首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preincubation of neutrophils with recombinant human tumor necrosis factor-alpha (rH TNF-alpha) enhanced the subsequent release of superoxide anion in response to various concentrations of N-formylmethionylleucylphenylalanine (FMLP). Enhanced superoxide anion production was evident by 5 min and had reached a plateau by 15 min. Not only was the total amount of superoxide anion released greater, but the rate of release was also enhanced threefold by rH TNF-alpha. In contrast, rH TNF-alpha reduced or abolished neutrophil locomotion under agarose in response to a gradient of FMLP. Binding studies of f-Met-Leu-[3H]Phe to purified human neutrophils revealed a heterogeneous binding to unstimulated cells. The high affinity component consisted of approximately 2,000 sites per cell and had an average Kd of 2 +/- 0.7 nM (n = 4). The low affinity component consisted of approximately 40,000 sites per cell and had an average Kd of 180 +/- 50 nM (n = 4). rH TNF-alpha caused conversion to a linear Scatchard plot showing no significant change in total binding sites but a single Kd of 40 +/- 10 nM (n = 4). These data indicate that rH TNF-alpha may influence neutrophil responses to FMLP by regulating the affinity of FMLP receptors.  相似文献   

2.
Occupancy of specific receptors on neutrophils by adenosine or its analogues diminishes the stimulated release of toxic oxygen metabolites from neutrophils, while paradoxically promoting chemotaxis. We now report evidence that two distinct adenosine receptors are found on neutrophils (presumably the A1 and A2 receptors of other cell types). These adenosine receptors modulate chemotaxis and O2- generation, respectively. N6-Cyclopentyladenosine (CPA), a selective A1 agonist, promoted neutrophil chemotaxis to the chemoattractant FMLP as well as or better than 5'N-ethylcarboxamidoadenosine (NECA). In contrast, CPA did not inhibit O2- generation stimulated by FMLP. Pertussis toxin completely abolished promotion of chemotaxis by CPA but enhanced inhibition by NECA of O2- generation. Disruption of microtubules by colchicine or vinblastine also abrogated the enhancement by NECA of chemotaxis whereas these agents did not markedly interfere with inhibition by NECA of O2- generation. FMLP receptors, once they have bound ligand, shift to a high affinity state and become associated with the cytoskeleton. NECA significantly increased association of [3H]FMLP with cytoskeletal preparations as it inhibited O2-. Disruption of microtubules did not prevent NECA from increasing association of [3H]FMLP with cytoskeletal preparations. Additionally, CPA (A1 agonist) did not increase binding of [3H]FMLP to the cytoskeleton as well as NECA (A2 agonist). These studies indicate that occupancy of one class of adenosine receptors (A1) promotes chemotaxis by a mechanism requiring intact microtubules and G proteins whereas engagement of a second class of receptors (A2) inhibits O2- generation. Signalling via A2 receptors is independent of microtubules, insensitive to pertussis toxin and is associated with binding of [3H]FMLP to cytoskeletal preparations.  相似文献   

3.
Stimulation of human neutrophils with chemoattractants FMLP or platelet activating factor (PAF) results in different but overlapping functional responses. We questioned whether these differences might reflect patterns of intracellular signal transduction. Stimulation with either PAF or FMLP resulted in equivalent phosphorylation and activation of the mitogen-activated protein kinase (MAPk) homologue 38-kD murine MAP kinase homologous to HOG-1 (p38) MAPk. Neither FMLP nor PAF activated c-jun NH2-terminal MAPk (JNKs). Under identical conditions, FMLP but not PAF, resulted in significant p42/44 (ERK) MAPk activation. Both FMLP and PAF activated MAP kinase kinase-3 (MKK3), a known activator of p38 MAPk. Both MAP ERK kinase kinase-1 (MEKK1) and Raf are activated strongly by FMLP, but minimally by PAF. Pertussis toxin blocked FMLP-induced activation of the p42/44 (ERK) MAPk cascade, but not that of p38 MAPk. A specific p38 MAPk inhibitor (SK&F 86002) blocked superoxide anion production in response to FMLP and reduced adhesion and chemotaxis in response to PAF or FMLP. These results demonstrate distinct patterns of intracellular signaling for two chemoattractants and suggest that selective activation of intracellular signaling cascades may underlie different patterns of functional responses.  相似文献   

4.
In response to activation by the synthetic chemotactic factor FMLP, human peripheral neutrophils generated superoxide radicals as assessed by ferricytochrome C reduction. A dose-dependent increase in the amount of superoxide induced by FMLP over the concentration range of 1 X 10(-8) M to 1.6 X 10(-7) M was observed. Examination of the kinetics of the response revealed large amounts of superoxide generated by 1 min of incubation at 37 degrees C at an optimal dose of FMLP and a plateau effect after 5 min of incubation. Divalent cations did not influence the binding of 3H-FMLP to the cell, but superoxide generation by FMLP-activated neutrophils was observed to be dependent on the presence of divalent cations in the medium. In the absence of Mg2+, increasing Ca2+ ion concentration in the medium led to progressive increases in superoxide generation up to 4 mM, after which the response declined slightly. Mg2+, 0.25 to 4 mM, increased FMLP-induced superoxide generation to a much lower extent than did Ca2+. Lanthanum ion, 0.1 to 1 mM, in the presence of 1 mM Ca2+ inhibited the production of superoxide by FMLP 4 X 10(-8 ) M. Over the concentration range 3.3 X 10(-5 M to 3 X 10(-4 M, verapamil, a drug which selectively blocks the calcium channel, caused a dose-dependent inhibition of superoxide production and calcium-45 uptake in response to FMLP. This effect of verapamil could be overcome by increasing the concentration of Ca2+ in the medium. These observations suggest that a calcium influx plays an important role in the superoxide-generating capacity of the neutrophil.  相似文献   

5.
Adenosine promotes neutrophil chemotaxis   总被引:5,自引:0,他引:5       下载免费PDF全文
We have previously (1-4) demonstrated that adenosine, by engaging specific receptors on the surface of neutrophils, inhibits generation of toxic oxygen metabolites by activated neutrophils and prevents these activated neutrophils from injuring endothelial cells. We now report the surprising observation that engagement of these same neutrophil adenosine receptors promotes chemotaxis to C5 fragments (as zymosan- activated plasma [ZAP]) or to the bacterial chemoattractant FMLP. When chemotaxis was studied in a modified Boyden chamber, physiologic concentrations of adenosine promoted chemotaxis by as much as 60%. Adenosine receptor analogues, 5'N-ethylcarboxamidoadenosine (NECA) and N6-phenylisopropyladenosine (PIA), also promoted chemotaxis; the order of agonist potency was consistent with that of an A2 adenosine receptor (NECA greater than PIA greater than or equal to adenosine). A potent antagonist at adenosine receptors, 8-p-sulfophenyltheophylline (10 microM), completely reversed NECA enhancement of chemotaxis but did not affect chemotaxis by itself. Neither NECA nor 2-chloroadenosine, a nonselective adenosine receptor agonist, alone was chemotactic or chemokinetic by checkerboard analysis. NECA also promoted chemotaxis quantitated by a different technique, chemotaxis under agarose, to the surrogate bacterial chemoattractant FMLP. These data suggest that engagement of adenosine A2 receptors uniquely modulates neutrophil function so as to promote migration of neutrophils to sites of tissue damage while preventing the neutrophils from injuring healthy tissues en route.  相似文献   

6.
Irradiation of blood components has been used to prevent transfusion-related graft-versus-host disease (GVHD) in immunocompromised patients. This study was designed to determine the effect of irradiation on neutrophil aggregation, chemotaxis, and superoxide generation. Purified neutrophils were irradiated with a Cesium source at four doses ranging from 0 to 17,500 rads. Formyl-methionyl-leucyl-phenylalanine (FMLP) and zymosan-treated serum (ZTS) cytotaxin-induced chemotaxis and migration were determined in the agarose assay. Neutrophil aggregation to FMLP was determined by aggregometry. Superoxide generation and random migration were not affected by irradiation at doses up to 17,500 rads. When compared to nonirradiated controls, the chemotactic response to ZTS remained normal, with an insignificant decline from 174 +/- 31.0 to 150 +/- 42.3 (mean +/- SD) units. The chemotactic response to FMLP declined insignificantly, from 228 +/- 31.3 at 0 rad to 207 +/- 26.4 at 17,500 rads. The aggregation response to FMLP remained within the normal range but declined from 0.78 +/- 0.11 to 0.61 +/- 0.18. At the radiation doses currently used to reduce the risk of transfusion-related GVHD, neutrophil superoxide generation and chemotactic response remain essentially normal.  相似文献   

7.
T.A Lane  B.E Windle 《Transfusion》1981,21(4):450-456
Previous studies in this laboratory demonstrated decreased migration of neutrophils after storage for 24 hours at room temperature. The current work was undertaken to identify a possible mechanism for decreased migration after storage. Initial studies ruled out the possibility that chemotaxis was decreased due to impaired ability to sense a chemotactic factor gradient since chemokinesis was decreased in addition to chemotaxis. Dose-response curves to the synthetic chemotactic agent Formyl-Methionyl-Leucyl-Phenylalanine (FMLP) showed decreased response to submaximal chemokinetic stimuli in stored neutrophils. This suggested the possibility of altered FMLP receptor binding in stored neutrophils. Neutrophil FMLP receptors were measured in 11 fresh and stored granulocyte concentrates. Although there was a small increase in total FMLP receptors per neutrophil after storage, the affinity of FMLP receptors in fresh neutrophils was significantly greater than that in neutrophils stored 24 hours at room temperature. Thus, decreased migration toward submaximal chemotactic stimuli in stored neutrophils may be due to altered membrane FMLP binding. However, decreased migration of stored neutrophils to maximal stimuli cannot be explained by altered FMLP binding affinity.  相似文献   

8.
The superoxide (O2) production by phagocytes (neutrophils plus monocytes) and the lactoferrin release by neutrophils were measured in normal volunteers before and after the oral administration of the anti-inflammatory drug nimesulide. The chemotactic factor N-formylmethionyl-leucyl-phenylalanine (FMLP) and opsonized zymosan particles (OPZ) were used as activating stimuli. The oral administration of nimesulide lowered the phagocyte ability to generate O2- in response to both FMLP (percent inhibition = 67.62) and OPZ (percent inhibition = 36.75). The lactoferrin release by neutrophils was unaffected, proving that the drug does not affect the exocytosis of specific granules. The results provide direct evidence that the oral administration of nimesulide efficiently reduces the oxidative potential of phagocytes, particularly neutrophils, without interfering with mechanisms related to exocytosis of specific granules and involved in the amplification of the cell responses to inflammatory mediators.  相似文献   

9.
The mechanism of neutrophil activation by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (FMLP) has been studied by pretreatment of human neutrophils with pertussis toxin. Upon stimulation with FMLP, the cytosolic-free calcium concentration, [Ca2+]i, is increased both by stimulation of calcium influx and mobilization of cellular calcium. We have measured [Ca2+]i as well as the generation of the phospholipid breakdown product inositol trisphosphate (IP3), which is thought to mediate Ca2+ mobilization. As the phosphoinositide pool in human neutrophils is difficult to prelabel with [3H]myoinositol, experiments were also carried out in the cultured human promyelocytic leukemia cell line HL-60 after differentiation with dimethylsulfoxide. Pertussis toxin pretreatment of both cell types inhibited FMLP stimulated membrane depolarization, exocytosis, and superoxide production in a dose-dependent manner. This toxin effect was selective for the receptor agonist, since stimulation of these parameters by two substances bypassing the transduction mechanism, the calcium ionophore ionomycin and the phorbolester phorbol myristate acetate, were unaffected. Rises in [Ca2+]i, as well as generation of IP3 in response to FMLP, were inhibited in parallel; for the inhibition of functional responses, slightly lower toxin concentrations were required. The attentuation of the [Ca2+]i rise was more marked in the absence of extracellular calcium, i.e., when the rise is due only to calcium mobilization. The results provide evidence that phospholipase C stimulation by FMLP resulting in IP3 generation is involved in the signal transduction mechanism. Coupling of FMLP receptor occupancy to phospholipase C activation is sensitive to pertussis toxin, suggesting the involvement of a GTP binding protein (N protein), which has been shown to be a pertussis toxin substrate. The parallel changes in [Ca2+]i and IP3 further support the hypothesis that IP3 is the calcium-mobilizing mediator in FMLP-activated cells.  相似文献   

10.
A case of recurrent, superficial abscesses in an 18 year old girl, is described. Staphylococcus aureus was the pathogen most often implicated and on several occasions the abscesses required surgical drainage. Defects in humoral immunity, neutrophil chemotaxis or opsonophagocytosis were not observed. However, her neutrophil's ability to kill ingested S. aureus in vitro was impaired. This was associated with impaired luminol-dependent chemiluminescence in response to stimulation by either latex beads, or the chemotactic peptide FMLP plus cytochalasin B. Oxygen uptake and superoxide anion production were normal but release of myeloperoxidase by this patient's neutrophils occurred more slowly and to a lower extent than in control cells. These data suggest that the recurrent infections and diminished in vitro neutrophil bactericidal activity observed in this patient are associated with impaired degranulation of myeloperoxidase.  相似文献   

11.
Recombinant human granulocyte-colony stimulating factor (G-CSF) and recombinant human granulocyte/macrophage-colony stimulating factor (GM-CSF) stimulate neutrophil production from precursors in the marrow and enhance granulocyte functions in vitro. We studied the effects of G-CSF and GM-CSF on neutrophil superoxide production and secretion. G-CSF and GM-CSF alone stimulated neither superoxide production nor secretion, but both agents primed neutrophils for superoxide production stimulated by either N-formylmethionyl-leucyl-phenylalanine (FMLP) or ionomycin. Optimal priming occurred with G-CSF at 5.3 ng/ml for 20 minutes and for GM-CSF at 1 ng/ml for 60 minutes. Priming by GM-CSF was more readily inhibited by the tyrosine kinase inhibitor ST638 but was unaffected by staurosporine. Conversely, G-CSF priming was inhibited by staurosporine but not by ST638. Neither protein kinase C translocation nor increased protein kinase C activity, however, were observed after G-CSF/GM-CSF treatment. Priming by G-CSF and GM-CSF was sensitive to pertussis toxin, suggesting the involvement of guanine nucleotide-binding proteins (G-proteins). Neutrophils from three siblings with cyclic neutropenia were studied to observe the effects of G-CSF treatment on neutrophil function in vivo; sibling 1 and sibling 2 were treated with G-CSF for 6 months, but sibling 3 was not in the treatment group. Compared with neutrophils from normal donors, neutrophils from sibling 1 and sibling 2 were primed in vivo for superoxide release stimulated by either ionomycin or FMLP. Superoxide released by neutrophils from sibling 3 was similar to control cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of adenosine were studied on human neutrophils with respect to their generation of superoxide anion, degranulation, and aggregation in response to soluble stimuli. Adenosine markedly inhibited superoxide anion generation by neutrophils stimulated with N-formyl methionyl leucyl phenylalanine (FMLP), concanavalin A (Con A), calcium ionophore A23187, and zymosan-treated serum; it inhibited this response to PMA to a far lesser extent. The effects of adenosine were evident at concentrations ranging from 1 to 1,000 microM with maximal inhibition at 100 microM. Cellular uptake of adenosine was not required for adenosine-induced inhibition since inhibition was maintained despite the addition of dipyridamole, which blocks nucleoside uptake. Nor was metabolism of adenosine required, since both deoxycoformycin (DCF) and erythro-9-(2-hydroxy-3-nonyl) adenine did not interfere with adenosine inhibition of superoxide anion generation. The finding that 2-chloroadenosine, which is not metabolized, resembled adenosine in its ability to inhibit superoxide anion generation added further evidence that adenosine metabolism was not required for inhibition of superoxide anion generation by neutrophils. Unexpectedly, endogenously generated adenosine was present in supernatants of neutrophil suspensions at 0.14-0.28 microM. Removal of endogenous adenosine by incubation of neutrophils with exogenous adenosine deaminase (ADA) led to marked enhancement of superoxide anion generation in response to FMLP. Inactivation of ADA with DCF abrogated the enhancement of superoxide anion generation. Thus, the enhancement was not due to a nonspecific effect of added protein. Nor was the enhancement due to the generation of hypoxanthine or inosine by deamination of adenosine, since addition of these compounds did not affect neutrophil function. Adenosine did not significantly affect either aggregation or lysozyme release and only modestly affected beta-glucuronidase release by neutrophils stimulated with FMLP. These data indicate that adenosine (at concentrations that are present in plasma) acting via cell surface receptors is a specific modulator of superoxide anion generation by neutrophils.  相似文献   

13.
An important observation in elderly subjects is their susceptibility to infection associated with a decline in host immune function. Nutrition is also an important factor that influences host defense against infection. We, therefore, evaluated the relationship between nutritional status in 155 healthy subjects ranging in age from 20 to 99 years and various immunological parameters, including the phagocytic and bactericidal activities of neutrophils and monocytes, superoxide production and chemotaxis of neutrophils, lymphocyte subsets, blastoid transformation and serum immunoglobulins. Aging was associated with increased phagocytic activity of neutrophils but not bactericidal activity, superoxide production or chemotaxis of neutrophils. Aging was also associated with a significant decrease in the number of lymphocytes as well as a decline in mature T cells and helper/inducer T cells but with increased numbers of activated T cells, suppressor T cells and natural killer cells. In addition, blastoid transformation in response to phytohemagglutinin (PHA) and concanavalin A (Con A) was significantly reduced in aged subjects. A poor nutritional status was noted in individuals 60 years of age or older. The nutritional status did not influence neutrophil function but correlated significantly with the number of lymphocytes and degree of blastoid formation with PHA and Con A stimulation. Our results suggest that the cell-mediated immunity in elderly subjects is reduced as a result of malnutrition, and that improvement of the nutritional status may enhance the immune function, likely contributing to their successful aging.  相似文献   

14.
Neutrophil functions were studied in patients receiving calcium channel blockers: nifedipine, diltiazem or verapamil. Neutrophils from patients treated with nifedipine showed a significantly lower superoxide generation stimulated by phorbol myristate acetate (PMA) (50 ng mL−1), opsonized zymosan (1 mg mL−1) or formyl-methionyl-leucyl-phenylalanine (FMLP) (10−7  m ), whereas superoxide generation by neutrophils of patients receiving diltiazem or verapamil showed only a slight and insignificant reduction compared with controls. Similarly, chemotaxis towards 10−7  m FMLP and phagocytosis were significantly lower in patients receiving nifedipine compared with controls and were only slightly reduced in patients receiving diltiazem or verapamil. Nifedipine was the most efficient drug in inhibiting the rise in intracellular calcium ion concentration ([Ca2+]i) when added in vitro and in neutrophils of patients receiving this drug, whereas verapamil had no significant effect. The correlation between the inhibitory effect of nifedipine on neutrophil function and the elevation of [Ca2+]i suggests that nifedipine inhibits neutrophil functions through its effect on [Ca2+]i. However, it is not the sole mechanism as superoxide generation induced by PMA, an agent that does not induce a rise in [Ca2+]i, is also inhibited. The unique effect of nifedipine in reducing neutrophil functions in vivo suggests its clinical implications concerning response to acute ischaemic myocardial events.  相似文献   

15.
A purified recombinant human granulocyte-macrophage colony stimulating factor (rH GM-CSF) was a powerful stimulator of mature human eosinophils and neutrophils. The purified rH GM-CSF enhanced the cytotoxic activity of neutrophils and eosinophils against antibody-coated targets, stimulated phagocytosis of serum-opsonized yeast by both cell types in a dose-dependent manner, and stimulated neutrophil-mediated iodination in the presence of zymosan. In addition, rH GM-CSF enhanced N-formylmethionylleucylphenylalanine(FMLP)-stimulated degranulation of Cytochalasin B pretreated neutrophils and FMLP-stimulated superoxide production. In contrast, rH GM-CSF did not promote adherence of granulocytes to endothelial cells or plastic surfaces. rH GM-CSF selectively enhanced the surface expression of granulocyte functional antigens 1 and 2, and the Mo1 antigen. rH GM-CSF induced morphological changes and enhanced the survival of both neutrophils and eosinophils by 6 and 9 h, respectively. These experiments show that granulocyte-macrophage colony stimulating factor can selectively stimulate mature granulocyte function.  相似文献   

16.
Nitric oxide provokes vasodilation and inhibits platelet aggregation. We examined the effect of nitric oxide on superoxide anion production by three sources: activated intact neutrophils, xanthine oxidase/hypoxanthine, and the NADPH oxidase. Nitric oxide significantly inhibited the generation of superoxide anion by neutrophils exposed to either FMLP (10(-7)M) or PMA (150 ng/ml) (IC50 = 30 microM). To determine whether the effect of nitric oxide on the respiratory burst was due to simple scavenging of O2+, kinetic studies that compared effects on neutrophils and the cell-free xanthine oxidase system were performed. Nitric oxide inhibited O2+ produced by xanthine oxidase only when added simultaneously with substrate, consistent with the short half-life of NO in oxygenated solution. In contrast, the addition of nitric oxide to neutrophils 20 min before FMLP resulted in the inhibition of O2+ production, which suggests formation of a stable intermediate. The effect of nitric oxide on the cell-free NADPH oxidase superoxide-generating system was also examined: The addition of NO before arachidonate activation (t = -6 min) significantly inhibited superoxide anion production. Nitric oxide did not inhibit O2+ when added at NADPH initiation (t = 0). Treatment of the membrane but not cytosolic component of the oxidase was sufficient to inhibit O2+ generation. The data suggest that nitric oxide inhibits neutrophil O2+ production via direct effects on membrane components of the NADPH oxidase. This action must occur before the assembly of the activated complex.  相似文献   

17.
The formation of adenosine dampens inflammation by inhibiting most cells of the immune system. Among its actions on neutrophils, adenosine suppresses superoxide generation and regulates chemotactic activity. To date, most evidence implicates the G(s) protein-coupled A(2A) adenosine receptor (AR) as the primary AR subtype responsible for mediating the actions of adenosine on neutrophils by stimulating cAMP production. Given that the A(2B)AR is now known to be expressed in neutrophils and that it is a G(s) protein-coupled receptor, we examined in this study whether it signals to suppress neutrophil activities by using 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY 60-6583), a new agonist for the human A(2B)AR that was confirmed in preliminary studies to be a potent and highly selective agonist for the murine A(2B)AR. We found that treating mouse neutrophils with low concentrations (10(-9) and 10(-8) M) of BAY 60-6583 inhibited formylated-methionine-leucine-phenylalanine (fMLP)-stimulated superoxide production by either naive neutrophils, tumor necrosis factor-α-primed neutrophils, or neutrophils isolated from mice treated systemically with lipopolysaccharide. This inhibitory action of BAY 60-6583 was confirmed to involve the A(2B)AR in experiments using neutrophils obtained from A(2B)AR gene knockout mice. It is noteworthy that BAY 60-6583 increased fMLP-stimulated superoxide production at higher concentrations (>1 μM), which was attributed to an AR-independent effect. In a standard Boyden chamber migration assay, BAY 60-6583 alone did not stimulate neutrophil chemotaxis or influence chemotaxis in response to fMLP. These results indicate that the A(2B)AR signals to suppress oxidase activity by murine neutrophils, supporting the idea that this low-affinity receptor for adenosine participates along with the A(2A)AR in regulating the proinflammatory actions of neutrophils.  相似文献   

18.
Twenty-six dihydrophenazine compounds, including clofazimine, were investigated, at a fixed concentration of 1 mg/l, for their effects on spontaneous and stimulus-activated generation of superoxide by human neutrophils in vitro. The synthetic chemotactic tripeptide N-formyl-L-methionyl-L-leucyl-L phenyl-alanine (FMLP) (0.1 microM) was used as a stimulant of membrane-associated oxidative metabolism. None of the agents tested influenced basal levels of superoxide generation by neutrophils. However sixteen of these compounds, all rimino phenazines, significantly increased the production of superoxide by FMLP-activated neutrophils. These pro-oxidative, priming interactions of the rimino phenazines with neutrophils were largely dependent on the nature of the alkylimino group at position 2 on the phenazine nucleus, and to a lesser extent on halogenation. Cycloalkylimino groups were generally less potent stimulants of superoxide generation by FMLP-activated neutrophils than clofazimine, and their pro-oxidative properties were independent of mono- or dichlorination. However the halogen-free cycloalkylimino compound, B669, was an exceptionally potent pro-oxidative agent. Chlorination was promotive to pro-oxidative activity in the case of dihydrophenazines with linear or branched alkylimino substituents. The pharmaco-therapeutic mechanisms of dihydrophenazines may be related to their pro-oxidative interactions with phagocytes.  相似文献   

19.
Chemotactic peptide-stimulated oxygen uptake and superoxide release were measured in neutrophils from a group of age- and race-matched male tobacco smokers and nonsmokers. The stimulated oxygen uptake in smokers was less than that of nonsmokers. This decreased sensitivity to formyl-methionyl-leucyl-phenylalanine (FMLP) stimulation of O2 uptake was the result of an altered apparent Km and was paralleled by a decrement in superoxide release in smokers. These alterations in neutrophil function, coupled with our previous observation of altered tritiated FMLP binding in smokers, support the hypothesis of a modified response to FMLP in chronic smoker's neutrophils.  相似文献   

20.
Alteration of the surface of human neutrophils with the nonpenetrating, protein-inactivating agent p-diazobenzenesulfonic acid (DASA) was found to prevent activation of the respiratory burst by some stimuli, but not others. Production of superoxide anion (O2-) stimulated by concanavalin A or the chemotactic peptide formyl-methionyl-leucyl-phenylalanine FMLP was inhibited by DASA pretreatment, whereas O2- production stimulated by phorbol myristate acetate (PMA), sodium fluoride. or the ionophore A23187 was not inhibited by DASA. Pretreatment with DASA inhibited oxygen uptake stimulated by FMLP, but not oxygen uptake stimulated by PMA. DASA reproducibly inhibited activities of two known surface enzymes Mg++-ATPase and alkaline phosphatase, by 45-55% and 60-70%, respectively. The inhibition by DASA of O2- production did not appear to be caused by interference with binding of the affected stimuli, since pretreatment with DASA did not inhibit release of the lysosomal enzymes lysozyme and myeloperoxidase induced by concanavalin A or FMLP. Membrane-rich particulate fractions from neutrophils have been shown to contain NADPH-dependent oxidative activity that is presumably responsible for the phagocytosis-associated respiratory burst of intact cells. The PMA-activated enzyme was susceptible to inhibition of directly exposed to DASA in this particulate fraction. These findings suggest that more than one mechanism exists for activation of the respiratory burst oxidase in human neutrophils, and that the neutrophil possesses at least one oxidase that is not an ectoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号