial complex V. Using exome analysis we identified two homozygous missense mutations, Arg217Trp and Thr252Met, in the TIMM50 gene. The TIMM50 protein is a subunit of TIM23 complex, the mitochondrial import machinery. It serves as the major receptor in the intermembrane space, binding to proteins which cross the mitochondrial inner membrane on their way to the matrix. The mutations, which affected evolutionary conserved residues and segregated with the disease in the families, were neither present in large cohorts of control exome analyses nor in our ethnic specific exome cohort. Given the phenotypic similarity, we conclude that missense mutations in TIMM50 are likely manifesting by severe intellectual disability and epilepsy accompanied by 3‐methylglutaconic aciduria and variable mitochondrial complex V deficiency. 3‐methylglutaconic aciduria is emerging as an important biomarker for mitochondrial dysfunction, in particular for mitochondrial membrane defects.  相似文献   

18.
 目的: 本研究对2个不同马凡综合征(Marfan syndrome)的小家系进行致病基因FBN1的编码区和剪切位点突变检测,以寻找致病的突变,并初步探索马凡综合征基因型-表型的关联。方法: 通过临床检查、实验室检查及心脏超声检查确诊2个无血缘关系的家庭中原疑似为马凡综合征的3例患者。运用新一代测序对家系1的疑似患者行FBN1基因的全外显子组测序,并对检出的致病性遗传变异进行Sanger验证及在所有家系成员中验证;对于家系2的存活成员,本研究直接进行PCR扩增FBN1基因的所有编码区及剪切位点,对产物进行直接Sanger测序。另外在50个正常对照中对新发现的突变位点进行基于PCR产物的测序分析,以排除多态性;并对实验结果行生物信息学分析。结果: 所有存活的疑似患者均确诊为马凡综合征。在家系1中,我们检测到了一个FBN1基因数据库中尚未报道的新突变c.4685G>A(p.Cys1562Tyr),并且患者父母和同胞姐姐均未检测到此变异,故此突变为一个新生突变。该错义突变使第1562位上极性中性的含硫的半胱氨酸被极性中性的含羟苯基的酪氨酸所替代,影响了fibrillin-1蛋白一个TGF-β结合结构域,导致蛋白质的二级结构发生改变。家系2含父母及一对同卵双胎患者,其中一患者已去世。我们在存活患者检测到1个FBN1基因的已报道致病突变c.3706T>C(p.Cys1236Arg),该突变在患者父母中不存在,故也为新生突变。结论: 本文报道了一例FBN1基因的新突变及另一例由FBN1基因已知突变引起的马凡综合征,二者皆为新生突变,并在家系中进行了基因型-表型的比较,表明家系1的新突变可能与经典马凡综合征的表型相关,而家系2的已知突变确和新生儿重症马凡综合征表型相关。  相似文献   

19.
Autosomal recessive limb-girdle muscular dystrophy linked to 19q13.3 (LGMD2I) was recently related to mutations in the fukutin-related protein gene (FKRP) gene. Pathogenic changes in the same gene were detected in congenital muscular dystrophy patients (MDC1C), a severe disorder. We have screened 86 LGMD genealogies to assess the frequency and distribution of mutations in the FKRP gene in Brazilian LGMD patients. We found 13 Brazilian genealogies, including 20 individuals with mutations in the FKRP gene, and identified nine novel pathogenic changes. The commonest C826A European mutation was found in 30% (9/26) of the mutated LGMD2I alleles. One affected patient homozygous for the FKRP (C826A) mutation also carries a missense R125H change in one allele of the caveolin-3 gene (responsible for LGMD1C muscular dystrophy). Two of her normal sibs were found to be double heterozygotes. In two unrelated LGMD2I families, homozygous for novel missense mutations, we identified four asymptomatic carriers, all older than 20 years. Genotype-phenotype correlation studies in the present study as well as in patients from different populations suggests that the spectrum of variability associated with mutations in the FKRP gene seems to be wider than in other forms of LGMD. It also reinforces the observations that pathogenic mutations are not always determinant of an abnormal phenotype, suggesting the possibility of other mechanisms modulating the severity of the phenotype that opens new avenues for therapeutic approaches.  相似文献   

20.
HFE蛋白与遗传性血色病   总被引:2,自引:0,他引:2  
遗传性血色病(hereditary haemochromatosis,HH)是一种遗传性铁代谢疾病。发病遍及全球,以白种人发病较多,北欧人群发病率可高达1/200。大约1/10的白色人种是HFE突变基因携带者[1]。国内对HH的发病率尚无确切统计数字,但全国各地均有病例报道[2]。HH主要特征为小肠铁吸收过量增加,逐渐在肝、心、胰和其它内分泌器官的实质细胞沉积,造成器官功能障碍、肝硬化、心力衰竭、糖尿病、垂体功能减退和关节疾病等。此种疾病首次报道於1865年,当时认为HH是糖尿病的一种特殊病例。尔后将这类疾病称为色素性肝硬化(pigment cirrho-sis),或古铜色糖…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号