首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.  相似文献   

2.
The use of fly ash in cement composites adversely affects its mechanical properties during the first days of mixture curing. Modern technology, in the form of an admixture containing the hydrated calcium silicates, allows to accelerate the hardening and binding process of concrete. In this paper, studies on the influence of the admixture on properties of concretes with the ordinary Portland cements (OPC) containing the addition of siliceous fly ash (FA) have been carried out. As part of the experimental research, the authors conducted a series of studies for cement pastes modified with the addition of FA and the CSH nano-admixture (NA). In order to compare the mixtures, the following tests of cement pastes were carried out: the compressive and flexural strength, heat of hydration, SEM and rheological shrinkage. The mechanical parameters were tested after 4, 8, 12 and 24 h. The hydration heat test and microstructure analysis were carried out during the first 24 h of the concrete curing. All tests were carried out on the standard samples. On the basis of the heat of hydration test, much higher hydration heat was found in mixtures modified with the NA. During the shrinkage test, a positive effect of the NA was observed—the shrinkage during the first 28 days of mixture curing was lower than in the reference samples. The application of the CSH nano-admixture to cement pastes with the addition of FA has brought positive effects. Apart from a significant increase in strength in the first 24 h of mixture curing, a reduction in the rheological shrinkage was observed. The admixture can be successfully used in the ash concretes, in which a higher early strength is required.  相似文献   

3.
This paper reports the results on the use of an innovative inert, based on stabilized fly ash from municipal solid waste incineration as a filler for polypropylene. The starting material, which contains large quantities of leachable Pb and Zn, was stabilized by means of an innovative process using rice husk ash as a waste silica source, together with other fly ashes, such as coal fly ash and flue gas desulfurization residues. The use of all waste materials to obtain a new filler makes the proposed technology extremely sustainable and competitive. The new composites, obtained by using the stabilized material as a filler for polypropylene, were characterized and their mechanical properties were also investigated. A comparison with a traditional polypropylene and calcium carbonate based compound was also done. This research activity was realized in the frame of the COSMOS-RICE project, financed by the EU Commission.  相似文献   

4.
The development of smart materials is a basic prerequisite for the development of new technologies enabling the continuous non-destructive diagnostic analysis of building structures. Within this framework, the piezoresistive behavior of fly ash geopolymer with added carbon black under compression was studied. Prepared cubic specimens were doped with 0.5, 1 and 2% carbon black and embedded with four copper electrodes. In order to obtain a complex characterization during compressive loading, the electrical resistivity, longitudinal strain and acoustic emission were recorded. The samples were tested in two modes: repeated loading under low compressive forces and continuous loading until failure. The results revealed piezoresistivity for all tested mixtures, but the best self-sensing properties were achieved with 0.5% of carbon black admixture. The complex analysis also showed that fly ash geopolymer undergoes permanent deformations and the addition of carbon black changes its character from quasi-brittle to rather ductile. The combination of electrical and acoustic methods enables the monitoring of materials far beyond the working range of a strain gauge.  相似文献   

5.
Nowadays, one very dynamic development of 3D printing technology is required in the construction industry. However, the full implementation of this technology requires the optimization of the entire process, starting from the design of printing ideas, and ending with the development and implementation of new materials. The article presents, for the first time, the development of hybrid materials based on a geopolymer or ordinary Portland cement matrix that can be used for various 3D concrete-printing methods. Raw materials used in the research were defined by particle size distribution, specific surface area, morphology by scanning electron microscopy, X-ray diffraction, thermal analysis, radioactivity tests, X-ray fluorescence, Fourier transform infrared spectroscopy and leaching. The geopolymers, concrete, and hybrid samples were described according to compressive strength, flexural strength, and abrasion resistance. The study also evaluates the influence of the liquid-to-solid ratio on the properties of geopolymers, based on fly ash (FA) and metakaolin (MK). Printing tests of the analyzed mixtures were also carried out and their suitability for various applications related to 3D printing technology was assessed. Geopolymers and hybrids based on a geopolymer matrix with the addition of 5% cement resulted in the final materials behaving similarly to a non-Newtonian fluid. Without additional treatments, this type of material can be successfully used to fill the molds. The hybrid materials based on cement with a 5% addition of geopolymer, based on both FA and MK, enabled precise detail printing.  相似文献   

6.
The article describes the laboratory evaluation of mixtures of sand modified with wood fly ash (WFA) and additionally stabilized with different amounts of cement. Laboratory research includes determining the California Bearing Ratio (CBR), compressive and indirect tensile strengths of the mixtures, and the resistance of mixtures to freezing/thawing cycles. The aim of the research is to determine if WFA, an alternative material, can improve sand bearing capacity and contribute to strength development while reducing necessary cement amounts and satisfying the technical regulation for use in pavement base courses. The test results obtained show that WFA has a considerable stabilization effect on the sand mixture and improves its load bearing capacity. By adding a small quantity of the cement, the hydraulic reaction in the stabilized mixture is more intense and results in greater strengths and an improved resistance to freezing. The test results show that, by replacement of part of the sand with WFA (in the quantity of 30%), greater strengths can be achieved in relation to the mixture of only sand and cement. Additionally, the content of cement necessary for the stabilization of sand (usually 8–12%) is considerably reduced, which enables cost savings in the construction of pavement structures.  相似文献   

7.
Despite limitations to coal combustion energy production, many countries face the still-unresolved problem of utilising the wastes from fluidised bed coal combustion. One direction of rational utilisation can be using these wastes in the building materials industry. The study aimed to analyse the possibility of using fluidised bed combustion fly ashes as a partial substitute for cement in the underwater concrete (UWC). Two groups of concrete mixes were tested, containing 20 to 50% of fluidised bed combustion fly ashes. Investigations of the rheological properties of the concrete mixes and the mechanical performance of the hardened concrete confirmed the possibility of replacing cement in UWC with fluidised bed combustion fly ash up to 30% of the cement mass. The higher content of the fly ashes significantly worsens the UWC strength as well as the consistency and wash-out loss of the concrete mixes, excluding its use in underwater concreting.  相似文献   

8.
Foam concrete is fire resistant and durable and has broad applicability as a building insulation material. However, cement has high energy consumption and causes pollution, necessitating an environment-friendly cementitious material to replace the cement used to prepare foam concrete. In this study, foam concrete was prepared through chemical foaming. The influence of the foaming agent material, foam stabiliser, and fly ash on the basic properties of the foam concrete, including the dry bulk density, compressive strength, and thermal conductivity, was studied, and the pore structure was characterised. The results show that with an increase in the hydrogen peroxide (H2O2) content, the dry bulk density, compressive strength, and thermal conductivity of foam concrete decreases, whereas the pore diameter increases (0.495 to 0.746 mm). When the calcium stearate content is within 1.8%, the pore size tends to increase (0.547 to 0.631 mm). With increase in the fly ash content, the strength of foam concrete gradually decreases, and the dry bulk density first decreases and then increases. When the blending ratio of fly ash is 10–40%, the thermal conductivity gradually decreases; an extreme thermal conductivity of 0.0824 W/(m·K) appears at the blending ratio of 40%, and the dry bulk density is 336 kg/m3.  相似文献   

9.
Lightweight Sorel’s cement composites doped with coal fly ash were produced and tested. Commercially available foam granulate was used as lightening aggregate. For comparison, reference composites made of magnesium oxychloride cement (MOC) and quartz sand were tested as well. The performed experiments included X-ray diffraction, X-ray fluorescence, scanning electron microscopy, light microscopy, and energy dispersive spectroscopy analyses. The macro- and microstructural parameters, mechanical resistance, stiffness, hygric, and thermal parameters of the 28-days matured composites were also researched. The combined use of foam glass and fly ash enabled to get a material of low weight, high porosity, sufficient strength and stiffness, low water imbibition, and greatly improved thermal insulation performance. The developed lightweight composites can be considered as further step in the design and production of alternative and sustainable materials for construction industry.  相似文献   

10.
China is a large country in terms of coal production and consumption. The fly ash and slag produced by thermal power plants pose a great threat to the environment. To reduce the adverse effects of fly ash and slag on the environment, a mixture of slag and macadam stabilized with cement and fly ash was prepared as pavement base material. Compaction tests, unconfined compressive strength tests, splitting strength tests, frost resistance tests, and ultrasonic tests were performed on the mixture. The results show that with an increase in slag replacement rate, the unconfined compressive strength and splitting strength decreased. However, the adverse influence of the slag replacement rate on unconfined compressive strength and splitting strength of specimens gradually weakened with increasing curing time. The frost resistance of the mixture first increased and then decreased with an increase in the slag replacement rate. When cement content was 5% and the slag replacement rate was 50%, the frost resistance of the mixture was the best. Regression analysis of the ultrasonic test showed that the ultrasonic test can effectively characterize the strength of the mixture and the internal damage degree under freeze–thaw cycles. In conclusion, the slag replacement rate of the mixture is recommended to be ~50%, which has preferable mechanical and frost resistance performance.  相似文献   

11.
Recycled aggregate concrete (RAC) is a sort of green, low carbon, environmental protection building material, its application is of great significance to the low carbonization of the construction industry. The performance and strength of RAC are much lower than natural aggregate concrete (NAC), which are the key factors restricting its application. Class F fly ash is a cementitious material that is considered environmentally hazardous. In this paper, appropriate water-binder (w/b) ratios were found through a mortar expansion test at first. The compressive strength of recycled mortar incorporated with class F fly ash was further studied. On this basis, the mechanical properties of nine groups of fully recycled aggregate concrete (FRAC) with a w/b ratio of 0.3, 0.35, and 0.4, and fly ash replacement ratios of 0, 20%, and 40%, were studied. The influence of the w/b ratio and fly ash replacement ratio on mechanical properties was analyzed and compared with previous research results. In addition, the conversion formulas between the splitting tensile strength, flexural strength, and compressive strength of FRAC were fitted and established. The research results have a certain guiding significance for the mixture design of FRAC and further application of class F fly ash.  相似文献   

12.
The denitrification process was completed in coal-fired power plants, resulting in the fly ash containing NH4HSO4. When this kind of fly ash with ammonia was applied to cement and concrete, there could be phenomena such as a retarded setting time, decreased compressive strength, and volume expansion. This paper mainly investigated the influence of fly ash containing NH4HSO4 on the properties of fly ash cement paste, and pastes with NaHSO4 were set as the control samples. The research on Na+ in cement hydration was studied. The influence of NH4HSO4 content in fly ash on the properties of fly ash cement paste was also investigated. It was found that NH4+ could greatly affect the properties of fly ash cement paste, such as significantly reducing the fluidity, prolonging the setting time, decreasing the compressive strength, increasing the drying shrinkage, decreasing the total heat released during the hydration, and affecting the content of calcium hydroxide hydrate. Increasing the ammonia content of the denitrified fly ash would reduce fluidity, retard its setting time, increase the porosity of the cement stone, and increase the number of pores with large sizes in the fly ash cement paste. The increase of porosity and pores with large sizes in cement decreases the compressive strength and increases the drying shrinkage of the fly ash cement paste.  相似文献   

13.
This is an experiment on the effect of mixing time for alkali-activated cement (AAC) using a binder mixed with ground granulated blast furnace slag (slag) and fly ash (FA) in a ratio of 1:1 on the mechanical properties. The mixing method of ASTM C305 was used as the basic mixing method, and the following mixing method was changed. Simply adding the same mixing time and procedure, the difference in the order of mixing slag and FA, and controlling the amount of activator and mixed water were considered. As a result of the experiment, the addition of the same mixing time and procedure, pre-injection of slag, and high-alkali mixed water in which half of the activator and mixing water were mixed showed the highest mechanical properties and a dense pore structure. As a result, the design of a blending method that can promote the activation action of slag rather than FA at room temperature was effective in improving the mechanical properties of AAC. In addition, these blending factors showed a clearer effect as the concentration of the activator increased. Through the results of this experiment, it was shown that high-temperature curing, high fineness of the binder, or even changing the setting of the mixing method without the use of excessive activators can lead to an improvement of mechanical properties.  相似文献   

14.
Jun Liu  Qiwen Qiu  Feng Xing  Dong Pan 《Materials》2014,7(6):4282-4296
This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days.  相似文献   

15.
High-calcium fly ash (FH) is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found.  相似文献   

16.
This article analyses the possibility of using fly ash from the combustion of wood–sunflower biomass in a fluidized bed boiler as an additive to concrete. The research shows that fly ash applied in an amount of 10–30% can be added as a sand substitute for the production of concrete, without reducing quality (compression strength and low-temperature resistance) compared to control concrete. The 28-day compressive strength of concrete with fly ash increases with the amount of ash added (up to 30%), giving a strength 28% higher than the control concrete sample. The addition of fly ash reduces the extent to which the compression strength of concrete is lowered after low-temperature resistance tests by 22–82%. The addition of fly ash in the range of 10–30% causes a slight increase in the water absorption of concrete. Concretes containing the addition of fly ash from biomass combustion do not have a negative environmental impact with respect to the leaching of heavy metal ions into the environment.  相似文献   

17.
The main concern of this work is to evaluate the influences of supplementary cementitious materials (fly ash, slag) and a new type of polycarboxylate superplasticizer containing viscosity modifying agents (PCE-VMA) on the performance of self-compacting concrete (SCC). The workability, hydration process, mechanical property, chloride permeability, degree of hydration and pore structure of SCC were investigated. Results indicate that the addition of fly ash and slag slows down early hydration and decreases the hydration degree of SCC, and thus leads to a decline in compressive strengths, especially within the first 7 days. The addition of slag refines pore structure and contributes to lower porosity, and thus the chloride permeability of SCC is decreased during the late hydration stage. Additionally, a new factor of calculated water–binder ratio is put forward, which can directly reflect the free water content of concrete mixture after mixing, and guide the mix proportion design of SCC.  相似文献   

18.
Concrete is known as the most globally used construction material, but it releases a huge amount of greenhouse gases due to cement production. Recently, Supplementary Cementitious Materials (SCMs) such as fly ash and Ground Granulated Blast Furnace Slag (GGBFS) have been widely used in concrete to reduce the cement content. However, SCMs can alter the mechanical properties and time-dependent behaviors of concrete and the early age mechanical properties of concrete significantly affect the concrete cracking in the engineering field. Therefore, evaluation of the development of the mechanical properties of SCMs-based concrete is vital. In this paper, the time development of mechanical properties of concrete mixes with various fly ash and GGBFS was experimentally investigated. Four different cement replacement levels including 0%, 20%, 30%, and 40% by fly ash and GGBFS as well as ternary binders were considered. Compressive strength, splitting tensile strength, flexural strength, and elastic modulus of concrete were measured until 28 days. Three additional concrete mixes with ternary binders were also cast to investigate the early-age autogenous shrinkage development until 28 days. In addition, prediction models in existing standards were used and compared to experimental results. The comparison results showed that the prediction models overestimated the compressive strength but underestimated the splitting tensile strength development and autogenous shrinkage. As a result, a model capturing the effect of fly ash and GGBFS on the development of compressive and splitting tensile strength is proposed to improve the prediction accuracy for current standards and empirical models.  相似文献   

19.
Production cost reduction and constraints on natural resources cause the use of waste materials as substitutes of traditional raw materials to become increasingly important. The dynamic development of sewerage systems and sewage treatment plants leads to increases in the produced sewage sludge. According to the Waste Law, municipal sewage sludge can be used if it is properly stabilized. This process results in significant quantities of fly ash that must be utilized. This paper presents investigation results of partial cement replacement influence by the fly ash from sewage sludge on concrete parameters. The results confirm the possibility of fly ash waste applications as a cement substitute in concrete manufacturing. In the later parts of the publication, a pilot study was conducted using the modal analysis methodology and aimed at checking the hypothesis of whether vibration methods can be used in the assessment of the amount of the admixture used in concrete and the effect it has on concrete properties. This is the first time that vibration tests have been used to determine the diversity of the concrete mix composition and to distinguish the percentage of ash added. There are no studies using modal analysis to distinguish the composition of a concrete mix in the scientific literature. The article shows that the vibration test results show the differentiation of concrete composition and can be further improved as a method for determining the composition of mixtures and for distinguishing their mechanical properties. These are only pilot studies, which, in order to develop the target cognitive inference, should be performed in the future on a significantly enlarged number of the studied samples.  相似文献   

20.
Corrosion of steel reinforcement is the major factor that limits the durability and serviceability performance of reinforced concrete structures. Impressed current cathodic protection (ICCP) is a widely used method to protect steel reinforcements against corrosion. This research aimed to study the effect of cathodic protection on reinforced concrete with fly ash using electrochemical noise (EN). Two types of reinforced concrete mixtures were manufactured; 100% Ordinary Portland Cement (OCP) and replacing 15% of cement using fly ash (OCPFA). The specimens were under-designed protected conditions (−1000 ≤ E ≤ −850 mV vs. Ag/AgCl) and cathodic overprotection (E < −1000 mV vs. Ag/AgCl) by impressed current, and specimens concrete were immersed in a 3.5 wt.% sodium chloride (NaCl) Solution. The analysis of electrochemical noise-time series showed that the mixtures microstructure influenced the corrosion process. Transients of uniform corrosion were observed in the specimens elaborated with (OPC), unlike those elaborated with (OPCFA). This phenomenon marked the difference in the concrete matrix’s hydration products, preventing Cl ions flow and showing passive current and potential transients in most specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号