首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M G Cunha  M M Rodrigues  I S Soares 《Vaccine》2001,20(3-4):385-396
The 19kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)) is one of the most promising vaccine candidates against the erythrocytic forms of malaria. In the present study, we used three different Escherichia coli expression vectors to generate five recombinant proteins representing the MSP1(19) of Plasmodium vivax. These proteins were compared for reactivity with a panel of sera from individuals naturally exposed to P. vivax and for their immunogenicity in mice. Among the proteins studied, MSP1(19) expressed by the vector pET (His(6)-MSP1(19)) was better recognized by the antibodies of several individuals exposed to P. vivax. The addition of the T-cell Pan-allelic DR epitope (PADRE) did not alter the recognition of this recombinant protein by human antibodies. Although recombinant proteins were immunogenic to mice, immunization with MSP1(19) expressed by the pET or pGEX vectors induced significantly higher antibody titers than a protein produced by the pMAL vector. The antibody immune response elicited by His(6)-MSP1(19) containing the PADRE epitope was compared using different adjuvant formulations. After only two immunizing doses, antibody titers induced in the presence of the adjuvants TiterMax, MPL/TDM/CWS or alum plus CpG ODN 1826 were as high as titers generated by complete Freund's adjuvant. We concluded that, among the bacterial recombinant proteins, MSP1(19) expressed by the vector pET should be selected for further evaluation in pre-clinical immunizations against P. vivax.  相似文献   

2.
For efficacious vaccine development against Pseudomonas aeruginosa (P. aeruginosa), the immunogenicity of multivalent DNA vaccine was evaluated. Three different plasmids each targeting a fusion of outer membrane proteins (OprF/OprI), a protein regulating type III secretion system (PcrV), or an appendage (PilA) were prepared and mice were immunized with single (monovalent) or a combination of these plasmids (multivalent) via intramuscular electroporation (imEPT) or gene gun. Immunization with multivalent DNA vaccine via imEPT induced the most potent protection against lethal pneumonia. Although the serum levels of IgG binding to whole bacteria cells were comparable between groups, the strongest immune protection was associated with the serum levels of Th1-dominated multivalent IgG, the bronchoalveolar levels of macrophage inflammatory protein 2 (MIP-2) and IFN-gamma, and the number of neutrophils and macrophages in the bronchoalveolar lavage following intranasal challenge. These results implied the possible clinical application of multivalent DNA vaccine against P. aeruginosa.  相似文献   

3.
CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine   总被引:2,自引:0,他引:2  
At present few vaccine candidates exists against potentially pandemic influenza virus infections. We provide compelling evidence that a targeted fusion protein based on the CTA1-DD adjuvant and containing tandem repeats of the matrix protein 2 (M2e) ectodomain epitope, CTA1-3M2e-DD, confers strong protective immunity against a potentially lethal challenge infection with influenza virus in mice. The formulation was highly effective for mucosal immunizations and promoted high M2e-specific serum IgG and mucosal IgA antibody titers and an hitherto unknown anti-M2e CD4 T cell immunity. This novel CTA1-3M2e-DD fusion protein combines adjuvant and a conserved influenza A antigen in a promising candidate for a universal anti-influenza vaccine.  相似文献   

4.
A number of laboratories around the world are producing Plasmodium falciparum erythrocyte-stage vaccine candidates in the pursuit of a vaccine against clinical malaria disease. These candidates are often based on the same parasite protein. Rigorous clinical development and testing of multiple candidates is limited by available resources, which underscores the need to conduct comparative studies of the different vaccine candidates. The purpose of this study was to compare five different candidate proteins all based on P. falciparum merozoite surface protein-1 (MSP1). After investigators submitted their candidates, basic protein profiles were evaluated in a blinded fashion by an independent laboratory, and groups of rabbits were immunized with the proteins. Sera obtained from the rabbits were compared for antibody titers by ELISA and for functional activity by an in vitro parasite growth inhibition assay (GIA) activity, again in a blinded fashion. In selected cases the fine specificity of the antibodies was assessed. Significant differences in immunogenicity as well as the functional activity of antibodies induced by the various vaccine candidates were noted. Data from this study can assist in making decisions for further clinical development of MSP1-based candidates, and this process sets a precedent for future comparisons of malaria vaccine candidates.  相似文献   

5.
Diverse HPV subtypes are responsible for considerable disease burden worldwide, necessitating safe, cheap, and effective vaccines. The HPV minor capsid protein L2 is a promising candidate to create broadly protective HPV vaccines, though it is poorly immunogenic by itself. To create highly immunogenic and safe vaccine candidates targeting L2, we employed a plant-based recombinant protein expression system to produce two different vaccine candidates: L2 displayed on the surface of hepatitis B core (HBc) virus-like particles (VLPs) or L2 genetically fused to an immunoglobulin capable of forming recombinant immune complexes (RIC). Both vaccine candidates were potently immunogenic in mice, but were especially so when delivered together, generating very consistent and high antibody titers directed against HPV L2 (>1,000,000) that correlated with virus neutralization. These data indicate a novel immune response synergy upon co-delivery of VLP and RIC platforms, a strategy that can be adapted generally for many different antigens.  相似文献   

6.
Kim DK  Kim JJ  Kim JH  Woo YM  Kim S  Yoon DW  Choi CS  Kim I  Park WJ  Lee N  Jung SB  Ahn BY  Nam SW  Yoon SM  Choi WJ 《Vaccine》2000,19(9-10):1274-1283
The aim of the present study was to compare two immunization schedules for a Pseudomonas aeruginosa outer membrane proteins (OMPs) vaccine in burn patients. In a double-blind, randomized and placebo-controlled clinical trial, 95 adult patients with burn injuries in 10% or greater of total body surface area were randomly allocated to either placebo or immunization groups. Three doses of the vaccine (0.5 or 1.0 mg) were administered intramuscularly at either 3- or 7-day intervals. The vaccine was well tolerated, and no severe adverse reactions were observed in any of the vaccinees. After three immunizations, 88 patients were available for evaluation of serum antibody titers. Elevation of OMPs-specific antibody titers in the immunization groups was significantly higher as compared with the placebo group, and the highest antibody response was obtained by immunization with 1.0-mg doses at 3-day intervals. Conventional blood culture, tissue culture of wound biopsy specimens and a nested polymerase chain reaction (PCR) assay of blood specimens were performed to determine the protective efficacy. The results of the nested PCR indicated that the overall detection rate of P. aeruginosa in blood was significantly lower among immunized patients than placebo patients (6.1 vs. 40.0%, P<0.001). Based on these results, we concluded that the P. aeruginosa OMPs vaccine is safe and highly immunogenic in burn patients, especially with 1.0-mg doses at 3-day intervals, and may be effective in conferring protection against P. aeruginosa bacteremia in burn patients.  相似文献   

7.
A chimeric tobacco mosaic virus (TMV) was constructed by inserting sequences representing peptide 9-14mer (TDAYNQKLSERRAN) of outer membrane (OM) protein F of Pseudomonas aeruginosa between amino acids Ser154 and Gly155 of the TMV coat protein (CP). This is the first example of TMV being used to construct a chimera containing a bacterial epitope. Mice immunized with TMV-9-14 produced anti-peptide-9-14mer-specific antibodies that reacted in whole-cell ELISA with all seven Fisher-Devlin (FD) immunotype strains of P. aeruginosa, reacted specifically by Western blotting with OM protein F extracted from all seven FD immunotypes, and were opsonic in opsonophagocytic assays. The chimeric TMV-9-14 vaccine afforded immunoprotection against challenge with wild-type P. aeruginosa in a mouse model of chronic pulmonary infection. TMV-9-14 is an excellent candidate for further development as a vaccine for possible use in humans to protect against P. aeruginosa infections.  相似文献   

8.
Swine are an important amplifier of Japanese encephalitis (JE) virus in the paradomestic environment. In this study, two JE protein vaccine candidates were evaluated for immunogenicity in swine. Both vaccine plasmids are based on a prokaryotic vector pET-32a(+). One plasmid, designated pET-32a(+)-epitope, encode a cassette consisting of a neutralizing epitope on envelope (E) protein of JE virus, whereas the other plasmid, designated pET-32a(+)-epitope-hsp70, express the fusion protein of the epitope and M.T hsp70. Some differences were detected in the immunogenicity of these two proteins in swine. Swine immunized twice with 2000pmol of the neutralizing epitope or the fusion protein developed neutralizing antibody titers of respectively, 154 and 300, and anti-neutralizing epitope antibody titers of 10(4.25) and 10(6.0) by 3 weeks after the second immunization. In addition, swine immunized with the neutralizing epitope emulsified with adjuvant S206 or with imported mineral oil and Tween-80 induced neutralizing antibody titers of 196 and 244, and anti-neutralizing epitope antibody titers of 10(5.25) or 10(5.6) at the same time point. However, swine administered two doses of a commercial JE vaccine (attenuated virus preparation; JEV SA14-14-2 strain) developed less favorable antibody responses with neutralizing antibody titer 40 and anti-neutralizing epitope antibody titers 10(3.7). The anamnestic response was followed by monitoring titers 1 week after boosting with a viral antigen; swine immunized twice with the fusion protein showed a 177-fold increase in anti-neutralizing epitope titer, indicating a strong recall of the antibody response. The animals maintained detectable levels of anti-neutralizing epitope antibody for at least 105 days after two immunizations, indicating that these four protein antigens are able to stimulate virus-specific memory B cells and long-lasting antibodies at higher levels than is achieved using a current commercial attenuated JEV vaccine. The group immunized with the epitope fused to M.T hsp70 made the strongest proliferation of lymphocytes. Through the assay of the amount of interferon (IFN)-gamma and interleukin (IL)-4 in the serum, swine immunized with the fusion protein increased IFN-gamma in the serum which showed that M.T hsp70 potentiated Th1 immune response.  相似文献   

9.
In order to create an effective immunization approach for a potential vaccine to heroin, liposomes containing monophosphoryl lipid A [L(MPLA)] were tested as an adjuvant system to induce antibodies to heroin hapten analogs. Four synthetic haptens and two immunization strategies were employed. In the first strategy, a hydrophobic 23 amino acid immunogenic peptide derived from the membrane proximal external region of gp41 from HIV-1 envelope protein was embedded as a carrier in the outer surface of L(MPLA), to which was conjugated a 15 amino acid universal T cell epitope and a terminal heroin hapten analog. In the second strategy, tetanus toxoid (TT) carrier protein was decorated with haptens by conjugation, and the hapten-conjugated protein was mixed with L(MPLA). After immunization of mice, each of the immunization strategies was effective for induction of IgG anti-hapten antibodies. The first immunization strategy induced a mean end-point IgG titer against one of two haptens tested of approximately 12,800; however, no detectable antibodies were induced against the liposome-associated HIV-1 carrier peptide. In the second immunization strategy, depending on the hapten used for decorating the TT, end-point IgG titers ranged from 100,000 to 6,500,000. In this strategy, in which hapten was conjugated to the TT, end-point IgG titers of 400,000 to the TT carrier were observed with each conjugate. However, upon mixing unconjugated TT with L(MPLA), anti-TT titers of 6,500,000 were observed. We conclude that L(MPLA) serves as a potent adjuvant for inducing antibodies to candidate heroin haptens. However, antibodies to the carrier peptide or protein were partly or completed inhibited by the presence of conjugated hapten.  相似文献   

10.
Currently, infections of hand, foot and mouth disease (HFMD) due to Human Enterovirus 71 (EV71) cannot be prevented or treated, as there are no suitable vaccines or antiviral drugs. This study aimed to identify potential vaccine candidates for EV71 using in silico analysis of its viral capsid proteins. A combined in silico approach utilizing computational hidden Markov model (HMM), propensity scale algorithm, and artificial learning, identified three 15-mer structurally conserved B-cell epitope candidates lying within the EV71 capsid proteins. Peptide vaccine candidates incorporating a target B-cell epitope and a promiscuous T-cell epitope from the related polio virus were synthesized using solid-phase Fmoc chemistry. Inbred BALB/C mice which were inoculated with two 10 μg doses of the synthetic peptide, generated anti-peptide antibodies. Purified IgG isolated from pooled sera of the inoculated mice neutralized EV71 infections in vitro. Furthermore, these neutralizing antibodies were cross-reactive against other members of the Picornaviridae family, demonstrating greater than 50% virus neutralization. This indicates that the current approach is promising for the development of synthetic peptide-based vaccine candidates against Picornaviridae. Development of effective vaccines is of paramount importance in managing the disease in the Asia Pacific regions where this virus is endemic and has significant social, economic and public health ramifications.  相似文献   

11.
Chaitra MG  Nayak R  Shaila MS 《Vaccine》2007,25(41):7168-7176
Three proteins of PE and PPE families of Mycobacterium tuberculosis were evaluated for their ability to induce T cell responses in mice. To enhance immunity induced by protein immunization, we tested the efficacy of adjuvant Ribi (monophosphoryl lipid A+TDM), along with three proteins of the PE/PPE family. Balb/c mice were subcutaneously injected with recombinant proteins, encoded by Rv1818c, Rv3018c and Rv3812 genes of M. tuberculosis H37Rv, formulated with Ribi or IFA for comparative study. Sera from mice immunized with Ribi revealed an increase in the specific immunoglobulin G titers by twofold against Ribi than in mice immunized with IFA. Ribi also elicited stronger delayed-type hypersensitivity and cytotoxic T-lymphocyte activity against the recombinant proteins when compared with IFA. Antigen specific IgG subclass analysis showed that Ribi tends to facilitate IgG2a production, suggesting enhancement of predominant Th1 response which in turn may facilitate increased production of protective IFN-gamma. Furthermore, Ribi preparation increased the number of T cells secreting IFN-gamma. These results indicate that Ribi acts as an effective adjuvant for immune response to antigens of M. tuberculosis. For the first time, we demonstrate that Rv3018c, Rv1818c and Rv3812 proteins of PE/PPE family are T cell antigens with vaccine potential.  相似文献   

12.
《Vaccine》2021,39(13):1870-1876
Mumps is a contagious disease caused by the mumps virus. It can be prevented using mumps vaccines, administered as a measles-mumps-rubella (MMR) vaccine. For first and second dose immunization, children aged 12–15 months and 4–6 years have been administered this vaccine since 1997 in Korea. Nevertheless, mumps outbreaks still occur in vaccinated populations worldwide. Hence, immunity against these diseases may be attenuated, or there are antigenic differences between currently available vaccine strains and circulating wild-type viruses. After the introduction of national immunization programs in Korea, mumps cases became sporadic. Viral genotypes F, H, and I have emerged since 1998 whereas the vaccine strains belong to genotype A. Here, we compared the amino acid sequences of the haemagglutinin-neuraminidase (HN) gene from wild-type viruses and the mumps vaccine and measured the cross-neutralization titers between them. We selected the F, H, and I wild-type mumps strains circulating in Korea from 1998 to 2016 and analyzed changes in the amino acid sequence of the protein encoded by the HN gene. We measured mumps virus-specific IgG and rapid focus reduction neutralization test (FRNT) titers in Korean isolates and sera obtained from 50 children aged 1–2 years who had been administered a single dose of MMR vaccine. Analysis of the HN protein sequences disclosed no changes in the glycosylation sites but did reveal 4–5 differences between the Korean isolates and the genotype A vaccine strain in terms of the neutralizing epitope sites on their HN proteins. Post-vaccination FRNT titers were significantly lower against genotypes F, H, and I than they were against genotype A. This finding highlights the possibility of a recurrence of mumps outbreaks in vaccinated populations depending on the degree of genetic conservation of the HN gene. Further research into this issue is needed to prevent the resurgence of mumps.  相似文献   

13.
HIV native Tat and V2 loop-deleted Env (EnvΔV2) proteins already proved safe and immunogenic in phase I clinical testing as single vaccine components. Further, a phase II vaccine trial with Tat showed intensification of the therapeutic effects of HAART in successfully treated HIV-infected individuals. Here a pilot study assessed the immunogenicity and protective efficacy of an HIV/AIDS vaccine based on the combination of Tat and EnvΔV2 proteins in cynomolgus macaques against homologous intrarectal challenge with 35 MID50 (monkey infectious dose 50) of an R5 simian-human immunodeficiency virus (SHIVSF162P4cy).Upon challenge, three of four macaques immunized with Tat and EnvΔV2, and two of three monkeys immunized with EnvΔV2 alone were protected from infection. In contrast, all three control animals, which had been either administered with the adjuvants only or left untreated, and an additional monkey immunized with Tat alone became systemically infected. Protection of the macaques vaccinated with EnvΔV2 or Tat/EnvΔV2 correlated with higher peak titers of pre-challenge neutralizing antibodies obtained during the immunization period (between 70 and 3 weeks before challenge) and with anti-Env V3 loop binding antibodies assessed 3 weeks before challenge.Compared to EnvΔV2 alone, the Tat and EnvΔV2 combined vaccine elicited faster antibody responses (IgM) with a trend, early in the vaccination schedule, after the second immunization including EnvΔV2, towards broader anti-Env IgG epitope specificity and a higher ratio of neutralizing to Env-binding antibody titers. As the number of immunizations increased, vaccination with EnvΔV2 approached the immune response assessed after two inocula with the Tat/EnvΔV2 combined vaccine, even though some differences remained between groups, as indicated by anti-Env IgG epitope mapping. In fact, three weeks before challenge, plasma IgG of animals in the EnvΔV2 group showed a trend towards stronger specificity for the V1 loop and V5 loop-C5 regions of Env, whereas the Tat/EnvΔV2 group displayed an overall higher reactivity for epitopes within the Env V3 loop throughout the immunization period.Although differences in terms of protection rate were not found between the EnvΔV2 or Tat/EnvΔV2 vaccination groups in this pilot study, vaccination with Tat/EnvΔV2 appeared to accelerate the induction of potentially protective antibody responses to Env. In particular, antibodies to the Env V3 loop, whose levels at pre-challenge correlated with protection, were already higher early in the vaccination schedule in monkeys immunized with Tat/EnvΔV2 as compared to EnvΔV2 alone.Further studies including larger vaccination groups and fewer immunizations with these two vaccine candidates are needed to confirm these findings and to assess whether the Tat/EnvΔV2 vaccine may afford superior protection against infection.  相似文献   

14.
Lai Z  Kimmel R  Petersen S  Thomas S  Pier G  Bezabeh B  Luo R  Schreiber JR 《Vaccine》2005,23(25):3264-3271
Pseudomonas aeruginosa is a serious human pathogen in a variety of patient groups including those with burns, hospitalized in intensive care, cystic fibrosis and neutropenia. Since there is no vaccine available, passive antibody prophylaxis against protective epitopes is an alternative strategy to prevent P. aeruginosa infection. However, immunoglobulin derived from multiple donors has variable anti-pseudomonas antibody titers, and human Mab are difficult to make from patient samples. We previously reported the use of XenoMouse mice, Ig-inactivated transgenic mice reconstituted with human immunoglobulin loci, to generate human Mab against a single serotype of P. aeruginosa lipopolysaccharide O-specific side chain (PS). We now report the creation of a panel of anti-PS human IgG2 Mab against nine additional O-specific side chain P. aeruginosa serotypes. The majority of the Mab were highly opsonic for uptake and killing of homologous P. aeruginosa by human PMN in the presence of human complement, and all the Mab protected cyclophosphamide-induced neutropenic mice from fatal P. aeruginosa sepsis with homologous serotypes. DNA sequence analysis showed that the Mab used V(H)3, V(H)4, V(H)5 and V(H)6 and Vkappa2, 3 and 4 variable region genes consistent with the heterogeneity of P. aeruginosa LPS O-side chain structure. We conclude that human Mab made in these transgenic mice against common pathogenic serotypes of P. aeruginosa are opsonic and highly protective, and that a high titer, multi-valent human Mab preparation against the majority of circulating O-side chain serotypes of P. aeruginosa could be used as prophylaxis against invasive infections in selected patient groups.  相似文献   

15.
Mason KW  Zhu D  Scheuer CA  McMichael JC  Zlotnick GW  Green BA 《Vaccine》2004,22(25-26):3449-3456
Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis are common causative agents of human mucosal infections. To formulate a mucosal vaccine against these pathogens, recombinant lipidated P4 (rLP4) and P6 (rLP6) proteins of NTHi and ubiquitous cell surface protein A (UspA) of M. catarrhalis were used for active immunization experiments in a mouse nasal challenge model. BALB/c mice were immunized intranasally with these proteins formulated with a chemically synthesized adjuvant, RC529 in an aqueous formulation (RC529-AF). Three weeks after the last immunization, these animals were challenged intranasally with NTHi strain SR7332.P1 and nasal colonization measured 3 days later. To determine local and systemic immune responses, bronchoalveolar washes (BAW) and sera were collected prior to NTHi challenge. The serum and mucosal samples were analyzed by ELISA for rLP4, rLP6 and UspA2 protein-specific IgG, IgG subclass and IgA antibody titers and bactericidal titers were determined against the TTA24 and 430-345 strains of M. catarrhalis. Results of these experiments show that these proteins combined with RC529-AF administered intranasally to mice elicited (1) significantly increased rLP4/rLP6/UspA2 protein-specific circulating IgG and IgA antibody responses; (2) local rLP4/rLP6/UspA2-specific IgA responses in the respiratory tract; and (3) more than a two log reduction of nasal colonization of NTHi strain SR7332 from the nasal tissues of mice. The serum IgG subclass distribution was predominantly IgG2a, representing a Th1 response. The antiserum also exhibited bactericidal activities to several strains of M. catarrhalis. These data indicate that intranasal immunization with rLP4/rLP6/UspA2 proteins combined with RC529-AF may be able to provide a way for inducing local mucosal immunity and for prevention of otitis media in children.  相似文献   

16.
The pneumococcal genes encoding for the surface associated proteins have been proposed to be important for pneumococcal protein vaccine development. We cloned the full-length putative proteinase maturation protein A gene SP098l/ppmA (as published by Tettelin et al. in 2001) and produced the encoded protein in high levels in E. coli. The purified recombinant PpmA was used as an antigen in Western blotting to study systemic antibody responses to PpmA in animals and in children with acute otitis media (AOM). In children, the geometric mean titers of serum IgG antibodies against PpmA increased with age and differed significantly in relation to pneumococcal findings in middle ear fluid and/or nasopharyngeal aspirate. The serum IgG antibody titers against PpmA were low in children with Streptococcus pneumoniae cultured in the middle ear, and the highest in children with pneumococci in the nasopharynx, without them being found in the middle ear fluid. We conclude that PpmA is immunogenic in humans, and therefore an interesting antigen to study further in developing pneumococcal multicomponent protein vaccines.  相似文献   

17.
《Vaccine》2015,33(30):3526-3532
The highly conserved extracellular domain of Matrix protein 2 (M2e) of influenza A virus has been previously investigated as a potential target for an universal influenza vaccine. In this study we prepared four lipopeptide influenza vaccine candidates in which the TLR2 agonist S-[2,3-bis(palmitoyloxy)propyl] cysteine, (Pam2Cys) was attached to either the N- or C-terminus of the M2e consensus sequence SLLTEVETPIRNEWGCRCNDSSDP and its analogue sequence with the two cysteine residues replaced with serine residues. The results of animal study show that each of these lipopeptides induced strong M2e-specific antibody responses in the absence of extraneous T helper cell epitope(s) which are normally incorporated in the previous studies or addition of extraneous adjuvant and that these antibodies are protective against lethal challenge with influenza virus. Comparison of different routes of inoculation demonstrated that intranasal administration of M2e lipopeptide induced higher titers of IgA and IgG2b antibodies in the bronchoalveolar lavage than did subcutaneous vaccination and was better at mitigating the severity of viral challenge. Finally, we show that anti-M2e antibody specificities absent from the antibody repertoire elicited by a commercially available influenza vaccine and by virus infection can be introduced by immunization with M2e-lipopeptide and boosted by viral challenge. Immunization with this lipidated form of the M2e epitope therefore offers a means of using a widely conserved epitope to generate protective antibodies which are not otherwise induced.  相似文献   

18.
《Vaccine》2016,34(46):5531-5539
Numerous types of human papillomaviruses (HPVs) have been identified, and the global burden of diseases associated with HPV infection is remarkable, especially in developing regions. Thus a low-cost broad-spectrum prophylactic vaccine is urgently needed. The N-terminal amino acid 17–36 of HPV 16 L2 protein is confirmed to be a major cross-neutralizing epitope (RG-1 epitope). Monomeric proteins containing RG-1 epitopes and scaffold proteins, such as bacterial thioredoxin or modified IgG1 Fc fragment and L2 epitope fusion protein, induced cross-neutralizing antibodies, arousing the possibility of the development of low-cost monomeric vaccine in bacterial expression system. Here we show that a novel immunogen-scaffold protein containing a lipidated triple-repeat HPV 16RG-1 epitope and a hFcγRI specific single-chain antibody fragment (H22scFv), named LpE3H22, elicited high titers of cross-neutralizing antibodies against a broad range of mucosal and cutaneous HPV types when adjuvanted with MF59 and poly I:C. LpE3H22 was produced in E. coli expression system. In contrast to three repeats of RG-1 epitope (E3) and unlipidated fusion protein E3H22, vaccination of LpE3H22 induced robust cross-neutralizing antibody responses in hFcγRI transgenic mice. Furthermore, the neutralizing antibody response induced by LpE3H22 was significantly weaker in WT mice than in the Tg mice. The cross-neutralizing antibodies induced by LpE3H22 sustained for at least 10 months in Tg mice. Our results demonstrate that hFcγRI targeting and lipidation both contribute to the enhancement of immunogenicity of L2 antigen. Therefore, delivering the lipidated L2 antigen with H22scFv opens a new avenue for low-cost pan-HPV vaccine development.  相似文献   

19.
To reduce extra injections, cost and ensure better coverage, use of combination vaccines is preferable. An attempt was made to evaluate the encapsulation of hepatitis E virus neutralizing epitope (NE) region and hepatitis B virus surface antigen (HBsAg) in liposomes as DNAs, proteins and DNA + protein. Mice groups were immunized with different liposome-encapsulated formulations and monitored for anti-HEV and anti-HBs titres, IgG subtypes, antigen-specific lymphocyte proliferation and cytokine levels. The protective levels of anti-HBs and in vitro virus-binding capacity of anti-HEV antibodies were assessed. Liposome-encapsulated DNA either singly or in combination did not elicit antibody response. Anti-HEV and anti-HBs IgG titres of individual component of protein alone (Lipo-E-P/Lipo-B-P) or DNA + protein formulations (Lipo-E-DP/Lipo-B-DP) were comparable to respective titres in combination vaccine of protein (Lipo-BE-P) and DNA + protein formulations (Lipo-BE-DP). IgG1 levels were significantly higher in Lipo-BE-P group whereas, equivalent levels of IgG1 and IgG2a were observed in Lipo-BE-DP group against both components of the vaccine. Combination vaccine group showed mixed Th1/Th2 cytokine profile. Liposome entrapped NE and HBsAg in protein and DNA + protein formats induce excellent immune response to both the components and need to be evaluated in higher animals.  相似文献   

20.
The recent success of a Plasmodium falciparum malaria vaccine consisting of circumsporozoite protein (CSP) T and B cell epitopes has rekindled interest in the development of a pre-erythrocytic vaccine. In order to optimize immunogenicity, well-characterized CSP-specific neutralizing B cell epitopes and a universal T cell epitope were combined with an efficient and flexible particulate carrier platform, the hepatitis B core antigen (HBcAg), to produce a novel pre-erythrocytic vaccine candidate. The vaccine candidate, V12.PF3.1, is a potent immunogen in mice eliciting unprecedented levels (greater than 10(6) titers) of sporozoite-binding antibodies after only two doses. The anti-sporozoite antibodies are long lasting, represent all IgG isotypes, and antibody production is not genetically restricted. CSP-specific CD4+ T cells are also primed by V12.PF3.1 immunization in a majority of murine strains. Furthermore, the hybrid HBcAg-CS particles can be produced inexpensively in bacterial expression systems. These and other characteristics suggest that V12.PF3.1 represents an efficient and economical P. falciparum vaccine candidate for use separately or in combination with other formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号