首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H Hara  H Kato  T Araki  H Onodera  K Kogure 《Neuroscience》1991,42(1):159-169
We investigated, to examine the involvement of lipid peroxidation and inhibitory mechanisms, a novel lipid peroxidation inhibitor (KB-5666) and a GABAA receptor-effector (pentobarbital) on ischemic neuronal damage and the alterations in the second messenger and neurotransmitter systems in Mongolian gerbils by means of morphology and in vitro receptor autoradiography. Quantitative receptor autoradiography visualized binding sites for [3H]inositol 1,4,5-trisphosphate, [3H]forskolin, [3H]phorbol 12,13-dibutyrate, [3H]isradipine (PN200-110), [3H]N6-cyclohexyl-adenosine, and [3H]quinuclidinyl benzilate indicating binding sites for inositol 1,4,5-trisphosphate, forskolin, protein kinase C, L-type calcium channels (or dihydropyridine binding sites), adenosine A1, and muscarinic cholinergic receptors, respectively. In the morphological study, KB-5666, 10 and 50 mg/kg, i.v., 5 min before ischemia, protected against ischemic neuronal damage to the hippocampal CA1 subfield following 5 min of bilateral carotid artery occlusion in a dose-dependent manner. Pentobarbital, 30 mg/kg, i.v., 5 min before ischemia, also had a protective effect. In receptor autoradiographic studies, all receptor bindings decreased significantly in the CA1 subfield seven days after ischemia. In particular, [3H]inositol 1,4,5-trisphosphate binding in the CA1 subfield was completely lost after ischemia. [3H]Inositol 1,4,5-trisphosphate and [3H]forskolin binding decreased as early as 6 h after ischemia. In the CA3 subfield, [3H]inositol 1,4,5-trisphosphate, [3H]PN200-110, and [3H]N6-cyclohexyladenosine bindings decreased seven days after ischemia. In the dentate gyrus, [3H]inositol 1,4,5-trisphosphate binding decreased seven days after ischemia. KB-5666 and pentobarbital prevented reductions in these receptor bindings in the CA1 subfield at 6 h and seven days after ischemia. These results indicate that KB-5666 and pentobarbital protect the brain from both structural and functional damage after ischemia, and that lipid peroxidation and inhibitory mechanisms may play a pivotal role in the neuronal damage of the hippocampal CA1 subfield after ischemia.  相似文献   

2.
The distribution of neurotransmitter and neuromodulator receptors was studied in the brain of the rolling mouse Nagoya (RMN) and in controls, using in vitro receptor autoradiography. Quantitative autoradiography was used to map adenosine A1 (labeled with [3H]cyclohexyladenosine), GABAA [( 3H]muscimol), opiate [( 3H]naloxone), L-glutamate [( 3H]L-glutamate), benzodiazepine [( 3H]flunitrazepam), and muscarinic cholinergic [( 3H]quinuclidinyl benzilate) receptors. In the cerebellar cortex, GABAA and adenosine A1 binding sites were significantly reduced in the RMN, whereas other transmitter binding sites were not significantly altered. Adenosine A1 binding sites were also reduced in the cerebral cortex and caudate-putamen. Benzodiazepine binding was significantly decreased in the cerebral cortex and increased in the CA1 subfield of the hippocampus. These results suggest that neurochemical alterations in the caudate-putamen as well as in the cerebellar cortex play important roles in the ataxia and motor dysfunction of the RMN.  相似文献   

3.
Employing [3H]hemicholinium-3 ([3H]HC), [3H]pirenzepine([3H]PZ) and [3H]quinuclidinyl benzilate ([3H]QNB), autoradiographic binding studies were performed to identify and quantitate the localization of high-affinity choline carriers, M1-subtype of muscarinic binding sites and a mixed population of M1- and M2-subtypes of muscarinic binding sites, respectively, in 38 anatomically defined areas of rat brain. Labelling of adjacent brain sections with [3H]HC, [3H]PZ and [3H]QNB revealed different topographical binding patterns. [3H]HC binding, which is supposed to reflect cholinergic innervation, was dense in the nucleus accumbens, olfactory tubercle, caudate putamen, basolateral amygdaloid nucleus and the interpeduncular nucleus. Moderate but heterogeneous binding was found in thalamic, hypothalamic, hippocampal and cortical areas. Maximal [3H]PZ binding was observed in the nucleus accumbens, olfactory tubercle and in discrete substructures of the hippocampus, e.g. CA1 and dentate gyrus. Binding to other hippocampal and cortical areas was intermediate, whilst minor binding was found in thalamic, hypothalamic and brain stem areas. The binding of [3H]QNB was more evenly distributed over the brain as compared to that of [3H]PZ. [3H]QNB clearly exceeded the binding of [3H]PZ in the thalamus, hypothalamus and brain stem. A relationship was found between the topography patterns of the [3H]PZ and [3H]QNB binding sites. However, some brain areas showed preference for one of the two ligands, pointing to a distinct localization of M1- and M2-subtypes of muscarinic binding sites. Although M1 sites appeared to predominate in the basal ganglia, hippocampus and cortex, some heterogeneity was observed indicative of the minor occurrence of M2 sites within these structures. There was no relationship between the density of the presumed cholinergic innervation and the binding capacity of either of the muscarinic sites in the various brain areas. However, a relationship was found between M2-selectivity and [3H]HC binding, pointing to a possible presynaptic localization of the M2-sites. In addition, it is suggested that distinct cholinergic cell groups might project their fibres to brain areas containing particular subsets of postsynaptic muscarinic binding sites.  相似文献   

4.
Hippocampus is a brain region involved in learning and memory and is particularly sensitive to ageing. It is supplied with a dopaminergic innervation arising from the midbrain, which is part of the mesolimbic dopaminergic pathway. Dysfunction of the dopaminergic mesolimbic system is probably involved in the pathophysiology of psychosis and behavioural disturbances occurring in the elderly. The present study was designed to assess the density and localisation of dopamine D1- and D2-like receptor subtypes in the hippocampus of male Sprague-Dawley rats aged 3 months (young), 12 months (adult) and 24 months (old). Dopamine D1-like receptors, labelled by [3H]-SCH 23390, in young rats displayed a dentate gyrus-CA1 subfield gradient. The expression was increased in the cell body of dentate gyrus, CA4 and CA3 subfield of old rats compared to younger cohorts, as well as in the neuropil of dentate gyrus. A decreased density of dopamine D1-like receptors was found in the stratum oriens of CA1 and CA3 subfields. Dopamine D2-like receptors, labelled using [3H]-spiperone as radioligand, were expressed rather homogeneously throughout different subfields of the hippocampus. In old rats, the density of dopamine D2-like receptors was decreased in the dentate gyrus, unchanged in the CA4 and CA1 subfields and increased in the CA3 subfield. The above results indicate the occurrence of inhomogeneous changes in the density of dopamine D1- and D2-like receptors in specific portions of hippocampus of old rats. These findings support the hypothesis of an involvement of dopaminergic system in behavioural abnormalities or psychosis occurring in ageing.  相似文献   

5.
The distribution of muscarinic cholinergic receptors in the human forebrain and cerebellum was studied in detail by quantitative autoradiography using N-[3H]methylscopolamine as a ligand. Only postmortem tissue from patients free of neurological diseases was used in this study. The highest densities of muscarinic cholinergic receptors were found in the striatum, olfactory tubercle and tuberal nuclei of the hypothalamus. Intermediate to high densities were observed in the amygdala, hippocampal formation and cerebral cortex. In the thalamus muscarinic cholinergic receptors were heterogeneously distributed, with densities ranging from very low to intermediate or high. N-[3H]Methylscopolamine binding was low in the hypothalamus, globus pallidus and basal forebrain nuclei, and very low in the cerebellum and white matter tracts. The localization of the putative muscarinic cholinergic receptors subtypes M1 and M2 was analysed in parallel using carbachol and pirenzepine at a single concentration to partially inhibit N-[3H]methylscopolamine binding. Mixed populations of both subtypes were found in all regions. M1 sites were largely predominant in the basal ganglia, amygdala and hippocampus, and constituted the majority of muscarinic cholinergic receptors in the cerebral cortex. M2 sites were preferentially localized in the diencephalon, basal forebrain and cerebellum. In some areas such as the striatum and substantia innominata there was a tendency to lower densities of muscarinic cholinergic receptors with increasing age. In general, we observed a slight decrease in M2 sites in elderly cases. Muscarinic cholinergic receptor concentrations seemed to be reduced following longer postmortem periods. The distribution of acetylcholinesterase was also studied using histochemical methods, and compared with the localization of muscarinic cholinergic receptors and other cholinergic markers. The correlation between the presence of muscarinic cholinergic receptors and the involvement of cholinergic mechanisms in the function of specific brain areas is discussed. Their implication in neurological diseases is also reviewed.  相似文献   

6.
The topographical distribution of [alpha-125I]bungarotoxin [125I]BTX, [3H]nicotine ([3H]Nic), [3H]acetylcholine ([3H]ACh) (in the presence of atropine) binding in rat tel- and diencephalon was investigated using a quantitative receptor autoradiographical technique. With the [3H]ACh and [3H]Nic radioligands, a strong labelling was observed in various thalamic nuclei, including the medial habenula, a moderate labelling in different areas of the cortex cerebri, the nucleus caudatus putamen, the nucleus accumbens and tuberculum olfactorium and a uniform weak labelling in the hypothalamus. When the binding data for [3H]Nic were plotted against binding data for [3H]ACh in various brain nuclei, a significant correlation was obtained. Considering [125I]BTX, the strongest labelling was observed in the lateral mammillary nucleus and the hilus gyrus dentatus of the hippocampal formation. A weak labelling occurred in areas such as the nucleus causatus putamen, the thalamus and the cerebral cortex. No significant correlation was therefore obtained between the degree of [125I]BTX binding in various brain nuclei and the degree of binding observed with [3H]Nic or [3H]ACh. The present results underline the view that the high-affinity [3H]Nic and [3H]ACh binding sites label the same cholinergic nicotinic receptor binding site, while [125I]BTX labels another subpopulation of nicotinic cholinergic receptors, predominantly found in discrete areas of the hypothalamus and the limbic cortex.  相似文献   

7.
H Onodera  H Aoki  T Yae  K Kogure 《Neuroscience》1990,38(1):125-136
The hippocampus provides a suitable area in the brain for the analysis of neuronal plasticity after application of a selective lesioning technique. Using histochemistry and autoradiography, we studied synaptic reorganization in the rat hippocampus with selective CA1 pyramidal cell lesioning caused by transient forebrain ischemia after long-term survival. An autoradiographic study was performed on second messenger systems ([3H]inositol 1,4,5-trisphosphate, [3H]forskolin and [3H]phorbol 12,13-dibutyrate binding). One-hundred days after ischemia, depletion of CA1 pyramidal cells and marked shrinkage of the CA1 subfield was noted in spite of unaltered thickness of the CA3 band and of the dentate molecular layers. Although neuronal density in the CA3 region of animals killed seven days after ischemia was not different from the normal group, 78% of animals showed neuronal loss of 30-50% in the stratum pyramidale of the CA3b 100 days after recirculation. Sixty-seven per cent of animals exhibited supragranular mossy fiber sprouting in the dentate gyrus. However, CA3 neuronal loss did not correlate with mossy fiber sprouting. Succinic dehydrogenase was depleted in the CA1 100 days after ischemia, and animals with CA3 damage showed a reduction of succinic dehydrogenase activity in the CA3. In contrast to the unaltered acetylcholinesterase in the animals killed seven days after ischemia, high density bands of acetylcholinesterase activity in the stratum pyramidale of the CA1 were found to be broadened 100 days after ischemia. In the CA1 subfield, subnormal activity of [3H]phorbol 12,13-dibutyrate and [3H]forskolin binding were observed in spite of the depleted [3H]inositol 1,4,5-triphosphate binding. [3H]Forskolin binding in the hilus had increased by 62% 100 days after ischemia, although binding in the stratum lucidum of the CA3 and in the stratum moleculare of the dentate gyrus was unaltered. However, no visible supragranular increase in [3H]forskolin binding was observed. These results indicate that long-term survival after CA1 pyramidal cell depletion caused by transient forebrain ischemia induced the modulation of neuronal activity and synaptic rearrangements in the whole hippocampal formation.  相似文献   

8.
The adenosine agonist 2-chloroadenosine inhibited the K+-induced release of endogenously synthesized [3H]glutamate but not [3H]GABA from slices of rat dentate gyrus. In contrast, the K+-stimulated release of [3H]glutamate was augmented by the adenosine antagonist theophylline and was further enhanced by the cyclic AMP analogue 8-bromo-cyclic AMP in the presence of theophylline.  相似文献   

9.
This study examined the relationship between expression of neurotrophin-3 (NT-3) and the ingrowth of cholinergic axonal projections in cerebral cortex. Patterns of expression of NT-3 (defined by beta-galactosidase reporter expression in heterozygous offspring of transgenic NT-3(lacZneo/+) mice) revealed that limbic cortical regions (including frontal, cingulate, and insular cortex, as well as the dentate gyrus) express NT-3 and that these cortical regions receive early and relatively dense cholinergic axons (stained for acetylcholinesterase, AChE). Using the dentate gyrus as a model system, studies revealed that expression of the NT-3 reporter parallels, and precedes by approximately 2 days, the ingrowth of AChE positive cholinergic axons. Studies of forebrain organotypic slice cultures demonstrate that basal forebrain-derived cholinergic axons extend into cortical regions in a pattern that mimics the pattern of expression of the NT-3 reporter. Similarly, chimeric co-cultures, combining wild type septum with a slice of hippocampus from heterozygous NT-3(lacZneo/+) mice, demonstrate that cholinergic axons grow into regions of the dentate gyrus that express the NT-3 reporter. Hemisphere slice cultures made from NT-3 knockout mice reveal cholinergic axonal growth into cortex, but these axons do not form the regional pattern characteristic of slice cultures made from wild type or heterozygous NT-3(lacZneo/+) mice. Further, chimeric co-cultures made using slices of wild type septum combined with slices of hippocampus from NT-3 knockout mice demonstrate robust cholinergic axonal growth into the hippocampus, but the cholinergic axons do not form the characteristic preterminal pattern associated with the dentate gyrus. Slice cultures from limbic cortical tissue from the NT-3 null mice do not display exaggerated levels of cell death. In aggregate, these data support the hypothesis that expression of NT-3 by cortical neurons serves to attract basal forebrain cholinergic projections to their target cells in cerebral cortex.  相似文献   

10.
Distinct patterns of [3H]nicotine (3 nM) binding were apparent in various regions of adult human neo- and archicortex. Receptor binding was greatest in the subicular complex--particularly presubiculum--and entorhinal cortex, where it was prominent in the characteristic parvo- and magnocellular islands of these regions and in middle layers of entorhinal cortex. In somatosensory cortex (Brodmann areas 3, 1 and 2) and occipital (area 17) cortex binding was highest in the upper and lower layers, and relatively sparse in the sensory input, layer IV. In primary motor (area 4) and temporal (area 21) cortex, binding in the outer half of the cortical ribbon was denser than that in the inner half and a distinct band was apparent in temporal and cingulate (area 32) in the lower portion of layer III. In prefrontal association cortex the pattern of binding was less distinct although slightly higher in the lower architectonic layers. There was generally little binding in the hippocampus (areas CA1-4) and dentate gyrus with the exception of the stratum lacunosum moleculare in CA2-3 and, to a lesser extent, supra- and subgranule zones of the dentate. These patterns of reactivity, which are distinct from that of the major cortical cholinergic innervation, suggest that the nicotinic receptor, detected using nanomolar concentrations of [3H]nicotine, may primarily be associated with intracortical circuitry in the neocortex. The relatively high density in entorhinal and subicular regions may be related to the extensive phylogenetic development of these regions which has occurred in conjunction with the development of multimodal association circuitry in the human cortex.  相似文献   

11.
The ontogeny of radioligand binding to N-methyl-D-aspartate and quisqualate receptors in rat forebrain was studied quantitatively using in vitro receptor autoradiography. Specific binding to both receptors could be detected by postnatal day 1 in hippocampus and striatum. The adult pattern of binding to N-methyl-D-aspartate receptors emerged by postnatal day 14 with high densities of binding in CA1 (stratum oriens and stratum radiatum), dentate gyrus (molecular layer) and striatum (caudate-putamen). Binding to the outer laminae of frontal cortex was as much as 45% above adult levels during development. Binding of [3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid to quisqualate receptors showed a similar overshoot during development, but also manifested a unique distribution with CA3 and medial aspects of the amygdala exhibiting transient, intense labeling. Homogenate binding studies with [3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid demonstrated a 73% increase in quisqualate receptors in whole brain at postnatal day 21 compared with adult levels. The selectivity of excitatory amino acid binding to the quisqualate site in development was similar to the selectivity in adult brain. These data taken with other recent reports, suggest that quisqualate receptors may have a role in development distinct from their function in the adult brain.  相似文献   

12.
The binding of calcium antagonists in the rat hippocampal formation was studied using autoradiography. Hippocampal slices were labeled in vitro with [3H]PN 200-110. High densities of binding sites for calcium antagonists were found in the molecular layer of the dentate gyrus and in the CA3 subfield of the hippocampus. After ablation of the granule cells by local injection of colchicine a marked decrease in the number of [3H]PN 200-110 binding sites density was observed on these areas, while binding to other parts of the hippocampal formation and brain was spared. These results strongly suggest the localization of high densities of calcium channels to the granule cells of the dentate gyrus.  相似文献   

13.
Derivatives of the muscarinic antagonist 3-quinuclidinyl-4-iodobenzilate (QNB), particularly [123I]-(R,R)-I-QNB, are currently being assessed as in vivo ligands to monitor muscarinic receptors in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), relating changes to disease symptoms and to treatment response with cholinergic medication. To assist in the evaluation of in vivo binding, muscarinic receptor density in post-mortem human brain was measured by autoradiography with [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB and compared to M1 ([3H]pirenzepine) and M2 and M4 ([3H]AF-DX 384) receptor binding. Binding was calculated in tissue containing striatum, globus pallidus (GPe), claustrum, and cingulate and insula cortex, in cases of AD, DLB, Parkinson's disease (PD) and normal elderly controls. Pirenzepine, AF-DX 384 and (R,S)-I-QNB binding in the striatum correlated positively with increased Alzheimer-type pathology, and AF-DX 384 and (R,R)-I-QNB cortical binding correlated positively with increased Lewy body (LB) pathology; however, striatal pirenzepine binding correlated negatively with cortical LB pathology. M1 receptors were significantly reduced in striatum in DLB compared to AD, PD, and controls and there was a significant correlation between M1 and dopamine D2 receptor densities. [3H]AF-DX 384 binding was higher in the striatum and GPe in AD. Binding of [125I]-(R,R)-I-QNB, which may reflect increased muscarinic M4 receptors, was higher in cortex and claustrum in DLB and AD. [125I]-(R,S)-I-QNB binding was higher in the GPe in AD. Low M1 and D2 receptors in DLB imply altered regulation of the striatal projection neurons which express these receptors. Low density of striatal M1 receptors may relate to the extent of movement disorder in DLB, and to a reduced risk of parkinsonism with acetylcholinesterase inhibition.  相似文献   

14.
The ontogeny of [3H]kainic acid binding in rat forebrain was studied quantitatively using in vitro receptor autoradiography. Specific binding was detectable in ventral thalamus, hippocampus, striatum and olfactory bulb by postnatal day 1. In regions with high densities of receptors in adulthood, such as CA3, dentate gyrus and striatum, binding increased progressively across development peaking at postnatal day 21. In ventral thalamus and the inner lamina of the neocortex, [3H]kainic acid binding was high in the first three postnatal weeks and relatively low thereafter. Saturation studies performed on adults and 14-day-old animals suggest differences in both the affinity and the maximal binding capacity contributed to the observed developmental changes in binding of [3H]kainic acid.  相似文献   

15.
The distribution of phencyclidine (PCP) receptors in the rat brain was determined by autoradiography using 1-(1-(2-thienyl)cyclohexyl)piperidine ([3H]TCP). [3H]TCP appeared to bind to PCP receptors as only PCP-like drugs and sigma-opioids inhibited the binding of [3H]TCP. The areas of the rat brain with the highest density of radiolabeled binding sites were the superficial layers of cerebral cortex, hippocampus and dentate gyrus. Moderate densities of binding sites were found in the medial geniculate nuclei, caudate nucleus, nucleus accumbens, interpeduncular nucleus, superior colliculus, periaqueductal gray and cerebellum. Low densities of binding sites were observed in spinal cord, most of the brainstem, the substantia nigra and most of the hypothalamus.  相似文献   

16.
The regional displacement by sulpiride of [3H]spiperone binding in vivo was studied in the rat. A low dose of sulpiride (20 mg/kg) displaced [3H]spiperone binding in certain limbic regions (olfactory tubercle, septum) and the substantia nigra but not in the nucleus accumbens or striatum. At this does sulpiride preferentially blocked apomorphine induced apomorphine Higher doses of sulpiride (150 and 250 mg/kg), which blocked apomorphine induced stereotypes and induced catalepsy were found to displace [3H]spiperone binding in all regions studied including the striatum and the nucleus accumbens. Haloperidol (0.1 and 1.0 mg/kg) displaced [3H]spiperone to approximately the same extent in all regions studied.  相似文献   

17.
Distinct patterns of [3H]nicotine (3 nm) binding were apparent in various regions of adult human neo- and archicortex. Receptor binding was greatest in the subicular complex—particularly presubiculum—and entorhinal cortex, where it was prominent in the characteristic parvo- and magnocellular islands of these regions and in middle layers of entorhinal cortex. In somatosensory cortex (Brodmann areas 3, 1 and 2) and occipital (area 17) cortex binding was highest in the upper and lower layers, and relatively sparse in the sensory input, layer IV. In primary motor (area 4) and temporal (area 21) cortex, binding in the outer half of the cortical ribbon was denser than that in the inner half and a distinct band was apparent in temporal and cingulate (area 32) in the lower portion of layer III. In prefrontal association cortex the pattern of binding was less distinct although slightly higher in the lower architectonic layers. There was generally little binding in the hippocampus (areas CA1–4) and dentate gyrus with the exception of the stratum lacunosum moleculare in CA2–3 and, to a lesser extent, supra- and subgranule zones of the dentate. These patterns of reactivity, which are distinct from that of the major cortical cholinergic innervation, suggest that the nicotinic receptor, detected using nanomolar concentrations of [3H]nicotine, may primarily be associated with intracortical circuitry in the neocortex. The relatively high density in entorhinal and subicular regions may be related to the extensive phylogenetic development of these regions which has occurred in conjunction with the development of multimodal association circuitry in the human cortex.  相似文献   

18.
Quantitative and qualitative autoradiographic methods together with lesion approaches were used to determine the distribution of [3H]ryanodine binding sites in rat brain and the neuronal localization of these sites in the hippocampus. In normal animals, levels of [3H]ryanodine binding sites ranged from a low of about 1 fmol/mg tissue in subcortical structures to a high of 12-18 fmol/mg tissue in subregions of the hippocampus and the olfactory bulb. Relatively high densities of sites (5-9 fmol/mg tissue) were also seen in the olfactory tubercle, most areas of the cerebral cortex, accumbens nucleus, striatum, lateral septal nuclei, pontine nucleus, superior colliculus and granule cell layer of the cerebellum. Specific binding was undetectable in white matter. In experimental animals, intracerebral injections of kainic acid caused neuronal degeneration and a near total depletion of [3H]ryanodine binding sites in the dentate gyrus and in fields CA1, CA2 and CA3 of the hippocampus. Injections of kainic acid that left dentate granule cells largely intact while destroying all neurons in field CA3 had no effect on binding sites in the dentate gyrus. However, these lesions substantially reduced the density of binding in field CA3, leaving a narrow band of sites outlining the position of the degenerated CA3 pyramidal cells. Mechanical knife-cut lesions that severed the granule cell mossy fiber input to field CA3 reduced the density of binding sites in the CA3 region. The results indicate that [3H]ryanodine binding sites in brain are heterogeneously distributed and suggest that a proportion of these sites in the hippocampus may be contained in mossy fiber terminals where a presumptive calcium channel/ryanodine receptor complex may be involved in the regulation of calcium mobilization and/or neurotransmitter release.  相似文献   

19.
The anatomical localization and pharmacology of alpha5 subunit-containing GABA type-A receptors in the human hippocampal formation of Alzheimer's disease patients were studied with an alpha5 receptor selective ligand, [3H]L-655,708 and compared to age-matched human controls. Autoradiographic analyses revealed a heterogeneous distribution of [3H]L-655,708 binding sites in CA1-CA3 areas with high levels in stratum oriens, stratum pyramidale and stratum radiatum contrasting with low levels in stratum lacunosum. The highest quantity of alpha5 receptors was found in the molecular layer of the dentate gyrus. This pattern of expression was identical in both hippocampus from control and Alzheimer's disease subjects. Quantitative studies demonstrated that the number of [3H]L-655,708 binding sites is well preserved in Alzheimer's disease with only a moderate reduction (25-30%) in the CA1 subfield and entorhinal cortex. Furthermore, saturation and competition experiments with [3H]L-655,708 and representative benzodiazepine site ligands revealed that alpha5 receptors in Alzheimer's hippocampus have an alpha5beta2/3gamma2 pharmacology and structure as in control human brain.Overall, the data reported here provide evidence for a specific expression and relative sparing of alpha5 subunit-containing gamma-aminobutyric acid type-A receptors in the hippocampus of Alzheimer's patients.  相似文献   

20.
The topographical distribution of [α:-12T]bungarotoxin [125I]BTX, [3H]nicotine ([3H]Nic), [3H]acetylcholine ([3H]ACh) (in the presence of atropine) binding in rat teland diencephalon was investigated using a quantitative receptor autoradiographical technique. With the [3H|ACh and [3H]Nic radioligands, a strong labelling was observed in various thalamic nuclei, including the medial habenula, a moderate labelling in different areas of the cortex cerebri, the nucleus caudatus putamen, the nucleus accumbens and tuberculum olfactorium and a uniform weak labelling in the hypothalamus. When the binding data for [3H]Nic were plotted against binding data for [3H]ACh in various brain nuclei, a significant correlation was obtained. Considering [125I]BTX, the strongest labelling was observed in the lateral mammillary nucleus and the hilus gyrus dentatus of the hippocampal formation. A weak labelling occurred in areas such as the nucleus causatus putamen, the thalamus and the cerebral cortex. No significant correlation was therefore obtained between the degree of [125I]BTX binding in various brain nuclei and the degree of binding observed with [3H]Nic or [3H]ACh. The present results underline the view that the high-affinity |3H]Nic and [3H]ACh binding sites label the same cholinergic nicotinic receptor binding site, while [125I]BTX labels another subpopulation of nicotinic cholinergic receptors, predominantly found in discrete areas of the hypothalamus and the limbic cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号