共查询到20条相似文献,搜索用时 15 毫秒
1.
Paula Llorens Marta Herrera Ana Juan-García Juan Jos Pay Juan Carlos Molt Agustín Ario Cristina Juan 《Toxins》2022,14(5)
The measurement of human exposure to mycotoxins is necessary for its association with adverse health effects. This exposure is usually estimated from contamination levels of foodstuffs, which are the primary source of toxin exposure, and data on food consumption patterns. However, variations in contamination level, intestinal absorption, toxin distribution, and excretion lead to individual variations in toxin exposure that can be more readily measured with a biomarker. This review deals with the latest literature information about ZEN biomarkers in humans, animals, and cell line cultures. Their presence in urine, biomarkers that have effects in the kidney, liver, reproductive system and blood and biomarkers of cell response have been reported. It has highlighted the importance of determining α-zearalenol and β-zearalenol biomarkers to estimate the probable dietary intake (PDI) of a specific population or to characterize the severity of exposure to ZEN in animals or cell lines. α-ZEL and β-ZEL are cytotoxic by inhibiting cell proliferation, total protein and DNA syntheses, in this sense, an induction of expression proteins Hsp27 and Hsp70 was observed, and an increase in gene expression (TLR4, NF-kBp65, TNF-α, IL-1β, IL-6, IL-8, MGMT, α-GST, Hsp70, Nrf2, L-Fabp, HO-1, MAPK8), the determination of which indicates an oxidative stress effect. The integrity of the cell or tissue membrane is assessed by lactate dehydrogenase (LDH), which increase at exposure of ZEN (84.2 µM), and the proportions of some fatty acids of the renal tissue membrane were increased at treatments with ZEN. This review allows starting future studies of animal and population exposure in parallel with those of health effects works. 相似文献
2.
The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012–2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha−1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites. 相似文献
3.
Kilian G. J. Kenngott Julius Albert Friederike Meyer-Wolfarth Gabriele E. Schaumann Katherine Muoz 《Toxins》2022,14(2)
While mycotoxins are generally regarded as food contamination issues, there is growing interest in mycotoxins as environmental pollutants. The main sources of trichothecene and zearalenone mycotoxins in the environment are mainly attributed to Fusarium infested fields, where mycotoxins can wash off in infested plants or harvest residues. Subsequently, mycotoxins inevitably enter the soil. In this context, investigations into the effects, fate, and transport are still needed. However, there is a lack of analytical methods used to determine Fusarium toxins in soil matrices. We aimed to validate an analytical method capable of determining the toxins nivalenol (NIV), deoxynivalenol (DON), 15-acetyl-deoxynivalenol (15-AcDON), and zearalenone (ZEN), at environmentally relevant concentrations, in five contrasting agricultural soils. Soils were spiked at three levels (3, 9 and 15 ng g−1), extracted by solid-liquid extraction assisted with ultrasonication, using a generic solvent composition of acetonitrile:water 84:16 (v:v) and measured by LC–HRMS. Method validation was successful for NIV, DON, and 15-AcDON with mean recoveries > 93% and RSDr < 10%. ZEN failed the validation criteria. The validated method was applied to eight conventionally managed maize field soils during harvest season, to provide a first insight into DON, NIV, and 15-AcDON levels. Mycotoxins were present in two out of eight sampled maize fields. Soil mycotoxin concentrations ranged from 0.53 to 19.4 ng g−1 and 0.8 to 2.2 ng g−1 for DON and NIV, respectively. Additionally, we found indication that “hot-spot” concentrations were restricted to small scales (<5 cm) with implications for field scale soil monitoring strategies. 相似文献
4.
Edyta Ksieniewicz-Wo
niak Marcin Brya Dorota Michaowska Agnieszka Wakiewicz Tomoya Yoshinari 《Toxins》2021,13(12)
This study investigated the impact of malting of six wheat cultivars inoculated with Fusarium culmorum on the dynamics of content changes of selected Fusarium toxins. The grains of all the tested cultivars showed a high content of deoxynivalenol (DON), zearalenone (ZEN), and their derivatives, whereas nivalenol (NIV) and its glucoside were found only in the Legenda cultivar. Our experiments confirmed that the malting process of wheat grain enables the secondary growth of Fusarium, and mycotoxin biosynthesis. The levels of toxins in malt were few-fold higher than those in grain; an especially high increase was noted in the case of ZEN and its sulfate as the optimal temperature and pH conditions for the biosynthesis of these toxins by the pathogen are similar to those used in the grain malting process. This is the first paper reporting that during the malting process, biosynthesis of ZEN sulfate occurs, instead of glycosylation, which is a typical modification of mycotoxins by plant detoxication enzymes. 相似文献
5.
Jeroen Peters Edward Ash Arjen Gerssen Ruud Van Dam Maurice C. R. Franssen Michel W. F. Nielen 《Toxins》2021,13(6)
In recent years, conjugated mycotoxins have gained increasing interest in food safety, as their hydrolysis in human and animal intestines leads to an increase in toxicity. For the production of zearalenone (ZEN) glycosides reference standards, we applied Cunninghamella elegans and Cunninghamella echinulata fungal strains. A sulphate-depleted medium was designed for the preferred production of ZEN glycosides. Both Cunninghamella strains were able to produce zearalenone-14-β-D-glucopyranoside (Z14G), zearalenone-16-β-D-glucopyranoside (Z16G) and zearalenone-14-sulphate (Z14S). In a rich medium, Cunninghamella elegans preferably produced Z14S, while Cunninghamella echinulata preferably produced Z14G. In the sulphate-depleted medium a dramatic change was observed for Cunninghamella elegans, showing preferred production of Z14G and Z16G. From 2 mg of ZEN in sulphate-depleted medium, 1.94 mg of Z14G and 0.45 mg of Z16G were produced. Following preparative Liquid Chromatography-Mass Spectrometry (LC-MS) purification, both fractions were submitted to 1H and 13C NMR and High-Resolution Mass Spectrometry (HRMS). These analyses confirmed that the purified fractions were indeed Z14G and Z16G. In conclusion, the presented research shows that a single Cunninghamella strain can be an effective and efficient tool for the controlled biotransformation of ZEN glycosides and other ZEN metabolites. Additionally, the biotransformation method was extended to zearalanone, β-zearalenol and other mycotoxins. 相似文献
6.
Senay Simsek Maribel Ovando-Martínez Bahri Ozsisli Kristin Whitney Jae-Bom Ohm 《Toxins》2013,5(12):2656-2670
Deoxynivalenol (DON) is a mycotoxin found in wheat that is infected with Fusarium fungus. DON may also be converted to a type of “masked mycotoxin”, named deoxynivalenol-3-glucoside (D3G), as a result of detoxification of the plant. In this study, DON and D3G were measured using gas chromatographic (GC) and liquid chromatography-mass spectrometry (LC-MS) in wheat samples collected during 2011 and 2012 in the USA. Results indicate that the growing region had a significant effect on the DON and D3G (p < 0.0001). There was a positive correlation between both methods (GC and LC-MS) used for determination of DON content. DON showed a significant and positive correlation with D3G during 2011. Overall, DON production had an effect on D3G content and kernel damage, and was dependent on environmental conditions during Fusarium infection. 相似文献
7.
Alvarez CL Somma S Proctor RH Stea G Mulè G Logrieco AF Pinto VF Moretti A 《Toxins》2011,3(10):1294-1309
The Fusarium graminearum species complex (FGSC) is a group of mycotoxigenic fungi that are the primary cause of Fusarium head blight (FHB) of wheat worldwide. The distribution, frequency of occurrence, and genetic diversity of FGSC species in cereal crops in South America is not well understood compared to some regions of Asia, Europe and North America. Therefore, we examined the frequency and genetic diversity of a collection of 183 FGSC isolates recovered from wheat grown during multiple growing seasons and across a large area of eastern Argentina, a major wheat producing region in South America. Sequence analysis of the translation elongation factor 1-α and β-tubulin genes as well as Amplified Fragment Length Polymorphism (AFLP) analyses indicated that all isolates were the FGSC species F. graminearum sensu stricto. AFLP analysis resolved at least 11 subgroups, and all the isolates represented different AFLP haplotypes. AFLP profile and geographic origin were not correlated. Previously obtained trichothecene production profiles of the isolates revealed that the 15-acetyldeoxynivalenol chemotype was slightly more frequent than the 3-acetyldeoxynivalenol chemotype among the isolates. These data extend the current understanding of FGSC diversity and provide further evidence that F. graminearum sensu stricto is the predominant cause of FHB in the temperate main wheat-growing area of Argentina. Moreover, two isolates of F. crookwellense and four of F. pseudograminearum were also recovered from wheat samples and sequenced. The results also suggest that, although F. graminearum sensu stricto was the only FGSC species recovered in this study, the high level of genetic diversity within this species should be considered in plant breeding efforts and development of other disease management strategies aimed at reducing FHB. 相似文献
8.
Clemens Schmeitzl Elisabeth Varga Benedikt Warth Karl G. Kugler Alexandra Malachová Herbert Michlmayr Gerlinde Wiesenberger Klaus F. X. Mayer Hans-Werner Mewes Rudolf Krska Rainer Schuhmacher Franz Berthiller Gerhard Adam 《Toxins》2016,8(1)
Increasing frequencies of 3-acetyl-deoxynivalenol (3-ADON)-producing strains of Fusarium graminearum (3-ADON chemotype) have been reported in North America and Asia. 3-ADON is nearly nontoxic at the level of the ribosomal target and has to be deacetylated to cause inhibition of protein biosynthesis. Plant cells can efficiently remove the acetyl groups of 3-ADON, but the underlying genes are yet unknown. We therefore performed a study of the family of candidate carboxylesterases (CXE) genes of the monocot model plant Brachypodium distachyon. We report the identification and characterization of the first plant enzymes responsible for deacetylation of trichothecene toxins. The product of the BdCXE29 gene efficiently deacetylates T-2 toxin to HT-2 toxin, NX-2 to NX-3, both 3-ADON and 15-acetyl-deoxynivalenol (15-ADON) into deoxynivalenol and, to a lesser degree, also fusarenon X into nivalenol. The BdCXE52 esterase showed lower activity than BdCXE29 when expressed in yeast and accepts 3-ADON, NX-2, 15-ADON and, to a limited extent, fusarenon X as substrates. Expression of these Brachypodium genes in yeast increases the toxicity of 3-ADON, suggesting that highly similar genes existing in crop plants may act as susceptibility factors in Fusarium head blight disease. 相似文献
9.
Between January 2009 and December 2011, a total of 7049 corn, soybean/soybean meal, wheat, dried distillers grains with solubles (DDGS) and finished feed samples were analyzed for the occurrence of aflatoxins (Afla), zearalenone (ZEN), deoxynivalenol (DON), fumonisins (FUM) and ochratoxin A (OTA). Samples were sourced in the Americas, Europe and Asia. Afla, ZEN, DON, FUM and OTA were present respectively in 33%, 45%, 59% 64% and 28% of analyzed samples between 2009 and 2011. From the 23,781 mycotoxin analyzes performed, 81% were positive for at least one mycotoxin. Results of this survey are provided by calendar year, in order to potentially show different trends on mycotoxin occurrence in distinct years: by commodity type and within the same commodity, and by region, to potentially reveal differences in mycotoxin contamination in commodities sourced in diverse regions. 相似文献
10.
Gunther Antonissen An Martel Frank Pasmans Richard Ducatelle Elin Verbrugghe Virginie Vandenbroucke Shaoji Li Freddy Haesebrouck Filip Van Immerseel Siska Croubels 《Toxins》2014,6(2):430-452
Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well. 相似文献
11.
Julianah Olayemi Odukoya Sarah De Saeger Marthe De Boevre Gabriel Olaniran Adegoke Kris Audenaert Siska Croubels Gunther Antonissen Karel Vermeulen Sefater Gbashi Patrick Berka Njobeh 《Toxins》2021,13(1)
Although previous studies have reported the use of nixtamalization for mycotoxins reduction in maize, the efficacy of calcium hydroxide and other nixtamalization cooking ingredients for mycotoxin reduction/decontamination in sorghum and other cereals still need to be determined. The current study investigated the effect of five nixtamalization cooking ingredients (wood ashes, calcium hydroxide, sodium hydroxide, potassium hydroxide, and calcium chloride) on the reduction of Fusarium mycotoxins in artificially contaminated maize and sorghum using liquid chromatography-tandem mass spectrometry. All tested cooking ingredients effectively reduced levels of mycotoxins in the contaminated samples with reduction initiated immediately after the washing step. Except for the calcium chloride nixtamal, levels of fumonisin B1, B2, and B3 in the processed sorghum nixtamal samples were below the limit of detection. Meanwhile, the lowest pH values were obtained from the maize (4.84; 4.99), as well as sorghum (4.83; 4.81) nejayote and nixtamal samples obtained via calcium chloride treatment. Overall, the results revealed that the tested cooking ingredients were effective in reducing the target mycotoxins. In addition, it pointed out the potential of calcium chloride, though with reduced effectiveness, as a possible greener alternative cooking ingredient (ecological nixtamalization) when there are environmental concerns caused by alkaline nejayote. 相似文献
12.
Antonio Moretti Giuseppe Panzarini Stefania Somma Claudio Campagna Stefano Ravaglia Antonio F. Logrieco Michele Solfrizzo 《Toxins》2014,6(4):1308-1324
Fusarium head blight (FHB) is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae). This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON), a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a) the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b) the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at vitreous ripening), also the accumulation of significant quantities of DON-3-glucoside (DON-3G), a product of DON glycosylation, was detected, with decreasing levels in straw, crown, stems and kernels. The presence of DON and DON-3G in heads and kernels without the occurrence of F. graminearum may be explained by their water solubility that could facilitate their translocation from stem to heads and kernels. The presence of DON-3G at levels 23 times higher than DON in the heads at milk stage without the occurrence of F. graminearum may indicate that an active glycosylation of DON also occurs in the head tissues. Finally, the high levels of DON accumulated in straws are worrisome since they represent additional sources of mycotoxin for livestock. 相似文献
13.
Pascaline Aimee Uwineza Monika Urbaniak Marcin Brya ukasz Stpie Marta Modrzewska Agnieszka Wakiewicz 《Toxins》2022,14(5)
The objectives of this research were to obtain the extracts of lemon balm (Melissa officinalis) using supercritical CO2 (SC-CO2) and methanol as co-solvent and evaluate the antifungal activity of those extracts against two selected strains of Fusarium species (Fusarium culmorum and Fusarium proliferatum). The extraction conditions were set at 40 and 60 °C and 250 bar. The obtained extracts were characterized in terms of antifungal activity on potato dextrose agar media (PDA). The results showed that the extraction parameters had different effects on mycelium growth and mycotoxins biosynthesis reduction. All studied lemon balm extracts (1, 2.5, 5, 7.5, and 10%) inhibited the growth of F. proliferatum and F. culmorum mycelia compared to the control. The lemon balm extracts significantly reduced ergosterol content and synthesized mycotoxins in both tested strains. These findings support the antifungal activity of lemon balm extracts against F. proliferatum and F. culmorum. However, more research on other Fusarium species is needed, as well as in vivo applications, before considering lemon balm extracts as a natural alternative to synthetic fungicides. 相似文献
14.
Mycotoxins, toxins of fungal origin, can directly or indirectly contaminate food and feed and are poisonous to livestock and humans. While a large amount is known about their occurrence in crops, food, and feeds, little is known about mycotoxin amounts in soil. However, soil is known as a major fungal habitat and a potential sink for mycotoxins in the environment. Furthermore, there is neither a reliable detection nor an extraction method for mycotoxins testing in different soil textures or for potential deficits due to aging processes. Therefore, the aim of the present study was to present a reliable extraction and detection method for the simultaneous quantification of the most common mycotoxins, deoxynivalenol (DON) and zearalenone (ZEA), via liquid chromatography-tandem mass spectrometry (LC–MS/MS). This method was validated with six different samples with different textures and different soil organic matter (SOM). Deuterated standards were used to overcome possible matrix effects. This extraction method could eliminate potential aging processes. The recovery rate was always >80% for DON and >82% for ZEA. The quantification limits were 1 ng per g soil for DON and 0.5 ng per g soil for ZEA. 相似文献
15.
Nazia Hoque Farhana Afroz Farjana Khatun Satyajit Roy Rony Choudhury Mahmood Hasan Md. Sohel Rana Md. Hossain Sohrab 《Toxins》2022,14(3)
The present study was intended to characterize the secondary metabolites of the endophyte Fusarium oxysporum isolated from the plant Aglaonema hookerianum Schott. And to investigate the cytotoxic and other pharmacological properties of the isolated compounds as part of the drug discovery and development process. Different chromatographic techniques were adopted to isolate the bioactive compounds that were identified by spectroscopic techniques. The cytotoxic properties of the compounds were assessed in the Vero cell line via the trypan blue method. Moreover, physicochemical, pharmacokinetic, bioactivity and toxicity profiles of the compounds were also investigated through in silico approaches. After careful spectral analysis, the isolated compounds were identified as 3β,5α-dihydroxy-ergosta-7,22-dien-6-one (1), 3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (2), p-hydroxybenzaldehyde (3), 3-(R)-7-butyl-6,8-dihydroxy-3-pent-11-enylisochroman-1-one (4) and beauvericin (5). An in vitro study in the Vero cell line revealed that the presence of the compounds reduced the number of cells, as well as the percentage of viable cells, in most cases. An in silico cytotoxic analysis revealed that compounds 1, 2 and 5 might be explored as cytotoxic agents. Moreover, compounds 3 and 4 were found to be highly mutagenic. The present study suggested that further thorough investigations are necessary to use these molecules as leads for the cytotoxic drug development process. 相似文献
16.
Mycotoxins contaminate crops worldwide and play a role in animal health and performance. Multiple mycotoxins may co-occur which may increase the impact on the animal. To assess the multiple mycotoxin profile of corn (Zea mays), we conducted a 7-year survey of new crop corn grain and silage in the United States. A total of 711 grain and 1117 silage samples were collected between 2013 and 2019 and analyzed for the simultaneous presence of 35 mycotoxins using ultra-performance liquid chromatography–tandem mass spectrometry. The measured mean number of mycotoxins per sample were 4.8 (grain) and 5.2 (silage), ranging from 0 to 13. Fusaric acid (FA) was most frequently detected in 78.1 and 93.8% of grains and silages, respectively, followed by deoxynivalenol (DON) in 75.7 and 88.2% of samples. Fumonisin B1 (FB1), fumonisin B2 and 15-acetyl-deoxynivalenol (15ADON) followed. The greatest (p < 0.05) co-occurrence was between FA and DON in 59.1% of grains and 82.7% of silages, followed by FA with FB1, DON with 15ADON, and FA with 15ADON. Although many samples had lower mycotoxin concentrations, 1.6% (grain) and 7.9% (silage) of tested samples had DON ≥ 5000 µg/kg. Fumonisins were detected ≥ 10,000 µg/kg in 9.6 and 3.9% of grain and silage samples, respectively. Concentrations in grain varied by year for eight mycotoxin groups (p < 0.05), while all 10 groups showed yearly variations in silage. Our survey suggest that multiple mycotoxins frequently co-occur in corn grain and silage in the United States, and some of the more prevalent mycotoxins are those that may not be routinely analyzed (i.e., FA and 15ADON). Assessment of multiple mycotoxins should be considered when developing management programs. 相似文献
17.
Coffee silverskin and spent coffee have been evaluated in a neuroblastoma cell line (SH-SY5Y cells) against beauvericin (BEA) and α-zearalenol (α-ZEL)-induced cytotoxicity with different strategies of treatment. First, the direct treatment of mycotoxins and coffee by-products extracts in SH-SY5Y cells was assayed. IC50 values for α-ZEL were 20.8 and 14.0 µM for 48 h and 72 h, respectively and, for BEA only at 72 h, it was 2.5 µM. Afterwards, the pre-treatment with spent coffee obtained by boiling water increased cell viability for α-ZEL at 24 h and 48 h from 10% to 16% and from 25% to 30%, respectively; while with silverskin coffee, a decrease was observed. Opposite effects were observed for BEA where an increase for silverskin coffee was observed at 24 h and 48 h, from 14% to 23% and from 25% to 44%, respectively; however, a decrease below 50% was observed for spent coffee. Finally, the simultaneous treatment strategy for the highest concentration assayed in SH-SY5Y cells provided higher cytoprotection for α-ZEL (from 44% to 56% for 24 h and 48 h, respectively) than BEA (30% for 24 h and 48 h). Considering the high viability of coffee silverskin extracts for SH-SY5Y cells, there is a forthcoming promising use of these unexploited residues in the near future against mycotoxins effects. 相似文献
18.
Maize silage is a widely used feed product for cattle worldwide, which may be contaminated with mycotoxins, pre- and post-harvest. This concerns both farmers and consumers. To assess the exposure of Danish cattle to mycotoxins from maize silage, 99 samples of whole-crop maize (ensiled and un-ensiled) were analyzed for their contents of 27 mycotoxins and other secondary fungal metabolites by liquid chromatography-tandem mass spectrometry. The method specifically targets the majority of common pre- and post-harvest fungi associated with maize silage in Denmark. Sixty-one samples contained one or more of the 27 analytes in detectable concentrations. The most common mycotoxins were zearalenone, enniatin B nivalenol and andrastin A, found in 34%, 28%, 16% and 15% of the samples, respectively. None of the samples contained mycotoxins above the EU recommended maximum concentrations for Fusarium toxins in cereal-based roughage. Thus, the present study does not indicate that Danish maize silage in general is a cause of acute single mycotoxin intoxications in cattle. However, 31 of the samples contained multiple analytes; two samples as much as seven different fungal metabolites. Feed rations with maize silage may therefore contain complex mixtures of fungal secondary metabolites with unknown biological activity. This emphasizes the need for a thorough examination of the effects of chronic exposure and possible synergistic effects. 相似文献
19.
The Fusarium mycotoxin deoxynivalenol (DON) is a common contaminant of cereals and is often co-occurring with its modified forms DON-3-glucoside (D3G), 3-acetyl-DON (3ADON) or 15-acetyl-DON (15ADON). A stable-isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method for their determination in cereals was developed and validated for maize. Therefore, 13C-labelled D3G was enzymatically produced using 13C-DON and [13C6Glc]-sucrose and used as an internal standard (IS) for D3G, while uniformly 13C labelled IS was used for the other mycotoxins. Baseline separation was achieved for the critical peak pair DON/D3G, while 3ADON/15ADON could not be fully baseline separated after testing various reversed phase, fluorinated phase and chiral LC columns. After grinding, weighing and extracting the cereal samples, the raw extract was centrifuged and a mixture of the four 13C-labelled ISs was added directly in a microinsert vial. The subsequent analytical run took 7 min, followed by negative electrospray ionization and selected reaction monitoring on a triple quadrupole MS. Maize was used as a complex cereal model matrix for validation. The use of the IS corrected the occurring matrix effects efficiently from 76 to 98% for D3G, from 86 to 103% for DON, from 68 to 100% for 15ADON and from 63 to 96% for 3ADON. 相似文献
20.
Clemens Schmeitzl Benedikt Warth Philipp Fruhmann Herbert Michlmayr Alexandra Malachová Franz Berthiller Rainer Schuhmacher Rudolf Krska Gerhard Adam 《Toxins》2015,7(8):3112-3126
Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives. 相似文献