首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative magnetic resonance imaging (MRI) techniques have been developed for noninvasive assessment of the structure of articular cartilage. T2 relaxation time is sensitive to the integrity and orientation of the collagen network, while T1 relaxation time in presence of Gd-DTPA2- (dGEMRIC) reflects the proteoglycan content of cartilage. In the present study, human patellar cartilage samples were investigated in vitro to determine the ability of MRI parameters to reveal topographical variations and to predict mechanical properties of cartilage at two different field strengths. T2 and dGEMRIC measurements at 1.5 T and 9.4 T were correlated with the static and dynamic compressive moduli at six anatomical locations of the patellar surface. Statistically significant linear correlations were observed between MRI and mechanical parameters at both field strengths, especially between T2 and Young's modulus. No significant difference was found between the T2 measurements at different field strengths in predicting mechanical properties of the tissue. Topographical variation of T2 values at both field strengths was similar to that of Young's moduli. The current results demonstrate the feasibility of quantitative MRI, particularly T2 mapping, to reflect the mechanical properties of human patellar cartilage at both field strengths.  相似文献   

2.
OBJECTIVE: The magnetic resonance imaging (MRI) parameter T(2) relaxation time has been shown to be sensitive to the collagen network architecture of articular cartilage. The aim of the study was to investigate the agreement of T(2) relaxation time mapping and polarized light microscopy (PLM) for the determination of histological properties (i.e., zone and fibril organization) of articular cartilage. METHODS: T(2) relaxation time was determined at 9.4 T field strength in healthy adult human, juvenile bovine and juvenile porcine patellar cartilage, and related to collagen anisotropy and fibril angle as measured by quantitative PLM. RESULTS: Both T(2) and PLM revealed a mutually consistent but varying number of collagen-associated laminae (3, 3-5 or 3-7 laminae in human, porcine and bovine cartilage, respectively). Up to 44% of the depth-wise variation in T(2) was accounted for by the changing anisotropy of collagen fibrils, confirming that T(2) contrast of articular cartilage is strongly affected by the collagen fibril anisotropy. A good correspondence was observed between the thickness of T(2)-laminae and collagenous zones as determined from PLM anisotropy measurements (r=0.91, r=0.95 and r=0.91 for human, bovine and porcine specimens, respectively). CONCLUSIONS: According to the present results, T(2) mapping is capable of detecting histological differences in cartilage collagen architecture among species, likely to be strongly related to the differences in maturation of the tissue. This diversity in the MRI appearance of healthy articular cartilage should also be recognized when using juvenile animal tissue as a model for mature human cartilage in experimental studies.  相似文献   

3.
OBJECTIVE: To determine the interrelations between degenerative changes in articular cartilage and underlying trabecular bone during development of osteoarthritis and to test the ability of quantitative magnetic resonance imaging (MRI) to detect those changes. METHODS: Human cadaver patellae were investigated with quantitative MRI methods, T(2) and dGEMRIC, at 1.5T. Same measurements for isolated cartilage samples were performed at 9.4T. Bone samples, taken at sites matched with cartilage analyses, were measured with MRI and peripheral quantitative computed tomography (pQCT). Mechanical and quantitative microscopic methods were also utilized for both cartilage and bone samples. RESULTS: Significant differences were found between the samples with different stages of degeneration in mechanical properties, T(2) at 1.5T and proteoglycan (PG) content of articular cartilage. dGEMRIC at 9.4T discerned samples with advanced degeneration from the others. Bone variables measured with pQCT discerned samples with no or minimal and advanced degeneration, and mechanical properties of trabecular bone discerned samples with no or minimal degeneration from the others. Significant linear correlations were found between the bone and cartilage parameters. Characteristically, associations between variables were stronger within the samples with no or minimal degeneration compared to all samples. CONCLUSIONS: Quantitative MRI variables, especially T(2) relaxation time of articular cartilage, may be feasible surrogate markers for early and advanced osteoarthritic changes in joint tissues, including decreased elastic moduli, PG and collagen contents of cartilage and mineral density and volume fraction of trabecular bone. Further work is required to resolve the relaxation mechanisms at clinically applicable field strengths.  相似文献   

4.
The concentration of glycosaminoglycan (GAG) in articular cartilage is known to be an important determinant of tissue mechanical properties based on numerous studies relating bulk GAG and mechanical properties. To date limited information exists regarding the relationship between GAG and mechanical properties on a spatially-localized basis in intact samples of native tissue. This relation can now be explored by using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC--a recently available non-destructive magnetic resonance imaging method for measuring glycosaminoglycan concentration) combined with non-destructive mechanical indentation testing. In this study, three tibial plateaus from patients undergoing total knee arthroplasty were imaged by dGEMRIC. At 33-44 test locations for each tibial plateau, the load response to focal indentation was measured as an index of cartilage stiffness. Overall, a high correlation was found between the dGEMRIC index (T(1Gd)) and local stiffness (Pearson correlation coefficients r = 0.90, 0.64, 0.81; p < 0.0001) when the GAG at each test location was averaged over a depth of tissue comparable to that affected by the indentation. When GAG was averaged over larger depths, the correlations were generally lower. In addition, the correlations improved when the central and peripheral (submeniscal) areas of the tibial plateau were analyzed separately, suggesting that a factor other than GAG concentration is also contributing to indentation stiffness. The results demonstrate the importance of MRI in yielding spatial localization of GAG concentration in the evaluation of cartilage mechanical properties when heterogeneous samples are involved and suggest the possibility that the evaluation of mechanical properties may be improved further by adding other MRI parameters sensitive to the collagen component of cartilage.  相似文献   

5.
Quantitative magnetic resonance imaging (MRI) techniques have earlier been developed to characterize the structure and composition of articular cartilage. Particularly, Gd-DTPA(2-)-enhanced T1 imaging is sensitive to cartilage proteoglycan content, while T2 relaxation time mapping is indicative of the integrity and arrangement of the collagen network. However, the ability of these techniques to detect early osteoarthrotic changes in cartilage has not been demonstrated. In this study, normal and spontaneously degenerated bovine patellar cartilage samples (n=32) were investigated in vitro using the aforementioned techniques. For reference, mechanical, histological and biochemical properties of the adjacent tissue were determined, and a grading system, the cartilage quality index (CQI), was used to score the structural and functional integrity of each sample. As cartilage degeneration progressed, a statistically significant increase in the superficial T2 (r=0.494, p<0.05) and a decrease in superficial and bulk T1 in the presence of Gd-DTPA(2-) (r=-0.681 and -0.688 (p<0.05), respectively) were observed. Gd-DTPA(2-)-enhanced T1 imaging served as the best predictor of tissue integrity and accounted for about 50% of the variation in CQI. The present results reveal that changes in the quantitative MRI parameters studied are indicative of structural and compositional alterations as well as the mechanical impairment of spontaneously degenerated articular cartilage.  相似文献   

6.
OBJECTIVES: To investigate the potential of combining T2 relaxation time and delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) measurements after autologous chondrocyte transplantation (ACT). MATERIALS AND METHODS: T2 and dGEMRIC maps were measured in the sagittal and coronal directions in 12 patients 10-15 months after ACT surgery. Grafts were assessed for bulk full thickness, superficial and deep tissue T2 and dGEMRIC values, and were compared to control cartilage. RESULTS: All ACT grafts showed filling of the repair area to the level of or above the articular surface. Matrix of the grafts lacked the classical laminar structure and appeared more heterogenous on T2 maps than control cartilage. As compared to control cartilage, ACT grafts showed significantly longer T2 values for bulk tissue as well as for the superficial 50% and deep 50% of tissue except for superficial cartilage in the coronal direction. dGEMRIC assessment in the sagittal and coronal directions did not show a significant difference between bulk, superficial or deep tissue as compared to the control cartilage. Superficial and deep ACT tissue did not differ statistically in terms of their T2 or dGEMRIC values. CONCLUSIONS: These preliminary results suggest that, according to T2 measurements, ACT repair tissue at 10-15 months differs from normal cartilage and probably lacks the preferential collagen arrangement of normal cartilage, while according to dGEMRIC a varying degree of proteoglycan replenishment takes place. Combining these two quantitative magnetic resonance imaging techniques enables a more comprehensive characterization of cartilage repair than before.  相似文献   

7.
BackgroundDelayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is a validated technique for evaluating cartilage health in developmental dysplasia of the hip (DDH), which can be a helpful prognosticator for the response to surgical treatments. dGEMRIC requires intravenous injection of gadolinium contrast, however, which adds time, expense, and possible adverse reactions to the imaging procedure. Newer MRI cartilage mapping techniques such as T1 rho (ρ) and T2* have been performed in the hip without the need for any contrast, although it is unknown whether they are equivalent to dGEMRIC.Question/purposeIn this study, our purpose was to determine the correlation between the relaxation values of three cartilage mapping techniques, dGEMRIC, T1ρ, and T2*, in patients with DDH.MethodsFifteen patients with DDH (three male, 12 female; mean age 29 ± 9 years) scheduled for periacetabular osteotomy underwent preoperative dGEMRIC, T1ρ, and T2* MRI at 3T with quantitative cartilage mapping. The outcomes of dGEMRIC, T1ρ, and T2* mapping were calculated for three regions of interest (ROI) to analyze the weightbearing cartilage of the hip: global ROI, anterior and posterior ROI, and further subdivided into medial, intermediate, and lateral to generate six smaller ROIs. The correlation between the respective relaxation time values was evaluated using the Spearman correlation coefficient (rS) for each ROI, categorized as negligible, weak, moderate, strong, or very strong. The relaxation values within the subdivided ROIs were compared for each of the three cartilage mapping techniques using the Kruskal-Wallis test.ResultsThere was a moderate correlation of T1ρ and T2* relaxation values with dGEMRIC relaxation values. For the global ROI, there was a moderate correlation between dGEMRIC and T2* (moderate; rS = 0.63; p = 0.01). For the anterior ROI, a moderate or strong correlation was found between dGEMRIC and both T1ρ and T2*: dGEMRIC and T1ρ (strong; rS = -0.71; p = 0.003) and dGEMRIC and T2* (moderate; rS = 0.69; p = 0.004). There were no correlations for the posterior ROI. The mean dGEMRIC, T1ρ, and T2* relaxation values were not different between the anterior and posterior ROIs nor between the subdivided six ROIs.ConclusionQuantitative T1ρ and T2* cartilage mapping demonstrated a moderate correlation with dGEMRIC, anteriorly and globally, respectively. However, the clinical relevance of such a correlation remains unclear. Further research investigating the correlation of these two noncontrast techniques with clinical function and outcome scores is needed before broad implementation in the preoperative investigation of DDH.Level of EvidenceLevel II, diagnostic study.  相似文献   

8.
During the previous 2 decades, numerous surgical procedures have become available to treat osteochondral lesions of the talus. The objective of the present study was to use 7 Tesla (7T) magnetic resonance imaging (MRI) to quantify and compare T2 values (a marker of collagen architecture) of native tibiotalar cartilage and cartilage repair tissue in patients treated with a juvenile particulate allograft for osteochondral lesions of the talus. The institutional review board approved the present study, and all subjects provided written informed consent. We scanned the ankles of 7 cartilage repair patients using a 7T MRI scanner with a multi-echo spin-echo sequence to measure the cartilage T2 values. We assessed the cartilage T2 values in the talar repair tissue, adjacent native talar cartilage, and overlying tibial cartilage. We compared the differences between groups using the paired t test. The talar cartilage repair tissue demonstrated greater mean T2 relaxation times compared with the native adjacent talar cartilage (64.88 ± 12.23 ms versus 49.56 ± 7.82 ms; p = .043). The tibial cartilage regions overlying these talar cartilage regions demonstrated a trend toward greater T2 relaxation times (77.00 ± 31.29 ms versus 59.52 ± 7.89 ms; p = .067). 7T MRI can detect differences in T2 values in cartilage repair tissue compared with native cartilage and could be useful for monitoring the status of cartilage health after surgical intervention.  相似文献   

9.
We sought to determine if a generalized relationship between the dGEMRIC index (T1Gd relaxation time) and compressive stiffness of articular cartilage could be defined across multiple samples. Osteochondral blocks were cut from 12 human tibial plateaus, six from cadaveric sources and six from total knee replacement surgeries. Each block contained submeniscal ("covered") and extrameniscal ("uncovered") cartilage regions. At approximately 18 sites per block, a pulse indentation was applied and local dGEMRIC index was determined using dGEMRIC MRI. No correlation was found between stiffness and full cartilage depth dGEMRIC index. When averaged over the depth comparable to the indentation, good correlations were found between stiffness and the dGEMRIC index whether all data were combined, or whether each sample/region was considered independently. However, the standard error of the estimate for predicting stiffness from the local dGEMRIC index was improved when the uncovered and covered regions were considered separately. Further improvement in predictive capacity was obtained if, rather than predict absolute stiffness, differences in the dGEMRIC index across a region were used to predict difference in stiffness. The dGEMRIC index is highly correlated to mechanical stiffness. A generalized relationship was found to provide good correspondence across sources and regions. Use of the dGEMRIC index as a predictive measure of stiffness is possible, depending on the application's acceptable error.  相似文献   

10.
OBJECTIVES: Osteoarthritis (OA) is the most prevalent chronic disease in the elderly, and it is generally diagnosed at an advanced state when treatment is difficult if not impossible. The early form of OA is characterized by an elevated water content in the cartilage tissue. The purpose of this study was to verify in vivo if changes in the water content of patellar cartilage typically occurring in early OA can be detected using T(2) mapping MRI methods. DESIGN: Twenty healthy volunteers performed 60 knee bends in order to compress their patellar cartilage thereby reducing its water content. MR images of the patellar cartilage were acquired immediately following exercise and after 45 min of rest. Patellar cartilage thickness and T(2) maps were determined and their difference between the time points evaluated. RESULTS: Cartilage thickness increased by 5.4+/-1.5% from 2.94+/-0.15 mm to 3.10+/-0.15 mm (P< 0.001) following 45 min of rest, while T(2) increased by 2.6+/-1.0% from 23.1+/-0.5 ms to 23.7+/-0.6 ms (P< 0.05). CONCLUSION: Small, physiologic changes in the water content of patellar cartilage and the concomitant change in proteoglycan and collagen density following exercise can be detected using MRI. The proposed T(2)-mapping method, together with other non-invasive MR cartilage imaging techniques, could aid in the early diagnosis of OA.  相似文献   

11.
Objective To assess the correlation between changes in spin-lattice relaxation in the rotating frame (T(1rho)) and proteoglycan (PG) loss from bovine articular cartilage and to demonstrate the feasibility of performing T(1rho) MR imaging on a 1.5T clinical scanner.Design MR relaxation times (T(1rho), T(2) and T(1)) were measured from excised cartilage plugs (N=3) before and after two sequential digestions with trypsin on a 2T whole-body magnet. Proteoglycan and collagen loss induced by the trypsin digestion was measured using standard biochemical techniques. The correlation between changes in relaxation times and PG loss were tested with regression analysis. T(1rho) MRI was also performed on a clinical 1.5T MRI system to determine whether the spatial distribution of PG loss could be detected. The MRI results were compared with histology sections of native and PG-depleted tissue.Results Increase in T(1rho) relaxation times correlated with PG loss (R(2)=0.81). T(1rho) measurements alone were indicative of PG loss (R(2)=0.8), the addition of T1 and T2 data into the statistical model did not improve the correlation substantially (R(2)=0.83). T(1rho)-weighted imaging demonstrated a hyperintense lamina at the articular surface of the digested tissue, which was subjected to trypsin digestion that correlated with a superficial zone of PG loss observed on histological sections.Conclusion The results of this study demonstrate that T(1rho) relaxation changes are correlated with PG loss in vitro. Furthermore, T(1rho) measurements alone can be used to indicate PG loss data. T(1rho) MRI may thus be developed into a useful adjunct to existing techniques for the evaluation of cartilage disease.  相似文献   

12.
The delayed Gadolinium‐Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) method allows for both qualitative and quantitative measurement of the spatial distribution of glycosaminoglycan [GAG] in excised cartilage. The objective of this study was to determine the effect of paraformaldehyde fixation on dGEMRIC measurements. Five bovine and seven human cartilage pieces were punched into 5‐mm plugs, fixed for 18 h in 4% paraformaldehyde solution, and washed. The magnetic resonance imaging (MRI) parameter T1 was measured prior and post fixation in cartilage without (T10) and with (T1Gd), the ionically charged MRI contrast agent Gd(DTPA)2?. Images of tissue before and after fixation were qualitatively very similar. The ratios of T10, T1Gd, and calculated [GAG] after fixation, relative to before fixation, were near or slightly higher than 1 for both bovine cartilage (1.01 ± 0.01, 1.04 ± 0.02, 1.05 ± 0.03, respectively) and for human cartilage (0.96 ± 0.11, 1.03 ± 0.05, 1.09 ± 0.13). Thus, these data suggest that dGEMRIC can be used on previously fixed samples to assess the three dimensional spatial distribution of GAG. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 536–539, 2009  相似文献   

13.
Background

In addition to case reports of gadolinium-related toxicities, there are increasing theoretical concerns about the use of gadolinium for MR imaging. As a result, there is increasing interest in noncontrast imaging techniques for biochemical cartilage assessment. Among them, T2 mapping holds promise because of its simplicity, but its biophysical interpretation has been controversial.

Questions/purposes

We sought to determine whether (1) 3-T delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping are both capable of detecting cartilage damage at the chondrolabral junction in patients with femoroacetabular impingement (FAI); and (2) whether there is a correlation between these two techniques for acetabular and femoral head cartilage assessment.

Methods

Thirty-one patients with hip-related symptoms resulting from FAI underwent a preoperative 3-T MRI of their hip that included dGEMRIC and T2 mapping (symptomatic group, 16 women, 15 men; mean age, 27 ± 8 years). Ten volunteers with no symptoms according to the WOMAC served as a control (asymptomatic group, seven women, three men; mean age, 28 ± 3 years). After morphologic cartilage assessment, acetabular and femoral head cartilages were graded according to the modified Outerbridge grading criteria. In the midsagittal plane, single-observer analyses of precontrast T1 values (volunteers), the dGEMRIC index (T1Gd, patients), and T2 mapping values (everyone) were compared in acetabular and corresponding femoral head cartilage at the chondrolabral junction of each hip by region-of-interest analysis.

Results

In the symptomatic group, T1Gd and T2 values were lower in the acetabular cartilage compared with corresponding femoral head cartilage (T1Gd: 515 ± 165 ms versus 650 ± 191 ms, p < 0.001; T2: 39 ± 8 ms versus 46 ± 10 ms, p < 0.001). In contrast, the asymptomatic group demonstrated no differences in T1 and T2 values for the acetabular and femoral cartilages with the numbers available (T1: 861 ± 130 ms versus 860 ± 182 ms, p = 0.98; T2: 43 ± 7 ms versus 42 ± 6 ms, p = 0.73). No correlation with the numbers available was noted between the modified Outerbridge grade and T1, T1Gd, or T2 as well as between T2 and either T1 or T1Gd.

Conclusions

Without the need for contrast media application, T2 mapping may be a viable alternative to dGEMRIC when assessing hip cartilage at the chondrolabral junction. However, acquisition-related phenomena as well as regional variations in the microstructure of hip cartilage necessitate an internal femoral head cartilage control when interpreting these results.

Level of Evidence

Level IV, diagnostic study.

  相似文献   

14.
The objective of this study is to examine the local relationship between T1ρ relaxation times and the mechanical behavior of human osteoarthritic articular cartilage using high‐resolution magnetic resonance imaging (MRI) and local in situ microindentation. Seven human tibial plateaus were obtained from patients who underwent total knee arthroplasty due to severe osteoarthritis (OA). Three to six sites were selected from each sample for visual classification using the ICRS Outerbridge scale (a total of 36 sites). Samples were imaged by MR, and the local distribution of T1ρ relaxation times were obtained at these selected sites. The elastic and viscoelastic characteristics of the tissue were quantified nondestructively using dynamic microindentation to measure peak dynamic modulus, energy dissipation, and phase angle. Measured Outerbridge scores, MR T1ρ relaxation times, and mechanical properties were highly heterogeneous across each cartilage surface. Site‐specific measures of T1ρ relaxation times correlated significantly with the phase angle (p < 0.001; R = 0.908), a viscoelastic mechanical behavior of the cartilage. The novel combination of high‐resolution MR imaging and microindentation allows the investigation of the local relationship between quantitative MRI and biomechanical properties in highly heterogeneous OA cartilage. These findings suggest that MRI T1ρ can provide a functional assessment of articular cartilage. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1312–1319, 2011  相似文献   

15.
Background and purpose — The optimal treatment for traumatic cartilage injuries remains unknown. Contrast-enhanced MRI of cartilage (dGEMRIC) evaluates cartilage quality and a low dGEMRIC index may predict radiographic osteoarthritis (OA). The purpose of this study was (a) to explore the results 17 years after surgical treatment of an isolated cartilage knee injury and (b) to evaluate the predictive value of dGEMRIC.

Patients and methods — 16 knees with an isolated traumatic cartilage injury of the medial femoral condyle had cartilage repair surgery either by microfracture or autologous cartilage implantation. dGEMRIC of the injured knee was performed 2 years after surgery and radiographic examinations were performed 17 years after the operation.

Results — Radiographic OA was present in 12 of 16 knees. Irrespective of surgical method, the dGEMRIC index was lower in repair tissue compared with adjacent cartilage in the medial compartment, 237?ms vs. 312?ms (p < 0.001), which in turn had lower value than in the non-injured lateral cartilage, 312?ms vs. 354?ms (p < 0.008). The dGEMRIC index in the cartilage adjacent to the repair tissue correlated negatively with radiographic osteophyte score, r = –0.75 (p = 0.03).

Interpretation — A traumatic cartilage injury is associated with a high prevalence of OA after 17 years. The low dGEMRIC index in the repair tissue 2 years postoperatively indicates fibrocartilage of low quality. The negative correlation between the dGEMRIC index in the adjacent cartilage and future OA suggests that the quality of the surrounding cartilage influences outcome after cartilage repair surgery.  相似文献   

16.
OBJECTIVE: The transverse relaxation time constant, T2, of articular cartilage has been proposed as a biomarker for osteoarthritis (OA). Previous studies have not clearly defined the relationship between cartilage T2 values and clinical methods of grading OA or known factors associated with OA. This study compared T2 values of patellar cartilage grouped by radiographic stage of patello-femoral OA and by body mass index (BMI). METHODS: T2 values of patellar cartilage were calculated for 113 subjects using images acquired on a 1.5 T clinical scanner. Radiographs of the patello-femoral joint were graded for OA grading using the Kellgren-Lawrence scale. RESULTS: No differences of T2 values were found across the stages of OA (P = 0.25), but the factor of BMI did have a significant effect (P < 0.0001) on T2 value. CONCLUSIONS: The results indicate the T2 values are not sensitive to changes in radiographic stages of OA. In addition, differences of T2 values with BMI signify structural changes occurring within the patello-femoral joint and that BMI may be considered a factor for a potential increase of T2 values. Future studies comparing different OA grading methods with T2 mapping may highlight the sensitivity of T2 mapping in a clinical setting.  相似文献   

17.
OBJECTIVE: Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) reflects cartilage glycosaminoglycan (GAG) distribution. The technique assumes that the plasma levels of the contrast agent Gd-DTPA(2-) are the same across individuals after intravenous (IV) injection, when dosing by weight. However, adipose tissue has lower extracellular water (ECW) than lean tissue. The aims of this study were to measure (1) plasma Gd-DTPA(2-) levels vs body mass index (BMI), and (2) dGEMRIC vs BMI after correcting for the dose-BMI effect. METHOD: (1) Plasma Gd-DTPA(2-) levels were analyzed at 3-90 min after IV injection per body weight in 24 individuals with BMI between 21.5 and 46.5. (2) dGEMRIC was compared with BMI in 19 asymptomatic volunteers and 23 with osteoarthritis (OA). RESULTS: (1) Plasma Gd-DTPA(2-) kinetics were similar in obese and non-obese groups, however, overall concentration was higher in the obese group. A very obese subject (BMI 45) would have 1.4 times higher Gd-DTPA(2-) concentration than a lean subject (BMI 20), which translates into a bias in dGEMRIC of up to 20%. (2) With dose bias taken into account, dGEMRIC showed no correlation with BMI in asymptomatic knees. In OA knees, unnarrowed femoral compartments demonstrated a negative correlation between dGEMRIC and BMI (R=0.57, P=0.004). No correlation was seen in radiographically narrowed compartments. CONCLUSION: BMI can be a source of dosing bias in dGEMRIC and a correction factor should be considered in cross-sectional studies with a large range of BMI. There is no correlation between dGEMRIC and BMI in asymptomatic knees, but a negative correlation in OA knees.  相似文献   

18.
The aim was to use repeat delayed gadolinium‐enhanced magnetic resonance imaging of cartilage (dGEMRIC) to estimate glycosaminoglycan (GAG) content in reparative cartilage after osteochondral autogenous transfer (OAT). The study group comprised 7 knees of 7 patients that were examined three times by dGEMRIC, at 3, 6, and 12 months using a 1.5 Tesla MRI system in both OAT operated and nonoperated condyles at 90 min after the injection. The gadolinium diethylene triamine pentaacetic acid (Gd‐DTPA)2? containing contrast medium (0.2 mmols/kg) was injected intravenously. The mean T1 values of the plug cartilage at 3, 6, and 12 months after OAT was 230 ± 40, 213 ± 31, and 230 ± 23 ms (mean ± SD), respectively. There were differences between the plug and control cartilage at 3 (p < 0.01) and 12 (p < 0.05) months after OAT, but not at 6 months (p = 0.089). No T1 changes were detected between the plug cartilage at the different time points after OAT. The fact that the GAG content of the OAT plugs were maintained for 12‐month study period suggest that no major deterioration of load‐bearing properties occurs in the cartilage after the OAT. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:221–225, 2012  相似文献   

19.
OBJECTIVE: To evaluate the ability of T2 mapping on an 8.5 T imager to characterize morphologically and quantitatively spontaneous repair of rat patellar cartilage following full thickness defect. METHODS: Patellar cartilage defects were created in 24 rats knees on D0. Eight rats per time-point were killed on D20, D40 and D60 after surgery. T2 maps of repair tissue in patellar defects were obtained from eight different axial spin echo images on an 8.5 T imager. Global, superficial and deep T2 values were evaluated in spontaneous repair tissues (3x8 right patellae) vs the opposite patellae (3x8 left patellae) of the same animals. MR data were compared with macroscopic and histological studies. RESULTS: T2 map was able to identify morphologically three types of repair tissue observed macroscopically and histologically: 'total', 'partial' and 'hypertrophic' repair tissue. 'Total' and 'partial' repair tissues were characterized by global T2 values almost similar to controls, whereas 'hypertrophic' repair tissues were characterized by T2 global values higher than controls. Zonal variation between superficial and deep T2 values observed in controls was not depicted in repair tissue before D60. CONCLUSION: T2 map is able to characterize quantitatively and qualitatively rat patellar cartilage repair, and thus can be promoted, as a non invasive technique, in clinical longitudinal studies of articular cartilage repair.  相似文献   

20.
The pathology, assessment, and management of articular cartilage lesions of the hip and knee have been the subject of considerable attention in the recent orthopaedic literature. MRI has long been an important tool in the diagnosis and management of articular cartilage pathology, but detecting and interpreting early cartilaginous degeneration with this technology has been difficult. Biochemical-based MRI has been advocated to detect early cartilaginous degenerative changes and assess cartilage repair. Techniques such as T2 mapping, T1rho (ie, T1 in the rotating frame), sodium MRI, and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) take advantage of changes in the complex biochemical composition of articular cartilage and may help detect morphologic cartilaginous changes earlier than does conventional MRI. Although the newer modalities have been used primarily in the research setting, their ability to assess the microstructure of articular cartilage may eventually enhance the diagnosis and management of osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号