首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bacillus genus is a large heterogeneous group in need of an efficient method for species differentiation. To determine the current validity of a sequence-based method for identification and provide contemporary data, PCR and sequencing of a 500-bp product encompassing the V1 to V3 regions of the 16S rRNA gene were undertaken using 65 of the 83 type strains of this genus. This region proved discriminatory between most species (70.0 to 100% similarity), the exceptions being clinically relevant B. cereus and B. anthracis as well as nonpathogenic B. psychrotolerans and B. psychrodurans. Consequently, 27 type and clinical strains from the B. cereus group were used to test alternate targets (rpoB, vrrA, and the 16S-23S spacer region) for identification. The rpoB gene proved the best alternate target, with a conserved 4-nucleotide difference between B. cereus and B. anthracis. The high 16S rRNA gene sequence similarities between some strains demonstrated the need for a polyphasic approach to the systematics of this genus. This approach is one focus of the Ribosomal Differentiation of Medical Microorganisms mandate. Accordingly, the 16S rRNA gene sequences generated in this study have been submitted for inclusion into its publicly accessible, quality-controlled database at http://www.ridom_rdna.de/.  相似文献   

2.
For the differentiation and identification of mycobacterial species, the rpoB gene, encoding the beta subunit of RNA polymerase, was investigated. rpoB DNAs (342 bp) were amplified from 44 reference strains of mycobacteria and clinical isolates (107 strains) by PCR. The nucleotide sequences were directly determined (306 bp) and aligned by using the multiple alignment algorithm in the MegAlign package (DNASTAR) and the MEGA program. A phylogenetic tree was constructed by the neighbor-joining method. Comparative sequence analysis of rpoB DNAs provided the basis for species differentiation within the genus Mycobacterium. Slowly and rapidly growing groups of mycobacteria were clearly separated, and each mycobacterial species was differentiated as a distinct entity in the phylogenetic tree. Pathogenic Mycobacterium kansasii was easily differentiated from nonpathogenic M. gastri; this differentiation cannot be achieved by using 16S rRNA gene (rDNA) sequences. By being grouped into species-specific clusters with low-level sequence divergence among strains of the same species, all of the clinical isolates could be easily identified. These results suggest that comparative sequence analysis of amplified rpoB DNAs can be used efficiently to identify clinical isolates of mycobacteria in parallel with traditional culture methods and as a supplement to 16S rDNA gene analysis. Furthermore, in the case of M. tuberculosis, rifampin resistance can be simultaneously determined.  相似文献   

3.
The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. Comparison of the bacterial 16S rRNA gene sequence has emerged as a preferred genetic technique. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, can be routinely used for identification of mycobacteria, and can lead to the recognition of novel pathogens and noncultured bacteria. Problems remain in that the sequences in some databases are not accurate, there is no consensus quantitative definition of genus or species based on 16S rRNA gene sequence data, the proliferation of species names based on minimal genetic and phenotypic differences raises communication difficulties, and microheterogeneity in 16S rRNA gene sequence within a species is common. Despite its accuracy, 16S rRNA gene sequence analysis lacks widespread use beyond the large and reference laboratories because of technical and cost considerations. Thus, a future challenge is to translate information from 16S rRNA gene sequencing into convenient biochemical testing schemes, making the accuracy of the genotypic identification available to the smaller and routine clinical microbiology laboratories.  相似文献   

4.
Species-specific identification of campylobacters is problematic, primarily due to the absence of suitable biochemical assays and the existence of atypical strains. 16S rRNA gene (16S rDNA)-based identification of bacteria offers a possible alternative when phenotypic tests fail. Therefore, we evaluated the reliability of 16S rDNA sequencing for the species-specific identification of campylobacters. Sequence analyses were performed by using almost 94% of the complete 16S rRNA genes of 135 phenotypically characterized Campylobacter strains, including all known taxa of this genus. It was shown that 16S rDNA analysis enables specific identification of most Campylobacter species. The exception was a lack of discrimination among the taxa Campylobacter jejuni and C. coli and atypical C. lari strains, which shared identical or nearly identical 16S rDNA sequences. Subsequently, it was investigated whether partial 16S rDNA sequences are sufficient to determine species identity. Sequence alignments led to the identification of four 16S rDNA regions with high degrees of interspecies variation but with highly conserved sequence patterns within the respective species. A simple protocol based on the analysis of these sequence patterns was developed, which enabled the unambiguous identification of the majority of Campylobacter species. We recommend 16S rDNA sequence analysis as an effective, rapid procedure for the specific identification of campylobacters.  相似文献   

5.
Acinetobacter species are defined on the basis of several phenotypic characters, results of DNA-DNA homology, and more recently, similarities or dissimilarities in 16S rRNA gene sequences. However, the 16S rRNA gene is not polymorphic enough to clearly distinguish all Acinetobacter species. We used an RNA polymerase beta-subunit gene (rpoB)-based identification scheme for the delineation of species within the genus Acinetobacter, and towards that end, we determined the complete rpoB gene and flanking spacer (rplL-rpoB and rpoB-rpoC) sequences of the 17 reference strains of Acinetobacter species and 7 unnamed genomospecies. By using complete gene sequences (4,089 bp), we clearly separated all species and grouped them into different clusters. A phylogenetic tree constructed using these sequences was supported by bootstrap values higher than those obtained with 16S rRNA or the gyrB or recA gene. Four pairs of primers enabled us to amplify and sequence two highly polymorphic partial sequences (350 and 450 bp) of the rpoB gene. These and flanking spacers were designed and tested for rapid identification of the 17 reference strains of Acinetobacter species and 7 unnamed genomospecies. Each of these four variable sequences enabled us to delineate most species. Sequences of at least two polymorphic sequences should be used to distinguish Acinetobacter grimontii, Acinetobacter junii, Acinetobacter baylyi, and genomic species 9 from one another. Finally, 21 clinical isolates of Acinetobacter baumannii were tested for intraspecies relationships and assigned correctly to the same species by comparing the partial sequences of the rpoB gene and its flanking spacers.  相似文献   

6.
Due to the inadequate automation in the amplification and sequencing procedures, the use of 16S rRNA gene sequence-based methods in clinical microbiology laboratories is largely limited to identification of strains that are difficult to identify by phenotypic methods. In this study, using conventional full-sequence 16S rRNA gene sequencing as the "gold standard," we evaluated the usefulness of the MicroSeq 500 16S ribosomal DNA (rDNA)-based bacterial identification system, which involves amplification and sequencing of the first 527-bp fragment of the 16S rRNA genes of bacterial strains and analysis of the sequences using the database of the system, for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Among 37 clinically significant bacterial strains that showed ambiguous biochemical profiles, representing 37 nonduplicating aerobic gram-positive and gram-negative, anaerobic, and Mycobacterium species, the MicroSeq 500 16S rDNA-based bacterial identification system was successful in identifying 30 (81.1%) of them. Five (13.5%) isolates were misidentified at the genus level (Granulicatella adiacens was misidentified as Abiotrophia defectiva, Helcococcus kunzii was misidentified as Clostridium hastiforme, Olsenella uli was misidentified as Atopobium rimae, Leptotrichia buccalis was misidentified as Fusobacterium mortiferum, and Bergeyella zoohelcum was misidentified as Rimerella anatipestifer), and two (5.4%) were misidentified at the species level (Actinomyces odontolyticus was misidentified as Actinomyces meyeri and Arcobacter cryaerophilus was misidentified as Arcobacter butzleri). When the same 527-bp DNA sequences of these seven isolates were compared to the known 16S rRNA gene sequences in the GenBank, five yielded the correct identity, with good discrimination between the best and second best match sequences, meaning that the reason for misidentification in these five isolates was due to a lack of the 16S rRNA gene sequences of these bacteria in the database of the MicroSeq 500 16S rDNA-based bacterial identification system. In conclusion, the MicroSeq 500 16S rDNA-based bacterial identification system is useful for identification of most clinically important bacterial strains with ambiguous biochemical profiles, but the database of the MicroSeq 500 16S rDNA-based bacterial identification system has to be expanded in order to encompass the rarely encountered bacterial species and achieve better accuracy in bacterial identification.  相似文献   

7.
目的探索一种基于16S rRNA基因的快速鉴定细菌方法,为临床诊断治疗及耐药菌的分子遗传分析提供科学依据。方法对卫生部室间质评菌株和临床病人标本分离培养纯菌落,用双蒸水稀释菌落,然后直接以菌液为模板优化反应体系PCR扩增16S rRNA基因片段,再测序扩增片段。将测序结果在细菌Ribosomal数据库中进行同源性比对,根据序列同源性鉴定病原细菌。结果本实验鉴定的卫生部质评菌株结果与卫生部报告结果一致。本实验能够一次性鉴定出临床病人标本分离的菌株。结论本研究优化了一种免纯化细菌核酸直接PCR鉴定细菌16S rRNA基因的方法。本研究建立的基于病原细菌16S rRNA基因鉴定方法可用于细菌的快速诊断。  相似文献   

8.
The rapid and reliable identification of clinically significant Mycobacterium species is a challenge for diagnostic laboratories. This study evaluates a unique sequence-dependent identification algorithm called MycoAlign for the differential identification of Mycobacterium species. The MycoAlign system uses pan-Mycobacterium-specific primer amplification in combination with a customized database and algorithm. The results of testing were compared with conventional phenotypic assays and GenBank sequence comparisons using the 16S rRNA target. Discrepant results were retested and evaluated using a third independent database. The custom database was generated using the hypervariable sequences of the internal transcribed spacer 1 (ITS-1) region of the rRNA gene complex from characterized Mycobacterium species. An automated sequence-validation process was used to control quality and specificity of evaluated sequence. A total of 181 Mycobacterium strains (22 reference strains and 159 phenotypically identified clinical isolates) and seven nonmycobacterial clinical isolates were evaluated in a comparative study to validate the accuracy of the MycoAlign algorithm. MycoAlign correctly identified all referenced strains and matched species in 94% of the phenotypically identified Mycobacterium clinical isolates. The ITS-1 sequence target showed a higher degree of specificity in terms of Mycobacterium identification than the 16S rRNA sequence by use of GenBank BLAST. This study showed the MycoAlign algorithm to be a reliable and rapid approach for the identification of Mycobacterium species and confirmed the superiority of the ITS-1 region sequence over the 16S rRNA gene sequence as a target for sequence-based species identification.  相似文献   

9.
Introduction: 16S rRNA sequencing of novel isolates is one of the preliminary steps in characterization of bacteria, especially when the isolates are of medical relevance. The genus Campylobacter belongs to Class ε-proteobacteria under the Phylum Proteobacteria. It represents economically important species which are gastrointestinal pathogens in humans and livestock animals. Currently, more than 400 16S rDNA sequences belonging to 28 species of this genus are present in the RDP database. But heterogeneity has led to the misplacement of many of these sequences within wrong species. Also, various sequences belonging to Campylobacter have been deposited as orphans. The current study aimed to explore the internal features of 16S rRNA gene sequences in order to develop methods for identification of Campylobacter up to species level. Methods: 428 16S rRNA sequences of 28 species of Campylobacter were analyzed. 392 sequences (>1200 nucleotides, nts) of 16 species were considered for (i) phylogenetic framework analysis and (ii) in silico restriction digestion. 28 uncharacterized sequences present in the database were also investigated in the present study. Results: Phylogenetic framework analysis allowed the identification of genetic variability within Campylobacter species and helped to segregate certain uncharacterized sequences up to species level. 12 out of the 16 species under study showed homogenous behavior, but heterogeneity was observed between C. jejuni and C. coli and C. helveticus and C. upsaliensis respectively. Unique restriction enzymes were identified for six species. Conclusions: The present approach clearly showed that internal features of 16S rRNA is a useful tool for characterization of novel isolates up to the species level. Studies have revealed that niche overlap and consequent increase in the horizontal gene transfer between C. coli and C. jejuni, due to anthropogenic factors, maybe the reason for their heterogeneous nature. This explains the difficulties faced in segregation of the members of these species. 16S rRNA gene proved to be a viable and excellent marker for characterizing the uncharacterized Campylobacter strains leading to a significant diminution in database redundancy. Further, the approaches used in the study might assist in easier identification of the various Campylobacter sequences present in the database.  相似文献   

10.
Members of the genus Brucella are categorized as biothreat agents and pose a hazard for both humans and animals. Current identification methods rely on biochemical tests that may require up to 7 days for results. We sequenced the 16S rRNA genes of 65 Brucella strains along with 17 related strains likely to present a differential diagnostic challenge. All Brucella 16S rRNA gene sequences were determined to be identical and were clearly different from the 17 related strains, suggesting that 16S rRNA gene sequencing is a reliable tool for rapid genus-level identification of Brucella spp. and their differentiation from closely related organisms.  相似文献   

11.
rpoB gene sequencing for identification of Corynebacterium species   总被引:1,自引:0,他引:1       下载免费PDF全文
The genus Corynebacterium is a heterogeneous group of species comprising human and animal pathogens and environmental bacteria. It is defined on the basis of several phenotypic characters and the results of DNA-DNA relatedness and, more recently, 16S rRNA gene sequencing. However, the 16S rRNA gene is not polymorphic enough to ensure reliable phylogenetic studies and needs to be completely sequenced for accurate identification. The almost complete rpoB sequences of 56 Corynebacterium species were determined by both PCR and genome walking methods. In all cases the percent similarities between different species were lower than those observed by 16S rRNA gene sequencing, even for those species with degrees of high similarity. Several clusters supported by high bootstrap values were identified. In order to propose a method for strain identification which does not require sequencing of the complete rpoB sequence (approximately 3,500 bp), we identified an area with a high degree of polymorphism, bordered by conserved sequences that can be used as universal primers for PCR amplification and sequencing. The sequence of this fragment (434 to 452 bp) allows accurate species identification and may be used in the future for routine sequence-based identification of Corynebacterium species.  相似文献   

12.
16S rRNA sequence data have been used to provide a molecular basis for an accurate system for identification of members of the genus Mycobacterium. Previous studies have shown that Mycobacterium species demonstrate high levels (>94%) of 16S rRNA sequence similarity and that this method cannot differentiate between all species, i.e., M. gastri and M. kansasii. In the present study, we have used the recA gene as an alternative sequencing target in order to complement 16S rRNA sequence-based genetic identification. The recA genes of 30 Mycobacterium species were amplified by PCR, sequenced, and compared with the published recA sequences of M. tuberculosis, M. smegmatis, and M. leprae available from GenBank. By recA sequencing the species showed a lower degree of interspecies similarity than they did by 16S rRNA gene sequence analysis, ranging from 96.2% between M. gastri and M. kansasii to 75.7% between M. aurum and M. leprae. Exceptions to this were members of the M. tuberculosis complex, which were identical. Two strains of each of 27 species were tested, and the intraspecies similarity ranged from 98.7 to 100%. In addition, we identified new Mycobacterium species that contain a protein intron in their recA genes, similar to M. tuberculosis and M. leprae. We propose that recA gene sequencing offers a complementary method to 16S rRNA gene sequencing for the accurate identification of the Mycobacterium species.  相似文献   

13.
The morphological and genetic diversity of cyanobacteria associated with cycads was examined using PCR amplification techniques and 16S rRNA gene sequence analysis. Eighteen symbiotic cyanobacteria were isolated from different cycad species. One of the symbiotic isolates was a species of Calothrix, a genus not previously reported to form symbioses with Cycadaceae family, and the remainder were Nostoc spp. Axenic cyanobacterial strains were compared by DNA amplification using PCR with either short arbitrary primers or primers specific for the repetitive sequences. Based on fingerprint patterns and phenograms, it was revealed that cyanobacterial symbionts exhibit important genetic diversity among host plants, both within and between cycad populations. A phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that most of the symbiotic cyanobacterial isolates fell into well‐separated clades. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
To compare commonly used phenotypic methods with genotypic identification methods 47 clinical isolates of coagulase-negative staphylococci (CONS), 10 CONS ATCC strains, and a Staphylococcus aureus clinical isolate were identified using the API Staph ID test, BD Phoenix Automated Microbiology System, and 16S rRNA gene and tuf gene sequencing. When necessary part of the sodA gene was sequenced for definitive identification. The results show that tuf gene sequencing is the best method for identification of CONS, but the API Staph ID test is a reasonably reliable phenotypic alternative. The performance of the BD Phoenix Automated Microbiology System for identification of CONS is poor. The present study also showed that although genotypic methods are clearly superior to phenotypic identifications, a drawback of sequence-based genotypic methods may be a lack of quality of deposited sequences in data banks. In particular, 16S rRNA gene sequencing suffers from the lack of high quality among sequences deposited in GenBank. Furthermore, genotypic identification based on 16S rRNA sequences has limited discriminating power for closely related Staphylococcus species. We propose partial sequencing of the tuf gene as a reliable and reproducible method for identification of CONS species.  相似文献   

15.
The genus Haemophilus constitutes a heterogeneous group of Pasteurellaceae species, and conventional identification of isolates other than Haemophilus influenzae and Haemophilus parainfluenzae is often challenging. Here, simple colony-PCR and sequencing assays with the same pair of degenerate primers were used to characterize a 449- to 458-bp fragment (sodAint) internal to the sodA gene encoding the manganese-dependent superoxide dismutase in type strains of all 15 Haemophilus species and Actinobacillus actinomycetemcomitans. The topology of a sodAint-based phylogenetic tree was in general agreement with that inferred from the analysis of 16S rRNA and other housekeeping gene sequences, but allowed more confident delineation of the main clusters of species. The sodAint sequences showed a markedly higher divergence than those of the corresponding 16S rRNA genes, and 38 independent human clinical isolates were identified by comparing their sodAint sequence to those of the type species. Except for one Haemophilus aphrophilus strain, all isolates were unambiguously characterized in spite of a high intraspecific sodAint sequence diversity. This study provides a comprehensive sequence-based phylogenetic analysis of the entire genus Haemophilus, and confirms that sodA is a potent target for the identification of clinical isolates of Pasteurellaceae. This approach might contribute to the taxonomic reappraisal of this family, and to the development of diagnostic tools.  相似文献   

16.
Molecular methodologies, especially 16S rRNA gene sequence analysis, have allowed the recognition of many new species of Nocardia and to date have been the most precise methods for identifying isolates reliably to the species level. We describe here a novel method for identifying Nocardia isolates by using sequence analysis of a portion of the secA1 gene. A region of the secA1 gene of 30 type or reference strains of Nocardia species was amplified using secA1-specific primers. Sequence analysis of 468 bp allowed clear differentiation of all species, with a range of interspecies similarity of 85.0% to 98.7%. Corresponding 16S rRNA gene sequences of a 1,285-bp region for the same isolates showed a range of interspecies similarity of 94.4 to 99.8%. In addition to the type and reference strains, a 468-bp fragment of the secA1 gene was sequenced from 40 clinical isolates of 12 Nocardia species previously identified by 16S rRNA gene sequence analysis. The secA1 gene sequences of most isolates showed >99.0% similarity to the secA1 sequences of the type or reference strain to which their identification corresponded, with a range of 95.3 to 100%. Comparison of the deduced 156 amino acid sequences of the SecA1 proteins of the clinical isolates showed between zero and two amino acid residue differences compared to that of the corresponding type or reference strain. Sequencing of the secA1 gene, and using deduced amino acid sequences of the SecA1 protein, may provide a more discriminative and precise method for the identification of Nocardia isolates than 16S rRNA gene sequencing.  相似文献   

17.
Mitochondrial small subunit (mtSSU) rDNA variable (V1, V2, V4, V6, V8 and V9) domain sequences and rRNA secondary structures evidenced eight molecular groups within 32 strains of the Agrocybe aegerita multispecies complex from different continents. mtSSU-rRNA secondary structure evolution occurred mainly by insertion/deletion of sequences from 8 to 57nt long. Preferential insertion/deletion sites correlated with loops of the mtSSU-rRNA secondary structures, and suggested that these events occurred in regions without interactions in the ribosomal-protein assembly. Indels modified the stem length (V1 and V4 domains) or the size and loop number (V6 and V9 domains). Three indels inserted in the V1 and V4 domains had 76.5% to 94.7% identity with short sequences of the mitochondrial cytochrome c oxidase gene; this fact and the presence of inverted repeated motifs within indel sequences suggested a mechanism of evolution based on insertion/deletion of sequences from another region of the mitochondrial genome. Phylogenetic relationships inferred using both ribosomal DNA sequences and rRNA secondary structures were congruent and evidenced three clades within the A. aegerita complex: European, Argentinean, and a more distant Asian-American clade including A. aegerita and A. chaxingu strains. These results suggested that numerous genetic exchanges occurred between Asian-American strains after isolation of the European clade. V4-V6-V9 concatenated sequences of European and Argentinean clades had 86.1% identity, similar to the value calculated between two Agrocybe closely related species, suggesting that these clades could represent different species. A cleaved amplified polymorphic sequence test for rapid characterization of strains was developed.  相似文献   

18.
The use of the 16S rRNA gene for identification of nontuberculous mycobacteria (NTM) provides a faster and better ability to accurately identify them in addition to contributing significantly in the discovery of new species. Despite their associated problems, many rely on the use of public sequence databases for sequence comparisons. To best evaluate the taxonomic status of NTM species submitted to our reference laboratory, we have created a 16S rRNA sequence database by sequencing 121 American Type Culture Collection strains encompassing 92 species of mycobacteria, and have also included chosen unique mycobacterial sequences from public sequence repositories. In addition, the Ribosomal Differentiation of Medical Microorganisms (RIDOM) service has made freely available on the Internet mycobacterial identification by 16S rRNA analysis. We have evaluated 122 clinical NTM species using our database, comparing >1,400 bp of the 16S gene, and the RIDOM database, comparing approximately 440 bp. The breakdown of analysis was as follows: 61 strains had a sequence with 100% similarity to the type strain of an established species, 19 strains showed a 1- to 5-bp divergence from an established species, 11 strains had sequences corresponding to uncharacterized strain sequences in public databases, and 31 strains represented unique sequences. Our experience with analysis of the 16S rRNA gene of patient strains has shown that clear-cut results are not the rule. As many clinical, research, and environmental laboratories currently employ 16S-based identification of bacteria, including mycobacteria, a freely available quality-controlled database such as that provided by RIDOM is essential to accurately identify species or detect true sequence variations leading to the discovery of new species.  相似文献   

19.
Sequence analysis of the 16S rRNA gene represents a highly accurate and versatile method for bacterial classification and identification, even when the species in question is notoriously difficult to identify by phenotypic means. In this study, we evaluated the utility of 16S rRNA gene sequencing as a means of identifying clinically important Bacteroides species. We sequenced 231 clinical isolates that had been identified by a short biochemical scheme. Based on the sequence analysis, 192 clinical isolates were assigned to an established species, with the other 39 clinical strains revealing five unique sequences that may represent five novel species. This is in contrast to identification obtained from a short biochemical scheme, by which only 73.5% (172 of 231) of isolates were correctly identified to species level. Based on the solid identification obtained from 16S rRNA gene sequencing, the short biochemical scheme was modified and improved to provide clinical laboratories with an inexpensive and simple alternative for the identification of isolates of clinically significant Bacteroides species.  相似文献   

20.
The new anaerobe and Corynebacterium (ANC) identification card for Vitek 2 was compared with a 16S rRNA gene sequencing (16S) reference method for accuracy in the identification of corynebacteria and anaerobic species. Testing was performed on a Vitek 2 XL system with modified software at three clinical trial laboratories. Reproducibility was determined with nine ATCC quality control strains that were tested 20 times over a minimum of 10 days at all three sites. A challenge set of 50 well-characterized strains and 365 recent fresh and frozen clinical isolates were included in the study. The expected positive and negative biochemical well reactions were also evaluated for substrate reproducibility. All strains were tested with the ANC card, and clinical isolates were saved for 16S rRNA gene sequencing. All reproducibility tests yielded expected results within a 95% confidence interval, except for that with Corynebacterium striatum ATCC 6940, for which identification failed at one trial site. For the challenge isolates, there was 98% correct identification, 5% low discrimination, and 2% incorrect identification, and 0% were unidentified. For clinical strains, there was 95.1% correct identification, 4.9% low discrimination, and 4.6% incorrect identification, and 0.3% were unidentified. The 4.6% (17/365) of clinical isolates that were incorrectly identified consisted of 14 isolates that were correct at the genus level and three that were incorrect at the genus level. The new ANC card met all performance criteria within a 95% confidence interval compared to the identification performance by 16S rRNA gene sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号