首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyapatite (HA) composites with titania (TiO2) up to 30 mol % were coated on a titanium (Ti) substrate by a sol-gel route, and the mechanical and biological properties of the coating systems were evaluated. Using polymeric precursors, highly stable HA and TiO2 sols were prepared prior to making composite sols and coatings. Coatings were produced under a controlled spinning and heat treatment process. Pure phases of HA and TiO2 were well developed on the composites after heat treatment above 450 degrees C. The HA-TiO2 composite coating layers were homogeneous and highly dense with a thickness of about 800-900 nm. The adhesion strength of the coating layers with respect to Ti substrate increased with increasing the TiO2 addition. The highest strength obtained was as high as 56 MPa, with an improvement of about 50% when compared to pure HA (37 MPa). The osteoblast-like cells grew and spread actively on all the composite coatings. The proliferation and alkaline phosphatase (ALP) activity of the cells grown on the composite coatings were much higher than those on bare Ti, and even comparable to those on pure HA coating. Notably, the HA-20% TiO2 composite coating showed a significantly higher proliferation and ALP expression compared to bare Ti (p < 0.05). These findings suggest that the sol-gel-derived HA-TiO2 composite coatings possess excellent properties for hard tissue applications from the mechanical and biological perspective.  相似文献   

2.
Kim HW  Koh YH  Li LH  Lee S  Kim HE 《Biomaterials》2004,25(13):2533-2538
Hydroxyapatite (HA) was coated onto a titanium (Ti) substrate with the insertion of a titania (TiO2) buffer layer by the sol-gel method. The HA layer was employed to enhance the bioactivity and osteoconductivity of the Ti substrate, and the TiO2 buffer layer was inserted to improve the bonding strength between the HA layer and Ti substrate, as well as to prevent the corrosion of the Ti substrate. The HA layer coated over the TiO2 showed a typical apatite phase at 400 degrees C and the phase intensity increased above 450 degrees C. The sol-gel derived HA and TiO2 films, with thicknesses of approximately 800 and 200 nm, respectively, adhered tightly to each other and to the Ti substrate. The bonding strength of the HA/TiO2 double layer coating on Ti was markedly improved when compared to that of the HA single coating on Ti. The highest strength of the double layer coating was 55 MPa after heat treatment at 500 degrees C. The improvement in bonding strength with the insertion of TiO2 was attributed to the resulting enhanced chemical affinity of TiO2 toward the HA layer, as well as toward the Ti substrate. Human osteoblast-like cells, cultured on the HA/TiO2 coating surface, proliferated in a similar manner to those on the TiO2 single coating and on the pure Ti surfaces. However, the alkaline phosphatase activity of the cells on the HA/TiO2 double layer was expressed to a higher degree than that on the TiO2 single coating and pure Ti surfaces. The corrosion resistance of Ti was improved by the presence of the TiO2 coating, as confirmed by a potentiodynamic polarization test.  相似文献   

3.
目的 通过对涂层的表面结构及其细胞相容性的研究,对新型的钛基溶胶凝胶HA涂层技术进行评价.方法 在纯钛材料表面制备新型的溶胶凝胶HA涂层,采用SEM对涂层表面特征进行测试.体外成骨细胞(MC-3T3)培养测试涂层的细胞相容性,并将钛基HA溶胶凝胶涂层的细胞相容性与传统的钛基等离子喷涂HA涂层做比较.结果 经过水热处理的钛基涂层表面为均一的晶体颗粒表面,细胞学实验发现与等离子HA涂层相比较,水热处理溶胶凝胶表面增强了细胞粘附作用,具有较好的成骨细胞粘附(P<0.05).结论 本实验结果提示这种新型的水热处理钛基HA溶胶凝胶表面具有良好的成骨细胞粘附特性,因而有待于作进一步研究.  相似文献   

4.
Lu YP  Li MS  Li ST  Wang ZG  Zhu RF 《Biomaterials》2004,25(18):4393-4403
A two-layer hydroxyapatite (HA)/HA+TiO(2) bond coat composite coating (HTH coating) on titanium was fabricated by plasma spraying. The HA+TiO(2) bond coat (HTBC) consists of 50 vol% HA and 50 vol% TiO(2) (HT). The microstructural characterization of the HTH coatings before and after heat treatment was conducted by using scanning electron microscopy (SEM), electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM), in comparison with that of HT coating and pure HA coating. The results revealed that HA and TiO(2) phases layered in an alternating pattern within the HTBC, and the HTBC bonded well to HA top coating (HAT coating) and Ti substrate. The as-sprayed HT coating consists mainly of crystalline HA, rutile TiO(2) and amorphous Ca-P phase. The post-spray heat treatment at 650 degrees C for 120 min effectively restores the structural integrity of HA by transforming non-HA phases into HA. It was found that there exists interdiffusion of the elements within the HTBC, but no chemical product between HA and TiO(2), such as CaTiO(3) was formed. The cross-sectional morphologies confirmed that there is a shift towards a relatively tighter bonding from the HAT coating/HTBC interface in the as-sprayed HTH coating to the HTBC/Ti substrate interface in the heat-treated HTH coating. On quenching the coatings into water, the surface cracking indicates more apparently the positive effect of the HTBC on the decrease of residual stress in HAT coating. The in situ surface cracking also suggests that the stress on the surface of the HTH coating is stable under subjection to a repetitious heat treatment. The toughening and strengthening of HTBC is thought to be mainly due to TiO(2) as obstacles embarrassing cracking, the reduction of the near-tip stresses resulting from stress-induced microcracking and the decrease of CTE mismatch. In the HTH composite coating, the HAT coating is toughened by the decreased CTE mismatch with Ti through the addition of HTBC, which bonds well to the Ti substrate via its TiO(2) hobnobbing with the Ti oxides formed on Ti substrate.  相似文献   

5.
A thin hydroxyapatite (HA) layer was coated on a microarc oxidized titanium (MAO-Ti) substrate by means of the sol-gel method. The microarc oxidation (anodizing) enhanced the biocompatibility of the Ti, and the bioactivity was improved further by the sol-gel HA coating on the anodized Ti. The HA sol was aged fully to obtain a stable and phase-pure HA, and the sol concentration was varied to alter the coating thickness. Through the sol-gel HA coating, the Ca and P concentrations in the coating layer increased significantly. However, the porous morphology and roughness of the MAO-Ti was altered very little by the sol-gel treatment. The proliferation and alkaline phosphatase (ALP) activity of the osteoblast-like cells on the MAO/HA sol-gel-treated Ti were significantly higher than those on the MAO-Ti without the HA sol-gel treatment.  相似文献   

6.
Sato M  Slamovich EB  Webster TJ 《Biomaterials》2005,26(12):1349-1357
Sol-gel processing was used to coat titanium substrates with hydroxyapatite (HA), TiO2, and poly(DL-lactic-glycolic acid). Coating surface characteristics were analyzed with XRD, EDS, AFM, SEM, and water contact angle measurements which indicated that the coatings had a high degree of crystallinity and good resistance to cracking. Coatings were also evaluated by cytocompatibility testing with osteoblast-like cells (or bone-forming cells). The cytocompatibility of the HA composite coatings prepared in the present in vitro study was compared to that of a traditional plasma-sprayed HA coating. Results showed that osteoblast-like cell adhesion was promoted on the novel HA sol-gel coating compared to the traditional plasma-sprayed HA coating. In addition, hydrothermal treatment of the sol-gel coating improved osteoblast-like cell adhesion. Since osteoblast adhesion is a necessary prerequisite for subsequent formation of bone, these results provided evidence that hydrothermally sol-gel processed HA may improve bonding of titanium implants to juxtaposed bone and, thus, warrants further investigation.  相似文献   

7.
Hydroxyapatite-TiO2 hybrid coating on Ti implants   总被引:3,自引:0,他引:3  
A hydroxyapatite (HA)-titania (TiO(2)) hybrid coating is developed to improve the biocompatibility of titanium (Ti) implants. The HA predeposited layer on Ti via electron beam (e-beam) evaporation is subsequently treated by micro-arc oxidation (MAO) to produce an HA-TiO(2) hybrid layer on Ti. The e-beam-deposited HA layer has a thickness of approximately 1 microm and was highly dense prior to MAO. By means of MAO treatment, a rough and porous TiO(2) layer is formed beneath the HA layer with a simultaneous local dissolution of the HA layer. Due to the HA precoating, high concentrations of Ca and P are preserved on the coating surface. The osteoblast-like cells on the hybrid coating layer grow and spread favorably. The cell proliferation rate on the hybrid coatings is not much different from that on pure Ti or simple MAO-treated Ti. However, the alkaline phosphatase (ALP) activity of the cells is significantly higher (p < 0.05) on the HA-TiO(2) hybrid coatings than on either the pure Ti or the simple MAO-treated specimen, suggesting that the cellular activity on the hybrid coatings is improved.  相似文献   

8.
Hydroxyapatite (HA) coatings loaded with nanosilver particles is an attractive method to impart the HA coating with antibacterial properties. Producing Ag/HA coatings on porous Ti substrates have been an arduous job since commonly used line-of-sight techniques are not able to deposit uniform coatings on the inner pore surfaces of the porous Ti. In this study, porous Ti scaffolds with high porosity and interconnected structures were prepared by polymer impregnating method. A sol-gel process was used to produce uniform Ag/HA composite coatings on the surfaces of porous Ti substrates. Ca(NO(3) )(2) ·4H(2) O and P(2) O(5) in an ethyl alcohol based system was selected to prepare the sol, which ensured the homogeneous distribution of Ag in the sol. The characterization revealed that silver particles uniformly distributed in the coatings without agglomeration. High antibacterial ratio (>95%), against E. coli and S. albus was expressed by the silver-containing coatings (Ag/HA 0.8 and 1.6 wt %). The biocompatibility of the Ag/HA 0.8 surfaces was as good as that of pure HA surface, as revealed by culturing osteoblasts on them. The results indicated that Ag/HA 0.8 had the good balance between the biocompatibility and antibacterial properties of the coatings.  相似文献   

9.
In this report, bioactive calcium phosphate (CaP) coatings were produced on titanium (Ti) by using phosphate-based glass (P-glass) and hydroxyapatite (HA), and their feasibility for hard tissue applications was addressed in vitro. P-glass and HA composite slurries were coated on Ti under mild heat treatment conditions to form a porous thick layer, and then the micropores were filled in with an HA sol-gel precursor to produce a dense layer. The resultant coating product was composed of HA and calcium phosphate glass ceramics, such as tricalcium phosphate (TCP) and calcium pyrophosphate (CPP). The coating layer had a thickness of approximately 30-40 microm and adhered to the Ti substrate tightly. The adhesion strength of the coating layer on Ti was as high as 30-33 MPa. The human osteoblastic cells cultured on the coatings produced by the combined method attached and proliferated favorably. Moreover, the cells on the coatings expressed significantly higher alkaline phosphatase activity than those on pure Ti, suggesting the stimulation of the osteoblastic activity on the coatings. On the basis of these observations, the engineered CaP coating layer is considered to be potentially applicable as a hard tissue-coating system on Ti-based implants.  相似文献   

10.
Kim HW  Kim HE  Knowles JC 《Biomaterials》2004,25(17):3351-3358
Hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) films were deposited on a titanium substrate using a sol-gel technique. Different concentrations of F- were incorporated into the apatite structure during the sol preparation. Typical apatite structures were obtained for all coatings after dipping and subsequent heat treatment at 500 degrees C. The films obtained were uniform and dense, with a thickness of approximately 5 microm. The dissolution rate of the coating layer decreased with increasing F- incorporation within the apatite structure, which demonstrates the possibility of tailoring the solubility by a functional gradient coating of HA and FHA. The cell proliferation rate on the coating layer decreased slightly with increasing F- incorporation. The alkaline phosphatase (ALP) activity of the cells on all the HA and FHA coated samples showed much higher expression levels compared to pure Ti. This confirmed the improved activity of cell functions on the substrates with the sol-gel coating treatment.  相似文献   

11.
Hydroxyapatite (HA) and gelatin composites were fabricated in a foam type via a novel freeze-drying and crosslinking technique. The morphological and mechanical properties of and in vitro cellular responses to the foams were investigated. The HA powder was added at up to 30 wt % into the gelatin solution, and the mixtures were freeze-dried and further crosslinked. The pure gelatin foam had a well-developed pore configuration with porosity and pore size of approximately 90% and 400-500 microm, respectively. With HA addition, the porosity decreased and pore shape became more irregular. The HA particulates, in sizes of about 2-5 microm, were distributed within the gelatin network homogeneously and made the framework surface rougher. All the foams had high water absorption capacities, showing typical hydrogel characteristics, even though the HA addition decreased the degree of water absorption. The HA addition made the foam much stronger and stiffer (i.e., with increasing HA amount the foams sustained higher compressive stress and had higher elastic modulus in both dry and wet states). The osteoblast-like human osteosarcoma cells spread and grew actively on all the foams. The cell proliferation rate, quantified indirectly on the cells cultured on Ti discs coated with gelatin and gelatin-HA composites using MTT assay, exhibited an up-regulation with gelatin coating compared with bare Ti substrate, but a slight decrease on the composite coatings. However, the alkaline phosphatase activities expressed by the cells cultured on composites foams as well as their coatings on Ti discs were significantly enhanced compared with those on pure gelatin foam and coating. These findings suggest that the gelatin-HA composite foams have great potential for use as hard tissue regeneration scaffolds.  相似文献   

12.
Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications.  相似文献   

13.
In this study, we report fabrication of strontium (Sr) and magnesium (Mg) doped hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) substrates using inductively coupled radio frequency (RF) plasma spray. HA powder was doped with 1 wt % Sr (Sr-HA) and 1 wt % Mg (Mg-HA), heat treated at 800°C for 6 h and then used for plasma spray coating. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis indicated that the coatings were primarily composed of phase pure crystalline HA. When compared to undoped HA coating, physical properties such as microstructure, grain size, and adhesive bond strength of the doped HA coatings did not change significantly. Microstructure of the coatings showed coherency in the structure with an average grain size of 200-280 μm HA particles, where each of the HA grains consisted of 20-30 nm sized particles. An average adhesive bond strength of 17 MPa ensured sufficient mechanical strength of the coatings. A chemistry dependent improvement in bone cell-coating interaction was noticed for doped coatings although it had minimal effect on physical properties of the coatings. In vitro cell-materials interactions using human fetal osteoblasts (hFOB) showed better cell attachment and proliferation on Sr-HA coatings compared to HA or Mg-HA coatings. Presence of Sr in the coating also stimulated hFOB cell differentiation and alkaline phosphatase (ALP) expression. Improvement in bioactivity of Sr doped HA coatings on Ti without compromising its mechanical properties makes it an excellent material of choice for coated implant.  相似文献   

14.
Different types of calcium phosphates [hydroxyapatite (HA), fluorapatite (FA), tricalcium phosphate (TCP), and their composites (HA + FA, HA + TCP)] were coated on a zirconia (ZrO(2)) porous scaffold using a powder slurry method. The ZrO(2) porous scaffold was intended for a load-bearing implant, and the apatite layers were coated to improve osteoconductivity. The insertion of an FA intermediate layer between the coating layer and ZrO(2) scaffold effectively suppressed the reaction between the calcium phosphate and ZrO(2) and maintained the coating layer at the initial powder composition. The obtained coating layer, of a thickness of approximately 30 microm, was relatively microporous and firmly adherent to the ZrO(2) scaffold. Dissolution tests in physiological solution showed typical differences depending on the coating layers, with the dissolution rate increasing in the order TCP > HA + TCP > HA > HA + FA > FA. This result suggests the functional coating of the calcium phosphates in view of tailoring the solubility. Osteoblast-like cells, MG63 and HOS, responded similarly in terms of cell growth, morphology, and proliferation rate regardless of the coating types, indicating favorable and comparable cell viability. However, the alkaline phosphatase (ALP) activity of the cells on the pure HA and HA composite coatings (HA + FA and HA + TCP) expressed at higher levels compared to those on pure FA and pure TCP coatings for both MG63 and HOS cells, suggesting a selective cell activity depending on the coating types. All the calcium phosphate-coated-ZrO(2) scaffolds showed higher ALP levels compared to pure ZrO(2) scaffold.  相似文献   

15.
In addition to mechanical and chemical stability, the third design goal of the ideal bone-implant coating is the ability to support osteogenic differentiation of mesenchymal stem cells (MSCs). Plasma-sprayed TiO(2)-based bone-implant coatings exhibit excellent long-term mechanical properties, but their applications in bone implants are limited by their bioinertness. We have successfully produced a TiO(2) nanostructured (grain size <50 nm) based coating charged with 10% wt hydroxyapatite (TiO(2)-HA) sprayed by high-velocity oxy-fuel. On Ti64 substrates, the novel TiO(2)-HA coating bond 153× stronger and has a cohesive strength 4× higher than HA coatings. The HA micro- and nano-sized particles covering the TiO(2)-HA coating surface are chemically bound to the TiO(2) coating matrix, producing chemically stable coatings under high mechanical solicitations. In this study, we elucidated the TiO(2)-HA nanocomposite coating surface chemistry, and in vitro osteoinductive potential by culturing human MSCs (hMSCs) in basal and in osteogenic medium (hMSC-ob). We assessed the following hMSCs and hMSC-ob parameters over a 3-week period: (i) proliferation; (ii) cytoskeleton organization and cell-substrate adhesion; (iii) coating-cellular interaction morphology and growth; and (iv) cellular mineralization. The TiO(2) -HA nanocomposite coatings demonstrated 3× higher hydrophilicity than HA coatings, a TiO(2)-nanostructured surface in addition to the chemically bound HA micron- and nano-sized rod to the surface. hMSCs and hMSC-ob demonstrated increased proliferation and osteoblastic differentiation on the nanostructured TiO(2)-HA coatings, suggesting the TiO(2)-HA coatings nanostructure surface properties induce osteogenic differentiation of hMSC and support hMSC-ob osteogenic potential better than our current golden standard HA coating.  相似文献   

16.
In this investigation, the plasma immersion ion implantation and deposition (PIIID) technique was used to fabricate (Ti, O)/Ti or (Ti, O, N)/Ti coatings on a NiTi shape memory alloy (SMA, 50.8 at.% Ni) to improve its corrosion, wear resistance, and bioactivity. After coating fabrication, the structure and properties of composite coatings were studied, and the coated and uncoated NiTi SMA samples were compared with each other. Scanning electron microscopic (SEM) examination of coating surfaces and cross-sections showed that (Ti, O)/Ti and (Ti, O, N)/Ti composite coatings were dense and uniform, having thickness values of 1.16 ± 0.08 μm and 0.95 ± 0.06 μm, respectively. X-ray diffraction (XRD) results revealed that there were no diffraction peaks corresponding to TiO(2) or TiN for (Ti, O)/Ti and (Ti, O, N)/Ti composite coatings, suggesting that after the PIIID treatment, TiO(2) and TiN were amorphous or nanosized in the coatings. Energy dispersive X-ray (EDX) analysis indicated that the interface between the coating and NiTi SMA substrate was gradual rather than sharp. In addition, EDX elemental mapping of coating cross-sections showed that Ni was depleted from the surface. Differential scanning calorimetry (DSC) curves revealed that the shape memory ability of NiTi SMA was not degraded by the PIIID treatment. The width of wear tracks on (Ti, O, N)/Ti coated NiTi SMA samples was reduced 6.5-fold, in comparison with that on uncoated samples. The corrosion potential (E(corr) ) was improved from -466.20 ± 37.82 mV for uncoated samples to 125.50 ± 21.49 mV and -185.40 ± 37.05 mV for (Ti, O)/Ti coated and (Ti, O, N)/Ti coated samples, respectively. Both types of coatings facilitated bone-like apatite formation on the surface of NiTi SMA in simulated body fluid (SBF), indicating their in vitro bioactivity.  相似文献   

17.
The aim of this study was to characterize and compare various titanium (Ti) and hydroxyapatite (HA) coatings on Ti6Al4V, in view of their application on noncemented orthopedic implants. Two innovative vacuum plasma sprayed (VPS) coatings, the first of ultrahigh rough and dense Ti (PG60, Ra=74 microm) and the second of ultrahigh rough and dense Ti coated with HA (HPG60, Ra=52 microm), have been developed, and the response of osteoblast-like cells (MG-63) seeded on these new coatings was evaluated in comparison to: a low roughness and sandblasted (Ti/SA, Ra=4 microm) Ti6Al4V surface; Ti medium (TI01, Ra=18 microm), and high (TI60, Ra=40 microm) roughness VPS coatings; and the relative Ti plus HA duplex coatings (HT01, Ra=12 microm and HT60, Ra=36 microm respectively), also obtained by VPS. PG60 coating presented no open porosity, making it dense and potentially intrinsically stronger. Cell adhesion and proliferation on PG60 was similar to those of the smoothest one (Ti/SA) and adhesion on ultrahigh roughness was lower than the medium- and high-roughness coatings, whereas cell proliferation on PG60 was lower than TI60. The HA coating determined significant increases in cell proliferation at medium and high roughness levels when compared to the relative Ti coating, but not compared to the ultrahigh one; all HA-coated surfaces showed a decrease in alkaline phosphatase activity and collagen I production. Surface morphology and the HA coating strongly affected cell behavior. However, ultrahigh values of roughness are not correctly seen by cells, and the presence of HA has no improving effects.  相似文献   

18.
Kim HW  Georgiou G  Knowles JC  Koh YH  Kim HE 《Biomaterials》2004,25(18):4203-4213
Calcium phosphates (CaP) and phosphate-based glass (P-glass, xCaO-(0.55-x) Na(2)O-0.45P(2)O(5) composition) composite coatings were obtained on a strong ZrO(2) to improve biocompatibility, the mechanical strength and biological activity. Hydroxyapatite (HA) and P-glass mixed powder slurries were coated on the ZrO(2) substrate, and subsequently heat-treated to obtain CaP- and P-glass composite coatings. The effects of glass composition (x=0.3, 0.4, 0.5 mol), mixing ratio of glass to HA (30%, 40%, 50% wt/wt), and heat treatment temperature (800 degrees C, 900 degrees C, 1000 degrees C) on the coating properties were investigated. After heat treatment, additional calcium phosphates, i.e., dicalcium phosphate (DCP) and tricalcium phosphate (TCP), were crystallized, resulting in the formation of triphasic calcium phosphates (HA-TCP-DCP) surrounded by a glass phase. The relative amounts of the crystalline phases varied with coating variables. The higher heat treatment temperature and glass amount, and the lower CaO content in the glass composition rendered the composite coatings to retain the higher amounts of TCP and DCP while the initial HA decreased. These appearance of additional crystalline phases and reduction of HA amount were attributed to the combined effects, i.e., the melting-crystallization of P-glass and the reaction between glass liquid phase and HA powder during thermal treatment. As a result of the glass phase in the composite coatings, their microstructures became much denser when compared to the pure HA coating. In particular, a completely dense structure was obtained at coating conditions with large amount of glass addition (50 wt%) at the glass composition of lower CaO content (0.3 mol CaO), and the following heat treatment above 800 degrees C for 2h. As a result, the adhesion strengths of the composite coating layers were significantly improved when compared to the pure HA coating. The highest strength of the composite coating was approximately 40 MPa, an improvement of approximately 80% with respect to the pure HA coating. The composite coatings showed much higher dissolution rates than the pure HA coating due to the newly formed crystallines (TCP and DCP) and the remaining glass phase. The osteoblast-like cells grew and spread actively on the composite coating samples. The proliferation numbers and alkaline phosphate (ALP) activities of the cells on the composite coatings were improved by approximately 30-40% when compared to Thermanox control and ZrO(2) substrate, and were comparable to the pure HA coating. These findings suggested that the CaP and P-glass composites are potentially useful for hard tissue coating system, due to their morphological and mechanical integrity, enhanced bioactivity, and favorable responses to the osteoblast-like cells.  相似文献   

19.
The biocompatibility of titania/hydroxyapatite (TiO2 /HA) composite coatings, at different ratio obtained by sol-gel process, were investigated studying the behaviour of human MG63 osteoblast-like cells. The biocompatibility was evaluated by means of cytotoxicity and cytocompatibility tests. Cytotoxicity tests, i.e., neutral red (NR), MTT and kenacid blue (KB) assays, were performed to assess the influence of the material extracts on lysosomes, mitochondria and cell proliferation, respectively. Cell proliferation, some preliminary indications of cell morphology, alkaline phosphatase activity, collagen and osteocalcin production of MG63 cells, cultured directly onto TiO2/HA substrates, were evaluated. The results showed that these materials have no toxic effects. Cell growth and morphology were similar on all the materials tested: on the contrary, alkaline-phosphatase-specific activity and collagen production of osteoblasts cultured on TiO2/HA coatings were significantly higher than uncoated titanium and polystyrene of culture plate and were influenced by chemical composition of the coatings. In particular, TiO2/HA coating at 1:1 ratio (w/w) seems to stimulate more than others the expression of some differentiation markers of osteoblastic phenotype. TiO2/HA coatings resulted to be bioactive owing to the presence of hydroxyl groups detected on their surface that promote the calcium and phosphate precipitation and improve the interactions with osteoblastic cells.  相似文献   

20.
Han Y  Chen D  Sun J  Zhang Y  Xu K 《Acta biomaterialia》2008,4(5):1518-1529
Using ultraviolet (UV) irradiation of micro-arc oxidized (MAO) titania coating in distilled water for 0.5 and 2h, we have achieved an enhanced bioactivity and cell response to titania surface. The MAO coating appears porous and predominantly consists of nanocrystallized anatase TiO(2). Compared with the MAO coating, the UV-irradiated coatings do not exhibit any obvious change in surface roughness, morphology, grain size and phase component; however, they have more abundant basic Ti-OH groups and become more hydrophilic because the water contact angle decreases significantly from 17.9+/-0.8 degrees to 0 degrees . In simulated body fluid (SBF), bonelike apatite-forming ability is significantly stronger on the UV-irradiated coatings than the MAO coating. SaOS-2 human osteoblast-like cell attachment, proliferation and alkaline phosphatase of the cell are greater on the UV-irradiated coatings relative to the MAO coating. UV irradiation of titania results in the conversion of Ti(4+) to Ti(3+) and the generation of oxygen vacancies, which could react with the absorbed water to form basic Ti-OH groups. The enhanced bioactivity and cell response of the UV-irradiated coatings are proven to result from abundant Ti-OH groups on the coating surfaces. After storing the UV-irradiated coatings in the dark for two weeks, the basic Ti-OH groups on the coatings slightly decrease in amount and can induce apatite formation after a short period of SBF immersion, and show relative long-term stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号