首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin‐dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The processivity factor of human cytomegalovirus DNA polymerase, phosphoprotein ppUL44, is essential for viral replication. During viral infection ppUL44 is phosphorylated by the viral kinase pUL97, but neither the target residues on ppUL44 nor the effect of phosphorylation on ppUL44's activity are known. We report here that ppUL44 is phosphorylated when transiently expressed in mammalian cells and coimmunoprecipitates with cellular kinases. Of three potential phosphorylation sites (S413, S415, S418) located upstream of ppUL44's nuclear localization signal (NLS) and one (T427) within the NLS itself, protein kinase CK2 (CK2) specifically phosphorylates S413, to trigger a cascade of phosphorylation of S418 and S415 by CK1 and CK2, respectively. Negative charge at the CK2/CK1 target serine residues facilitates optimal nuclear accumulation of ppUL44, whereas negative charge on T427, a potential cyclin-dependent 1 phosphorylation site, strongly decreases nuclear accumulation. Thus, nuclear transport of ppUL44 is finely tuned during viral infection through complex phosphorylation events.  相似文献   

3.
Geiss BJ  Cano GL  Tavis JE  Morrison LA 《Virology》2004,330(1):74-81
Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22. Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.  相似文献   

4.
Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant (DeltaUL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the DeltaUL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or DeltaUL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites.  相似文献   

5.
Summary. The cellular localization and virion association of the human cytomegalovirus (HCMV) UL97 protein were studied. UL97 protein demonstrated early nuclear localization followed by late perinuclear accumulation. It was found to be a structural virion constituent detected in all three enveloped forms of extracellular viral particles and shown to be phosphorylated by the virion-associated protein kinase. UL97 protein immunoprecipitated from virions and from infected cells demonstrated protein kinase activity manifested by autophosphorylation. This activity was reduced in the presence of a ganciclovir-resistance mutation at residue 460, implicated in nucleotide binding. A mutant virus, from which the proposed UL97 kinase catalytic domain had been deleted, could not be propagated in the absence of a helper wild-type virus. The characterization of UL97 protein as a virion-associated protein kinase which appears essential for viral replication, provides further insight into HCMV replication and could identify a potential novel target for antiviral therapy. Received September 2, 1997 Accepted January 14, 1998  相似文献   

6.
The protein kinase pUL97 of human cytomegalovirus plays important but incompletely defined roles in viral replication. Concerning the early phase of infection, it is postulated that pUL97 possesses regulatory functions in gene expression and/or DNA synthesis. Here we report that pUL97 interacts with an essential component of the replication complex, the DNA polymerase processivity factor pUL44. Interaction was determined by yeast two-hybrid and coimmunoprecipitation analyses and was mapped to the pUL97 region 366-459. In vitro kinase assays demonstrated that pUL44, coimmunoprecipitated either from transfected or from infected cells, is phosphorylated by pUL97 (but not by a catalytically inactive pUL97-mutant). In infected fibroblasts, immunofluorescence analysis revealed that pUL97 and pUL44 accumulate in the nucleus and are both incorporated into viral replication centers. The treatment with inhibitors of DNA synthesis or pUL97 kinase activity largely prevented colocalization. Thus, pUL97 may be indirectly involved in viral genome replication by modifying the replication cofactor pUL44.  相似文献   

7.
Tanaka M  Nishiyama Y  Sata T  Kawaguchi Y 《Virology》2005,341(2):301-312
Herpes simplex virus 1 (HSV-1) UL13 is a viral protein kinase that is packaged into virions and regulates optimal expression of ICP0 and a subset of late (gamma) proteins, including UL41 in infected cells. In the present study, we investigated the role(s) of the protein kinase activity of UL13 in viral replication using a recombinant virus expressing enzymatically inactive UL13 after an amino acid substitution in the invariant lysine of UL13. The recombinant virus carrying this mutation formed smaller plaques yielded 10-fold less progeny than wild-type virus but could not be differentiated from wild-type virus with respect to accumulation of UL41 and ICP0 in infected cells. These results indicate that the protein kinase activity of UL13 plays a role in viral replication in cell culture, but the activity is not essential for the optimal expression of UL41 and ICP0.  相似文献   

8.
Herpesviruses must cross the inner nuclear membrane and underlying lamina to exit the nucleus. HSV-1 US3 and PKC can phosphorylate lamins and induce their dispersion but do not elicit all of the phosphorylated lamin species produced during infection. UL13 is a serine threonine protein kinase conserved among many herpesviruses. HSV-1 UL13 phosphorylates US3 and thereby controls UL31 and UL34 nuclear rim localization, indicating a role in nuclear egress. Here, we report that HSV-2 UL13 alone induced conformational changes in lamins A and C and redistributed lamin B1 from the nuclear rim to intranuclear granular structures. HSV-2 UL13 directly phosphorylated lamins A, C, and B1 in vitro, and the lamin A1 tail domain. HSV-2 infection recapitulated the lamin alterations seen upon expression of UL13 alone, and other alterations were also observed, indicating that additional viral and/or cellular proteins cooperate with UL13 to alter lamins during HSV-2 infection to allow nuclear egress.  相似文献   

9.
UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed in non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli.  相似文献   

10.
Lentz MR 《Virus research》2002,83(1-2):213-219
The E1 protein of bovine papillomavirus (BPV) plays several key roles in viral DNA replication. E1 binds the viral origin, unwinds template DNA at the replication fork and recruits cellular replication machinery to the viral DNA. E1 is phosphorylated at multiple sites, and phosphorylation of E1 regulates E1 function and viral DNA replication. A consensus motif for the cellular kinase CK2 was identified at serine 584 near the carboxyl terminus of BPV E1, and found to be highly conserved among papillomavirus E1 proteins. Serine 584 was identified as a substrate of CK1 and CK2 in vitro by mutational and biochemical analysis, and was phosphorylated by a cellular kinase in cultured cells.  相似文献   

11.
Six of the eleven genes essential for Human cytomegalovirus (HCMV) DNA synthesis have been analyzed for putative structural motifs that may have a significant functional role in DNA replication. The genes studied encode for the DNA polymerase accessory protein (UL44), single-stranded DNA binding protein (UL57), primase-helicase complex (UL70, UL102, and UL105), and the putative initiator protein (UL84). The full-length open reading frames of these genes were highly conserved between ten isolates with amino acid sequence identity of >97% for all genes. Using ScanProsite software from the Expert Protein Analysis System (ExPASy) proteomics server, we have mapped putative motifs throughout these HCMV replication genes. Interesting motifs identified include casein kinase-2 (CKII) phosphorylation sites, a microbodies signal motif in UL57, and an ATP binding site in the putative UL105 helicase. Our investigations have also elucidated motif-rich regions of the UL44 DNA polymerase accessory protein and identified cysteine motifs that have potential implications for UL57 and UL70 primase. Taken together, these findings provide insights to regions of these HCMV replication proteins that are important for post-translation modification, activation, and overall function, and this information can be utilized to target further research into these proteins and advance the development of novel antiviral agents that target these processes.  相似文献   

12.
Lymberopoulos MH  Pearson A 《Virology》2007,363(2):397-409
UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went from clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection.  相似文献   

13.
Marek's disease virus (MDV) is a highly cell-associated avian herpesvirus. In its natural host, MDV induces Marek's disease (MD), a lethal condition characterized by malignant lymphoma of T cells. Although symptoms of MD may be prevented by vaccination, no practical pharmacological method of control has been widely accepted. Viral replication represents a point at which pharmacological control of herpesvirus infection may be most successful. However, this requires detailed knowledge of viral replication proteins. Studies in HSV-1 DNA replication implicate the UL9 protein as a key initiator of replication. For example, binding of UL9 to HSV-1 origins is a prerequisite for assembly of additional replication proteins. In this study, a protein, whose apparent molecular size is similar to that of HSV-1 UL9, was identified in extracts of MDV infected cells by western blot analysis with anti-HSV-1 UL9 antibody. A putative MDV UL9 gene was subsequently identified through sequencing of MDV genome fragments (BamHI G and C). Extended DNA sequence analysis revealed an open reading frame (ORF) which could encode a protein homologous to HSV-1 UL9. The MDV UL9 ORF encodes 841 amino acids, producing a sequence 49% identical to HSV-1 UL9 and 46% identical to VZV gene 51 product (VZV UL9). MDV UL9 shares numerous structural motifs with HSV-1 and VZV UL9 proteins, including six conserved N-terminal helicase motifs, an N-terminal leucine zipper motif, a C-terminal pseudo-leucine zipper sequence, and a putative helix-turn-helix structure.  相似文献   

14.
Caposio P  Riera L  Hahn G  Landolfo S  Gribaudo G 《Virology》2004,325(2):264-276
The Human Cytomegalovirus (HCMV) UL72 gene is considered to be the equivalent of the dUTPase gene of the Alpha- and Gamma-herpesviruses. To characterize its function, the expression profiles of UL72 at both the RNA and the protein level were determined. The gene is expressed with a late kinetics and the corresponding UL72 46-kDa protein accumulates late during infection in the cytoplasm of infected cells. The pUL72 was expressed in E. coli and the purified recombinant protein did not display a detectable dUTPase activity. The viral yields of reconstituted HCMV RVDeltaUL72 viruses carrying a deletion within the UL72 ORF demonstrated a moderate growth defect following low MOI infections, whereas their DNA synthesis profiles were not significantly different from those of the parental HCMV RVAD169. These results demonstrate that the UL72 gene product is not a dUTPase and is not essential for replication in human fibroblasts.  相似文献   

15.
The UL13 protein kinase is conserved among many herpesviruses but HSV-2 UL13 specificity is not known. Here, we found that HSV-2 UL13 is a phosphoprotein that autophosphorylates, and that serines within ERK and Cdc2 motifs were important for autophosphorylation but not for UL13 phosphorylation of exogenous substrates. HSV-2 UL13 phosphorylated a peptide also recognized by ERK and Cdc2. However, mutation of substrate residues critical for Cdc2 or Erk phosphorylation did not alter HSV-2 UL13 phosphorylation of the peptide, and HSV-2 UL13 did not phosphorylate standard Cdc2 or Erk peptide substrates. Mutation of prolines surrounding the peptide phosphoacceptor site reduced phosphorylation by HSV-2 UL13, and a peptide containing serine-proline amid alanines and glycines was phosphorylated. Thus, HSV-2 UL13 does not mimic ERK or Cdc2 substrate recognition and its minimal recognition motif can be serine-proline. This motif's simplicity indicates that distal sequence or protein structure contributes to HSV-2 UL13 substrate specificity.  相似文献   

16.
Analysis of the intracellular localization of frog virus 3 (FV 3)-infected cell polypeptides (ICPs) showed that although the largest amount of newly synthesized proteins were recovered, at any time postinfection, in the cytoplasmic fraction, most of the early viral-induced ICPs were present in the nuclei and the relative molar ratio of ICPs 90, 42, 31 was higher in the nuclei than in the cytoplasm. After 5–8 hr late polypeptides species were found concentrated in the nucleus (ICPs 70, 63, 12). The absence of viral DNA replication did not prevent the appearance of ICPs in the nucleus. Under abortive conditions produced by the replacement of arginine by canavanine, only a restricted set of ICPs was induced (early polypeptides) and the nuclear concentrations of ICPs 31 and 42 was modified. Newly phosphorylated proteins in infected cells were predominantly found in the nucleus, most species being viral induced. Moreover, following the induction of protein kinase, the specific activity of this enzyme was about 50 times higher in the nuclei than in the cytoplasmic fraction. These results extend the evidence for specific steps of FV 3 replication in the host nucleus, emphasizing the importance of the nucleus as the predominant site of viral polypeptide phosphorylation.  相似文献   

17.
Salsman J  Wang X  Frappier L 《Virology》2011,414(2):119-129
The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.  相似文献   

18.
19.
《Virology》1997,239(2):340-351
Epstein–Barr virus (EBV) replicates as a stable multicopy episome in latently infected mammalian cells. Latent cycle DNA replication requires only two viral elements, the cis-acting origin of plasmid replication (oriP) and the trans-acting origin binding protein (EBNA1). EBNA1 binds multiple recognition sites in oriP, but has no other enzymatic activities associated with replication functions. To identify human cellular proteins that mediate EBNA1 function, we designed a one-hybrid assay in yeast to select for proteins that bind to EBNA1 when bound to oriPin vivo.A human cDNA encoding the Rch1/hSRP1α/importinα protein was isolated and shown to bind to full-length EBNA1, but not to an amino terminal deletion mutant of EBNA1 when bound to oriP in yeast. The interaction of EBNA1 with Rch1 was confirmed biochemically by coimmunoprecipitation from nuclear extracts and by direct binding of recombinant proteinsin vitro.Internal deletion mutations in EBNA1 which compromised DNA replication activity were similarly reduced for binding to Rch1. Mutations with no effect on DNA replication activity were similarly unaffected for Rch1 binding. Rch1/importin α has been shown to bind to the nuclear localization sequence (NLS) of several proteins and stimulate nuclear import. A substitution mutation in the EBNA1 nuclear localization sequence reduced Rch1 binding, but had no effect on DNA replication function, indicating that Rch1 binding affinity does not correspond precisely with replication activity. Nevertheless, the identification of a stable interaction between Rch1 and EBNA1 at the origin of viral DNA replication raises the intriguing possibility that Rch1 contributes to the nuclear functions of EBNA1.  相似文献   

20.
The herpes simplex virus type 1 DNA polymerase consists of a catalytic subunit (POL or UL30) and a processivity factor (UL42). The POL/UL42 interaction, which occurs through the extreme C-terminus of POL, is essential for HSV-1 replication and thus represents a valid target for drug inhibition. We recently showed (A. Loregian et al. (1999) Proc. Natl. Acad. Sci. USA 96, 5221-5226) that an oligopeptide corresponding to the 27 C-terminal amino acids of POL, when delivered into herpes simplex virus type 1-infected cells by a protein carrier, was able to localize into the nucleus and to inhibit viral replication by disruption of the POL/UL42 interaction. In this report, to further characterize the 27 mer (Pol peptide), we investigated whether its nuclear localization was due to the presence of a nuclear localization signal. By testing the ability of the Pol peptide to localize the beta-galactosidase, a normally cytoplasmic protein, to the nucleus, we confirmed that the Pol peptide contained a functional nuclear localization signal, corresponding to the RRMLHR motif. This sequence proved not only necessary but also sufficient for nuclear localization, because its substitution with a six-alanine stretch prevented nuclear translocation of the beta-galactosidase-Pol peptide fusion. Site-directed mutagenesis experiments on this revealed that both the three basic arginines and the two hydrophobic residues Met and Leu were crucial for nuclear targeting. Finally, functionally equivalent sequences were also found in the C-terminus of the catalytic subunits of human cytomegalovirus (RRLHL) and of equine herpesvirus-1 DNA polymerase (RRILH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号