首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the temporal and spatial alterations of protein disulfide isomerase (PDI) immunoreactivity and protein level in the hippocampus proper after 5 min transient forebrain ischemia in gerbils. PDI immunoreactivity was significantly altered in the hippocampal CA1 region. PDI immunoreactivity in the sham-operated animals was found in non-pyramidal cells. At 30 min after ischemia, PDI immunoreactivity was shown in the pyramidal cells of the stratum pyramidale (SP): the PDI immunoreactivity in the pyramidal cells was increased up to 12 h after ischemia. Thereafter PDI immunoreactivity was decreased, and the PDI immunoreactivity was shown in non-pyramidal cells 2 days after ischemia. Four to 5 days after ischemia, almost pyramidal cells in the CA1 region were lost because the delayed neuronal death occurred. At this time period, PDI immunoreactivity was expressed in some astrocytes as well as some neurons. The results of the Western blot analysis were consistent with the immunohistochemical data. These findings suggest that increase of PDI in pyramidal cells may play a critical role in resistance to ischemic damage at early time after ischemic insult, and that expression of this protein in astrocytes at late time after ischemic insult is partly implicated in the acquisition of tolerance against ischemic stress.  相似文献   

2.
The influence of transient forebrain ischemia on the temporal alteration of Ca2+/calmodulin-dependent kinase II (CaM kinase II) in the rat hippocampus was analysed by the immunohistochemical method using antigen-affinity purified polyclonal antibodies against CaM kinase II of rat brain. Six to twenty-four hours after ischemia, CA1 and CA3 pyramidal cells, and dentate granule cells lost CaM kinase II immunoreactivity in neuronal perikarya, although immunoreactivity in the dendritic fields was preserved. The recovery of immunoreactivity of the CA3 pyramidal cells and dentate granule cells was noted 3 days after recirculation. Seven days after ischemia, immunoreactivity in the CA1 subfield was greatly reduced. These results suggest that CaM kinase II molecules in the CA1 subfield are preferentially located on the CA1 pyramidal cells and that CaM kinase II plays a critical role in the reconstruction of neuronal cytoskeleton and neuronal networks damaged by ischemic insult.  相似文献   

3.
Hwang IK  Yoo KY  Park JK  Nam YS  Lee IS  Kang JH  Choi SY  Lee JY  Kang TC  Won MH 《Neuroscience》2004,126(4):871-877
In the present study, the temporal and spatial alterations of adrenocorticotropic hormone (ACTH) immunoreactivity in the gerbil hippocampus after 5 min transient forebrain ischemia were investigated as followed up 7 days after ischemic insult, and the effects of ACTH after ischemic insult were also investigated 4 days after ischemic insult. The ectopic expression of ACTH (1-24 fragments) immunoreactive neurons in the cornus ammonis 1 (CA1) region of hippocampus and hilar region of the dentate gyrus 1 day after the ischemic insult was observed. Judging from the double immunofluorescence study, these neurons contain GABA. Four days after ischemic insult, the ACTH immunoreactivity was localized in CA1 pyramidal cells and glia near the stratum pyramidale, which normally do not express ACTH. In addition, in the saline-treated groups, the percentage of the detected Cresyl Violet positive neurons was 11.2% compared with the sham-operated group 4 and 7 days after ischemic insult. In these groups, the OX-42 immunoreactive microglia were detected in the strata pyramidale, oriens and radiatum. However, in the Org2766 (analog of ACTH)-treated group, 57.8% neurons compared with the sham-operated group were stained with Cresyl Violet 4 and 7 days after ischemic insult. In these groups, the OX-42 immunoreactive microglia were significantly reduced in the stratum pyramidale. These results suggest that transient forebrain ischemia may provoke selective ectopic and enhanced expression of ACTH in the hippocampus, and further suggest that ACTH plays an important role in reducing the ischemic damage.  相似文献   

4.
Dephosphorylation processes of target proteins are critical to the reversible regulation of intracellular signal transduction systems. Further, brain damage such as ischemic insult induces marked changes in protein kinase activity. To study these changes more thoroughly, specific monoclonal antibodies of the A and B subunits of calcineurin (protein phosphatase 2B) were raised, and regional alterations in the immunoreactivity of calcineurin in the rat hippocampus were investigated after a transient forebrain ischemic insult causing selective and delayed hippocampal CA1 pyramidal cell damage. In normal rats it was found that both the calcineurin A and the B subunits showed high immunoreactivity in the dendritic fields of the hippocampal formation. The immunoreactivity of subunit A in the strata oriens, the radiatum of the CA1 subfield and in the stratum lucidum of the CA3 subfield was most intense, whereas the immunoreactivity in the other CA3 subfields and in the dentate gyrus was relatively low. In contrast, the dendritic fields of the hippocampal formation were equally immunoreactive to calcineurin subunit B, although the stratum lucidum of the CA3, where the mossy fibers from the dentate granule cells terminate, showed a very high immunoreactivity of the B subunit. After transient forebrain ischemia in the CA1 subfield, where selective pyramidal cell death occurred two days after this ischemia, a marked loss of immunoreactivity in both subunits was observed, along with morphological pyramidal cell damage. A recovery of the immunoreactivity of A and B subunits in the strata oriens and radiatum was later noted 30 days after ischemia. In the stratum lucidum of the CA3, the immunoreactivity of both the A and B subunits was transiently depressed from 6 to 24 h, followed by a marked immunoreactivity enhancement from four to 30 days after ischemia. Further, in the histologically intact dentate gyrus, both the immunoreactivity of the A and B subunits in the molecular layer were transiently enhanced from four to 14 days after ischemia, particularly in the supragranular layer. The results clearly indicate that the protein dephosphorylation systems were markedly altered in the whole hippocampal formation during the recirculation period following ischemia. Further, the transient depression in the calcineurin immunoreactivity seen in the mossy fiber terminals may reflect modulated synaptic activity of the dentate granule cells, which may play a pivotal role in the delayed and selective death of the CA1 pyramidal cells. Thus, calcineurin appears to be an excellent marker enzyme for the detection of neuronal activity and synaptic plasticity after brain damage, such as an ischemic insult.  相似文献   

5.
Using in situ hybridization, the expression of the GABA receptor subtype B subunit 1 (GABA(B) R1) and subunit 2 (GABA(B) R2) following transient global ischemia in the gerbil hippocampus was investigated. In sham-operated animals, mRNAs of both subunits were mainly detected in hippocampal pyramidal cells and interneurons with lower expression levels of the GABA(B) R2 in the CA1 field. Four days after transient cerebral ischemia, neuronal message decreased in conjunction with neuronal death and both receptor subunits disappeared from the pyramidal cell layer. However, GABA(B) R1 and GABA(B) R2 were still expressed in a few cells. In situ hybridization of the GABA synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) remained unchanged after the ischemic insult. Double-labeling experiments revealed that in the postischemic hippocampus GABA(B) R1 and GABA(B) R2 were not present in GFAP-reactive astrocytes, but that the surviving parvalbumin-containing interneurons possessed GABA(B) R1 and GABA(B) R2 mRNA.  相似文献   

6.
In this study, we examined the differential effects and changes of ceruloplasmin between adult and aged gerbil hippocampus after transient forebrain ischemia. Ceruloplasmin in the hippocampal CA1 region of adult and aged gerbils was significantly changed after ischemia/reperfusion. Whereas, it was not significantly changed in the CA2/3 region compared to the CA1 region after ischemia. Ceruloplasmin immunoreactivity and its protein level in aged gerbil CA1 region were higher than those in adult gerbil CA1 region. Ceruloplasmin in the CA1 region was highest in adult gerbils and aged gerbils at 24h and 12h after transient ischemia, respectively. At these time points, strong ceruloplasmin immunoreactivity was observed in CA1 pyramidal cells. Thereafter, ceruloplasmin was decreased with time after ischemia. Four days after ischemia/reperfusion, ceruloplasmin immunoreactivity in both adult and aged gerbils was expressed in astrocytes in the CA1 region. Ceruloplasmin treatment in adult ischemic gerbils showed strong protective effect against ischemic damage in CA1 pyramidal cells compared to that in aged ischemic gerbils. We conclude that ceruloplasmin early increases in the aged gerbil CA1 region compared to that of the adult gerbil CA1 region may be associated with the earlier induction of reactive oxygen species, and ceruloplasmin shows strong neuroprotective effects in adults compared to those in aged gerbils.  相似文献   

7.
To comprehend the role of pyridoxal 5′-phosphate (PLP) in epilepsy or seizure, we investigated whether the expressions of two PLP synthetic enzymes (pyridoxal kinase, PLK; pyridoxine-5′-phosphate oxidase, PNPO) are altered in the hippocampus and whether changes in paired-pulse responses in the hippocampus are associated with altered PLP synthetic enzyme expressions following status epilepticus (SE). PLK and PNPO immunoreactivities were significantly increased in the rat hippocampus accompanied by reductions in paired-pulse inhibition at 1 day and 1 week after SE. Four weeks after SE, PLK and PNPO immunoreactivities in dentate granule cells were similar to those in control animals, while their immunoreactivities were markedly reduced in Cornu Ammonis 1 (CA1) pyramidal cells due to neuronal loss. Linear regression analysis identified a direct proportional relationship between PLK/PNPO immunoreactivity and normalized population spike amplitude ratio in the dentate gyrus and the CA1 region as excluded the data obtained from 4 weeks after SE. These findings indicate that the upregulation of PLK and PNPO immunoreactivities in principal neurons may not be involved in γ-aminobutyric acid (GABA)ergic inhibition, but rather in enhanced excitability during epileptogenic periods.  相似文献   

8.
In the present study, age-related changes of pyridoxal 5'-phosphate (PLP) synthesizing enzymes, pyridoxal kinase (PLK) and pyridoxine 5'-phosphate oxidase (PNPO), their protein contents and activities were examined in the gerbil hippocampus proper. Significant age-dependent changes in PLK and PNPO immunoreactivities were found in the CA1 region, but not in the CA2/3 region. In the postnatal month 1 (PM 1) group, PLK and PNPO immunoreactivities were detected mainly in the stratum pyramidale of the CA1 region. PLK and PNPO immunoreactivities and their protein contents were highest in the PM 6 group, showing that many CA1 pyramidal cells had strong PLK and PNPO immunoreactivities. Thereafter, PLK and PNPO immunoreactivities started to decrease and were very low at PM 24. Alterations in the change patterns in protein contents and total activities of PLK and PNPO corresponded to the immunohistochemical data, but their specific activities were not altered in any experimental group. Based on double immunofluorescence study, PLK and PNPO immunoreactive cells in the strata oriens and radiatum were identified as GABAergic cells. Therefore, decreases of PLK and PNPO in the hippocampal CA1 region of aged brains may be involved in aging processes related with gamma-aminobutyric acid (GABA) function.  相似文献   

9.
Papp E  Rivera C  Kaila K  Freund TF 《Neuroscience》2008,154(2):677-689
Cation chloride cotransporters have been reported to be expressed in neurons in the hippocampus and to regulate intracellular Cl(-) concentration. The neuron-specific K-Cl cotransporter 2 (KCC2) is necessary for maintaining the low intracellular chloride concentration required for the hyperpolarizing actions of GABA. In this study we examined the vulnerability of KCC2-containing neurons as well as the changes in the pattern of KCC2 distribution in the rat hippocampus following 15 min ischemia induced by four-vessel occlusion. Immunostaining for the 72 kDa heat shock protein (HSP-72) was used to investigate the extent of damage in neuronal populations previously shown to be vulnerable to ischemia. At 6-24 h after ischemia, when the pyramidal cells in the CA1 (subfield of cornu Ammonis) region showed no morphological signs of damage, a small rise of KCC2 immunoreactivity was already observed. After 2 days, when the CA1 pyramidal cells started to degenerate, a progressive downregulation of the KCC2 protein was visible. Interestingly, in the same areas, the parvalbumin containing interneurons showed no signs of ischemic damage, and KCC2 immunoreactivity was retained on their membrane surface. In CA1 pyramidal cells, the reduction in KCC2 expression may lead to an elevation of intracellular Cl(-) concentration, which causes a shift in equilibrium potential toward more positive levels. Consequently, the reduction of the inhibitory action of GABA through downregulation of KCC2 function may be involved in the pathomechanisms of delayed neuronal death in the CA1 subfield.  相似文献   

10.
Choline acetyltransferase (ChAT) activity increased in rat septum 2 weeks after a transient forebrain ischemia. Extracts were prepared from hippocampus in which CA1 pyramidal neurons had been selectively destroyed by the ischemic insult. ChAT activity in septal neuronal cultures treated with these extracts for 6 days was significantly higher than that in control cultures.  相似文献   

11.
Glutamate decarboxylase (GAD)-immunoreactive, supposedly GABAergic inhibitory, neurons in various fields of the rat hippocampus and pyramidal cells in area CA1 were quantified 1 week after transient cerebral ischemia by 4-vessel occlusion. Whereas the number of CA1 pyramidal cells in Toluidine blue-stained semithin sections were found reduced by 50% when compared with controls there was no loss of GAD-immunoreactive cells in vibratome sections of hippocampus proper and fascia dentata. These data suggest that GABAergic hippocampal neurons are more resistant to ischemia than CA1 pyramidal cells.  相似文献   

12.
13.
To better understand the pathophysiological role of Src protein, a non-receptor protein tyrosine kinase of 60kDa, in the ischemic brain, we investigated the time course and regional distribution of active Src expression by using a specific antibody against Tyr416 phosphorylated Src (phospho-Src) in the rat hippocampus after transient forebrain ischemia. In the hippocampus of the control animals, active Src expression was too low to be detected by immunolabeling. Beginning 4h after reperfusion, active Src expression became evident and, after 1 day, had increased preferentially in the CA field of the hippocampus proper and the dentate gyrus. By day 3, active Src expression markedly increased in the pyramidal cell layer of CA1 and the dentate hilar region in temporal correlation with neuronal cell death occurring in these areas, where cells typical of phagocytic microglia showed phospho-Src immunoreactivity. Double-labeling experiments revealed that cells expressing active Src were microglia that stained for biotinylated lectin derived from Griffonia simplicifolia (GSI-B4). Active Src expression began to decline at day 7 and returned to the basal level by day 14 after reperfusion. These results demonstrate increased phosphorylation of Src in activated microglia of the post-ischemic hippocampus, indicating that Src signaling may be involved in the microglial reaction to an ischemic insult.  相似文献   

14.
In the present study, we observed expression and changes of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the gerbil hippocampal CA1 region, but not in the CA2/3 region, after 5 min of transient forebrain ischemia. In blood, corticosterone levels were increased biphasically at 30 min and 12 h after ischemia/reperfusion, and thereafter its levels were decreased. In the sham-operated group, MR and GR immunoreactivities were weakly detected in the CA1 region. By 3 days after ischemia, MR and GR were not significantly altered in the CA1 region: at 12 h after ischemia, GR was expressed in a few neurons in the CA1 region, whereas MR was not expressed in any neurons after ischemic insult. From 4 days after ischemia, MR and GR immunoreactivities were detected in astrocytes and microglia in the CA1 region, and at 7 days after ischemia, MR and GR immunoreactivities peaked in the hippocampal CA1 region. At this time, 55% of astrocytes and 30% of microglia showed MR immunoreactivity, and 20% of astrocytes and 40% of microglia showed GR immunoreactivity. Western blot analyses showed that the pattern of changes in MR and GR protein levels was similar to the immunohistochemical changes observed after transient forebrain ischemia. From 4 days after ischemia, MR and GR protein levels were increased time-dependently after ischemia. In conclusion, enhanced MR and GR expressions in astrocytes and microglia were detected in the hippocampal CA1 region 4-7 days after ischemia/reperfusion. At this time, GR immunoreactivity was abundant in microglia, whereas MR immunoreactivity was prominent in astrocytes. The specific distribution of corticosteroid receptors in the astrocytes and microglia may be associated with the differences of MR and GR functions against ischemic damage.  相似文献   

15.
It has been proposed that reactive oxygen species and lipid peroxidation have a role in the delayed neuronal death of pyramidal cells in the CA1 region. To explore the in situ localization and serial changes of 4-hydroxy-2-nonenal-modified proteins, which are major products of membrane peroxidation, we used immunohistochemistry of the gerbil hippocampus after transient forebrain ischemia with or without preconditioning ischemia. The normal gerbil hippocampus showed weak immunoreactivity for 4-hydroxy-2-nonenal-modified proteins in the cytoplasm of CA1 pyramidal cells. 4-hydroxy-2-nonenal immunoreactivity showed no marked changes after preconditioning ischemia. In the early period after ischemia and reperfusion, there was a transient increase of nuclear 4-hydroxy-2-nonenal immunoreactivity in CA1 pyramidal neurons. In contrast, cytoplasmic immunoreactivity transiently disappeared during same period and then increased markedly from 8h to seven days. One week after ischemia, 4-hydroxy-2-nonenal immunoreactivity was observed within reactive astrocytes in the CA1 region. Early nuclear accumulation of 4-hydroxy-2-nonenal in CA1 neurons may indicate a possible role in signal transduction between the nucleus and cytoplasm/mitochondria, while delayed accumulation of 4-hydroxy-2-nonenal-modified proteins in the cytoplasm may be related to mitochondrial damage.We conclude that 4-hydroxy-2-nonenal may be a key mediator of the oxidative stress-induced neuronal signaling pathway and may have an important role in modifying delayed neuronal death.  相似文献   

16.
目的:观察孕酮对沙土鼠脑缺血再灌海马小白蛋白免疫反应的影响。方法:以双侧颈总动脉夹闭法制作脑缺血再灌注模型,免疫细胞化学方法显示海马小白蛋白免疫反应的变化。结果:脑缺血再灌后1~7 d,海马小白蛋白阳性神经元增多;第7天背侧海马CA1区锥体细胞层呈现小白蛋白阳性致密条带。脑缺血再灌孕酮处理后小白蛋白阳性神经元进一步增加,可见许多串珠状小白蛋白阳性突起,未见海马CA1区锥体细胞层小白蛋白阳性致密条带结构。结论:孕酮可能通过对小白蛋白的表达调控发挥对脑缺血再灌损伤的部分神经保护作用。  相似文献   

17.
Mild hypothermia (38 degrees C) accelerated transport of fragmented DNA in apical dendrites of the gerbil CA1 pyramidal neurons and increased dendrite-terminal fragmented DNA pooling in the apoptotic process following transient forebrain ischemia. The specific DNA fragmentation after the ischemic insult in gerbil hippocampus was examined by in situ nick-end-labeling method, and fluorescence DNA detection technique by DAPI was also performed. There is a precise temperature dependence for the migration of fragmented DNA from nuclei into apical dendrites of CA1 pyramidal cells during apoptosis following transient forebrain ischemia. Increase of fragmented DNA pooling is highly temperature sensitive, occurring at 38 degrees C, while at 39 degrees C there is a marked decrease in DNA pooling.  相似文献   

18.
The neuronal localization of the CB1 cannabinoid receptor in the rat basolateral amygdala was studied using peroxidase and fluorescence immunohistochemical techniques. All nuclei of the basolateral amygdala contained a large number of lightly stained pyramidal neurons and a small number of more intensely stained non-pyramidal neurons. Most of the latter cells had medium-sized to large multipolar somata and three to four aspiny dendrites, but some exhibited smaller oval somata. The axon initial segments of some of these non-pyramidal neurons exhibited large swollen varicosities in colchicine-injected animals, suggesting that much of the CB1 receptor protein is transported down the axons of these cells. Double-labeling studies using immunofluorescence histochemistry combined with confocal laser scanning microscopy revealed that the great majority of non-pyramidal neurons with CB1 receptor immunoreactivity belonged to a cholecystokinin-containing subpopulation. Whereas none of the other subpopulations of non-pyramidal neurons (exhibiting immunoreactivity for calretinin, parvalbumin, or somatostatin) expressed high levels of CB1 receptor immunoreactivity, a small percentage of these cells exhibited low levels of immunoreactivity.The results indicate that cannabinoids may modulate the activity of pyramidal projection neurons as well as a subpopulation of cholecystokinin-containing non-pyramidal neurons in the basolateral amygdala. Previous studies indicate that most of the latter are inhibitory interneurons that utilize GABA as a neurotransmitter. The intense staining of the cholecystokinin-containing interneurons and the evidence that large amounts of CB1 receptor protein are transported down the axons of these cells suggests that, as in the hippocampus, cannabinoids may inhibit the release of GABA from the axon terminals of these neurons.  相似文献   

19.
Wang J  Liu S  Fu Y  Wang JH  Lu Y 《Nature neuroscience》2003,6(10):1039-1047
CA1 pyramidal neurons degenerate after transient forebrain ischemia, whereas neurons in other regions of the hippocampus remain intact. Here we show that in rat hippocampal CA1 neurons, forebrain ischemia induces the phosphorylation of the N-methyl-D-aspartate (NMDA) receptor 2A subunit at Ser1232 (phospho-Ser1232). Ser1232 phosphorylation is catalyzed by cyclin-dependent kinase 5 (Cdk5). Inhibiting endogenous Cdk5, or perturbing interactions between Cdk5 and NR2A subunits, abolished NR2A phosphorylation at Ser1232 and protected CA1 pyramidal neurons from ischemic insult. Thus, we conclude that modulation of NMDA receptors by Cdk5 is the primary intracellular event underlying the ischemic injury of CA1 pyramidal neurons.  相似文献   

20.
In this study, we examined changes in the level and immunoreactivity of alpha-synuclein in the hippocampal CA1 region of adult (6 months old) and aged (24 months old) gerbils after 5 min of transient forebrain ischemia. The delayed neuronal death of CA1 pyramidal cells in adult gerbils was severer than that in aged gerbils 4 days after ischemia/reperfusion. Alpha-synuclein immunoreactivity in the CA1 region of adult and aged gerbils significantly changed after ischemia. In control animals, alpha-synuclein immunoreactivity and level in the aged-gerbil CA1 region were higher than those in the adult-gerbil CA1 region. In both adult and aged gerbils, alpha-synuclein immunoreactivity and level started to increase 3h after ischemia, and they were highest 1 day after ischemia. Thereafter, alpha-synuclein immunoreactivity and level decreased with time after ischemia. We also observed the effects of Cu,Zn-superoxide dismutase (SOD1) on ischemic damage using the Pep-1 transduction domain. Alpha-synuclein level in the CA1 region was lower in Pep-1-SOD1-treated adult and aged gerbils than in vehicle-treated adult and aged gerbils. We conclude that neuronal loss in the hippocampal CA1 region of adult gerbils was more prominent than that in aged gerbils 4 days after ischemia/reperfusion. The higher level of alpha-synuclein in the aged-gerbil CA1 region than that in the adult-gerbil CA1 region may be associated with the earlier induction of reactive oxygen species, and Pep-1-SOD1 potentially and reversibly inhibits the accumulation of alpha-synuclein in the CA1 region after transient ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号