首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca(2+)-activated non-selective cation (CAN) channels are activated by cytoplasmic Ca(2+) and I(CAN) underlies many slow depolarizing processes in neurons including a putative role in excitotoxicity. CAN channels in many non-neuronal cells are blocked by non-steroidal antiinflammatory drugs that are derivatives of diphenylamine-2-carboxylate (DPC). The DPC derivative flufenamate (FFA) has a complex effect on certain neurons, whereby it blocks CAN channels and increases [Ca(2+)](i). We report here that FFA, but not the parent compound, DPC, blocks CAN channels in hippocampal CA1 neurons. As was the case in other neurons, the effects of FFA are complex and include a maintained rise in [Ca(2+)](i). Furthermore, the CAN channel blocking ability of FFA persists even when the channels have been potentiated by a Ca(2+)-dependent process. The use of a CAN channel-blocking drug is important for delineating CAN channel-dependent processes and may provide a basis for therapy for CAN channel-dependent events in ischemia.  相似文献   

2.
The effect of a dihydropyridine Ca2+ antagonist, cilnidipine, on voltage-dependent Ca2+ channels was studied in acutely dissociated rat CA1 pyramidal neurons using the nystatin-perforated patch recording configuration under voltage-clamp conditions. Cilnidipine had no effect on low-voltage-activated (LVA) Ca2+ channels at the low concentrations under 10−6 M. On the other hand, cilnidipine inhibited the high-voltage-activated (HVA) Ca2+ current (ICa) in a concentration-dependent manner and the inhibition curve showed a step-wise pattern; cilnidipine selectively reduced only L-type HVA ICa at the low concentrations under 10−7 and 10−6 M cilnidipine blocked not only L- but also N-type HVA ICa. At the high concentration over 10−6 M cilnidipine non-selectively blocked the T-type LVA and P/Q- and R-type HVA Ca2+ channels. This is the first report that cilnidipine at lower concentration of 10−6 M blocks both L- and N-type HVA ICa in the hippocampal neurons.  相似文献   

3.
4.
目的探讨缺血缺氧后大鼠海马神经元突触后膜谷氨酸受体-2 (GluR2)含量变化情况.方法体外培养胚胎大鼠海马神经元,模拟临床缺血过程致神经元缺氧损伤,运用双重免疫荧光技术标记和共聚焦检测技术观察缺血缺氧后不同时间点海马神经元突触后膜GluR2含量变化情况.结果体外培养海马神经元进行模拟缺血处理后,膜表面的GluR2总含量、含有GluR2突触的相对含量以及含有突触部位GluR2的相对含量均明显降低,而且上述变化随着模拟缺血时间的延长而增加,各组间均存在显著性差异(P<0.05).结论缺血缺氧损伤可致突触后膜表面G1uR2含量降低并随着缺血时间的延长而增加,形成缺乏GluR2的新的AMPA受体通道,介导Ca2 的快速内流,引起神经元的延迟性死亡.  相似文献   

5.
Zinc modulates neurotransmission and may trigger neurodegeneration following brain injuries. Therefore, it is important to understand zinc dynamics in an anatomical context. Using a histochemical procedure on stimulated slices, we visualized zinc influx into neurons 'in situ'. Hippocampal, neocortical and cerebellar slices were loaded with zinc and stimulated with compounds known to open zinc-permeable channels. Zinc was then visualized by histochemical precipitation methods. Kainate stimulation labelled CA1 hippocampal pyramidal neurons, as well as subpopulations of interneurons in the hilus, CA1 and CA3 fields. Interneurons in the neocortex and many cell types of the cerebellum were also labelled. However, neither NMDA nor 50 mM K(+) stimulation resulted in comparable zinc accumulation in neurons. Immunofluorescent colocalization of parvalbumin with kainate-induced zinc staining in the hippocampus and neocortex showed a subset of zinc-sensitive neurons, positive for parvalbumin. These results confirm that zinc permeation through calcium-permeable AMPA/kainate channels constitutes a predominant route of zinc entry into different cell types. Furthermore, this technique provides a useful and versatile histochemical approach to assess the cell subpopulations of the central nervous system particularly sensitive to zinc accumulation under normal or pathological conditions.  相似文献   

6.
Evoked field potentials and changes in [Ca2+]o were measured in the ‘in vitro’ hippocampal slice of the rat. When [Ca] in the perfusion medium was lowered to 0.2 mM synaptic transmission from Schaffer collateral/comissural fibers was blocked. Nevertheless, repetitive stimulation of afferent fibers still resulted in detectable decreases of [Ca2+]o. In contrast to findings in normal medium these decreases in [Ca2+]o could be larger in stratum radiatum than in stratum pyramidale, so mimicking the spatial distribution of activated afferent fibers. These findings suggest, that the loss of extracellular Ca2+ in low Ca2+ media is predominantly due to entry into presynaptic terminals. This permits to study effects of drugs on presynaptic endings. We found that iontophoretic application of GABA is capable to block this presumed presynaptic Ca2+ entry without affecting the electrical activity of the afferent fibers. This suggests, that presynaptic GABA receptors occur also in the Schaffer collateral/commissural fiber system.  相似文献   

7.
Superior-cervical ganglion (SCG) cells dissociated from newborn rats depend on nerve growth factor (NGF) for survival. Membrane depolarization with elevated K+ is known to prevent neuronal death following NGF deprivation and/or to promote survival via a Ca2+-dependent mechanism. Here we have exploited the possibility of whether or not a Na+-dependent pathway for neuronal survival is present in these cells. Veratridine (ec50=40 nM), a voltage-dependent Na+ channel activator, significantly delayed the onset of apoptotic cell death in NGF-deprived SCG neurons that had been cultured for 7 days in the presence of NGF. This effect was blocked completely by Na+ channel blockers including tetrodotoxin (TTX, 1 μM), benzamil (25 μM) and flunarizine (1 μM), but was not attenuated by nimodipine (1 μM), an L-type Ca2+ channel blocker. The saving effect of veratridine on cultured neurons was observed even in low Ca2+ media (0–1.0 mM), but was completely abolished in a low Na+ medium (38 mM). Sodium-binding benzofuran isophthalate was employed as a fluorescent probe for monitoring the level of cytoplasmic free Na+, which revealed a sustained increase in its level (12.9 mM, 307% of that of control) in response to veratridine (0.75 μM). The TTX or flunarizine completely blocked veratridine-induced Na+ influx in these cultured neurons. Moreover, no appreciable increase in intracellular Ca2+ was detected under these conditions. Though Na+ channels were effectual in SCG neurons which were freshly isolated from newborn rats, the Na+-dependent saving effect of veratridine was not observed in these young neurons. These lines of evidence suggest that the death-suppressing effect of veratridine on cultured SCG neurons depends on the Na+ influx via voltage-dependent Na+ channels, and suggests the presence of Na+-dependent regulatory mechanism(s) in neuronal survival.  相似文献   

8.
Low-molecular weight dyes such as Lucifer yellow or carboxyfluorescein have been used to investigate the electrical connectivity of neurons via gap junctions. The interpretation that such dye passage is mediated through intercellular channels has been controversial and difficult to corroborate with direct techniques in mammalian brain. We report here that elevated intracellular free Ca2+, a treatment shown to cause gap junction occlusion in other tissues, significantly blocks dye transfer between hippocampal cells. Furthermore, intracellular injection of FITC-dextran (which is too large to cross gap junctions) never resulted in multiple hippocampal cell fills. These data lend strong support to the argument that the extent of dye-coupling provides a good estimate of the number of intercellular communication channels, and raises the possibility that these channels may be physiologically modulated.  相似文献   

9.
Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen–glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+–Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.  相似文献   

10.
We evaluated the effects of two levels of daily forced exercise intensity (moderate and high) in the treadmill over cell susceptibility to oxygen and glucose deprivation (OGD) in hippocampal slices from Wistar rats. Moderate exercise decreased lactate dehydrogenase (LDH) release after OGD, while a significant increase in LDH release was observed in the high intensity group submitted to OGD. Our data corroborate the hypothesis that higher training intensity exacerbates brain damage, while a moderate intensity reduces the injury caused by in vitro ischemia.  相似文献   

11.
Okada Y  Miyamoto T  Toda K 《Brain research》2003,968(2):248-255
Dopamine D2 receptors exist in the soma of rat olfactory receptor neurons. Actions of dopamine on the voltage-gated Ca(2+) channels in the neurons were investigated using the perforated whole-cell voltage-clamp. In 10 mM Ba(2+) solution, rat olfactory receptor neurons displayed the inward currents elicited by the voltage ramp (167 mV/s) and depolarizing step pulses from a holding potential of -91 mV. The inward Ba(2+) currents were greatly reduced by 10 microM nifedipine (L-type Ca(2+) channel blocker). The Ba(2+) currents were inhibited by the external application of dopamine. The IC(50) for the inhibition was about 1 microM. Quinpirole (10 microM, a D2 dopamine agonist) also inhibited the Ba(2+) currents. Quinpirole did not affect the activation and inactivation kinetics of the Ba(2+) currents. The results suggest that dopamine modulates the L-type Ca(2+) channels in rat olfactory receptor neurons via the mechanism independent of voltage.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) is thought to regulate neuronal plasticity in developing and matured neurons, although the molecular mechanisms are less well characterized. We monitored changes in the intracellular calcium (Ca2+) levels induced by BDNF using a fluorescence Ca2+ indicator (Fluo-3) by means of confocal laser microscopy in rat cultured hippocampal neurons. BDNF acutely potentiated spontaneous Ca2+ oscillations in dendrites and also in the soma of several neurons, although it increased intracellular Ca2+ in only selective proportion of resting neurons without Ca2+ oscillations. The potentiation was observed both in the frequency and the amplitude of Ca2+ oscillations, completely blocked by K-252a, and significantly reduced by 2-aminophosphonovaleric acid. These findings suggest that BDNF increases glutamate release and N-methyl-

-aspartate (NMDA) channel-gated Ca2+ influx via TrkB and regulates the frequency and the amplitude of Ca2+ oscillations. BDNF may have the potential to modulate spontaneous Ca2+ oscillations to regulate neuronal plasticity in developing hippocampal neurons.  相似文献   

13.
In the present study, we have investigated the spatial and temporal distribution of voltage-gated calcium channels in the gerbil model of global cerebral ischemia using immunohistochemistry. Distinct localizations of P-type (α1A), N-type (α1B), and L-type (α1C and α1D) Ca2+ channels were observed in the hippocampus at days 1–5 after ischemic injury. However, increased expression of N-type Ca2+ channels was detectable in brain regions vulnerable to ischemia only at days 2 and 3 after ischemic injury. The pyramidal cell bodies of CA1-3 areas and the granule cell bodies of the dentate gyrus were intensely stained at days 2 and 3 following ischemic injury. Transient changes in N-type Ca2+ channel expression were also observed in the affected cerebral cortex and striatum at days 2 and 3 after ischemic injury. Although the present study has not addressed the multiple mechanisms contributing to the intracellular free Ca2+ concentration ([Ca2+]i) increase in the ischemic brain, the first demonstration of the transient increase in N-type Ca2+ channels may prove useful for future investigations.  相似文献   

14.
Aging is an important risk factor for stroke. We evaluated the effects of aging on cell susceptibility to oxygen and glucose deprivation (OGD) in slices of the hippocampus from Wistar rats aged 2, 11 and 24 months. Lactate dehydrogenase (LDH) released to the incubation media and free radical content were markedly increased in the 24-month group submitted to OGD. These results confirm that hippocampal tissue from old animals is more susceptible to ischemia-reoxygenation injury.  相似文献   

15.
Nicardipine is one of the 1,4-dihydropyridine derivatives known as blockers for the voltage-dependent Ca2+ channels in muscle cells. The effects of nicardipine on the neuronal functions were studied in several neuronal preparations including clonal rat pheochromocytoma (PC12) cells, rat brain synaptosomes and slices. Nicardipine failed to block the Ca2+-dependent action potentials and the after-spike hyperpolarizations evoked by intracellularly injected current pulses in rat pheochromocytoma cells, while the high K+- stimulated Ca2+ influx and ATP release were dose-dependently inhibited in the same cells. In rat cerebral synaptosomes and cortical slices, nicardipine showed no blockade on the high K+-stimulated Ca2+ influx and transmitter releases. It was then suggested that the voltage-dependent Ca2+ channels are polymorphic among tissues or even in a single cell from the viewpoint of dihydropyridine susceptibility.  相似文献   

16.
Quin2-acetoxymethylester (quin2/AM) (50 μM), administered directly to the motoneuronal pool of the frog spinal cord, could be loaded into the motoneuron as well as the other cells in the lumbar region. Depolarizing responses of the ventral root to l-glutamate in the quin2-loaded side persisted even after prolonged exposure to A23187 (2.0 μM), while the responses in the unloaded side were markedly reduced. Histologically confirmed neuronal cell loss from the motoneuronal pool induced by A23187 (2.0 μM) or by a high concentration of l-glutamate (10 mM) was prevented by pretreatment with quin2/AM. A23187- and l-glutamate-induced histological and functional damage in neuronal cells and the protective effects of quin2 on them provide further evidence for cell death due to Ca2+ overloading.  相似文献   

17.
To elucidate the mechanism of pHi changes induced by membrane depolarization, the variations in pHi and [Ca2+]i induced by a number of depolarizing agents, including high K+, veratridine, N-methyl-

-aspartate (NMDA) and ouabain, were investigated in rat hippocampal slices by the fluorophotometrical technique using BCECF or fura-2. All of these depolarizing agents elicited a decrease in pHi and an elevation of intracellular calcium ([Ca2+]i) in the CA1 pyramidal cell layer. The increases in [Ca2+]i caused by the depolarizing agents almost completely disappeared in the absence of Ca2+ (0 mM Ca2+ with 1 mM EGTA). In Ca2+ free media, pHi acid shifts produced by high K+, veratridine or NMDA were attenuated by 10–25%, and those produced by ouabain decreased by 50%. Glucose-substitution with equimolar amounts of pyruvate suppressed by two-thirds the pHi acid shifts induced by both high K+ and NMDA. Furthermore, lactate contents were significantly increased in hippocampal slices by exposure to high K+, veratridine or NMDA but not by ouabain. These results suggest that the intracellular acidification produced by these depolarizing agents, with the exception of ouabain, is mainly due to lactate accumulation which may occur as a result of accelerated glycolysis mediated by increased Na+–K+ ATPase activity. A Ca2+-dependent process may also contribute to the intracellular acidification induced by membrane depolarization. Since an increase in H+ concentration can attenuate neuronal activity, glycolytic acid production induced by membrane depolarization may contribute to the mechanism that prevents excessive neuronal excitation.  相似文献   

18.
To investigate whether lead (Pb2+) affects the tetrodotoxin (TTX)-sensitive release of neurotransmitters, the whole-cell mode of the patch-clamp technique was applied to cultured hippocampal neurons. Pb2+ (>/=10 nM) reversibly blocked the TTX-sensitive release of glutamate and gamma-aminobutyric acid (GABA), as evidenced by the reduction of the amplitude and frequency of glutamate- and GABA-mediated postsynaptic currents (PSCs) evoked by spontaneous neuronal firing. This effect of Pb2+, which occurred 2-3 s after exposure of the neurons to Pb2+-containing external solution, was not related to changes in Na+-channel activity, and was quantified by measurements of changes in the amplitude of PSCs evoked when a 50-micros, 5-V stimulus was applied via a bipolar electrode to a neuron synaptically connected to the neuron under study. With an IC50 of approximately 68 nM, Pb2+ blocked the evoked release of glutamate and GABA. This effect was most likely mediated by Pb2+'s actions on extracellular targets, because there was a very short delay (<3 s) for its onset, and it could be completely reversed by the chelator ethylene diaminetetraacetic acid (EDTA). Given that Pb2+-induced blockade of evoked transmitter release could be reversed by 4-aminopyridine, it is suggested that the effect on release was mediated via the binding of Pb2+ to voltage-gated Ca2+ channels. Thus, it is most likely that the neurotoxic effects of Pb2+ in the mammalian brain involve a decrease of the TTX-sensitive, Ca2+-dependent release of neurotransmitters.  相似文献   

19.
Results from experiments performed with permanent non-neuronal cell lines suggest that endoplasmic reticulum (ER) calcium homeostasis plays a key role in the control of protein synthesis (PS). It has been concluded that disturbances in ER calcium homeostasis may contribute to the suppression of PS triggered by a severe metabolic stress (W. Paschen, Med. Hypoth., 47 (1996) 283–288). To elucidate how an emptying of ER calcium stores of these cells would effect PS and ribosomal aggregation of non-transformed fully differentiated cells, experiments were run on primary neuronal cell cultures. ER calcium stores were depleted by treating cells with thapsigargin (TG, a selective, irreversible inhibitor of ER Ca2+-ATPase), cyclopiazonic acid (CPA, a reversible inhibitor of ER Ca2+-ATPase), or caffeine (an agonist of ER ryanodine receptor). Changes in intracellular calcium activity were evaluated by fluorescence microscopy using fura-2-loaded cells. Protein synthesis was determined by measuring the incorporation of [3H]leucine into proteins. The degree of aggregation of ribosomes was evaluated by electron microscopy. TG induced a permanent inhibition of PS to about 10% of control which was only partially reversed within 2 h of recovery. CPA caused about 70% inhibition of PS, and PS recovered completely 60 min after treatment. Caffeine produced an inhibition of PS to about 50% of control. Loading cells with the calcium chelator BAPTA-AM (33.3 μM) alone suppressed PS without reversing TG- or caffeine-induced inhibition of PS, indicating that the suppression of PS was caused by a depletion of ER calcium stores and not by an increase in cytosolic calcium activity. TG-treatment of cells induced a complete disaggregation of polysomes which was not reversed within the 4 h recovery period following TG-treatment. After caffeine treatment of cells, we observed a heterogeneous pattern of ribosomal aggregation: in some neurons ribosomes were almost completely aggregated while in other cells a significant portion of polyribosomes were disaggregated. The results indicate that a depletion of neuronal ER calcium stores disturbs protein synthesis in a similar way to the effects of transient forms of metabolic stress (ischemia, hypoglycemia or status epilepticus), thus implying that a disturbance in ER calcium homeostasis may contribute to the pathological process of stress-induced cell injury.  相似文献   

20.
Although cytosolic Ca2+ accumulation plays a pivotal role in delayed neuronal death, there have been no investigations on the role of the cellular Ca2+ export system in this novel phenomenon. To clarify the function of the Ca2+-pump in delayed neuronal death, the plasma membrane Ca2+-ATPase activity of CA1 pyramidal neurons was investigated ultracytochemically in normal and ischemic gerbil hippocampus. To correlate enzyme activity with delayed neuronal death, histochemical detection was performed at various recirculation times after 5 min of ischemia produced by occlusion of the bilateral carotid arteries. At 10 min after ischemia, CA1 pyramidal neurons showed weak Ca2+-ATPase activity. Although enzyme activity had almost fully recovered 2 h after ischemia, it was reduced again 6 h after ischemia. Thereafter, Ca2+-ATPase activity on the plasma membrance of CA1 pyramidal neurons decreased progressively, losing its localization on day 3. On day 4 following ischemia, reaction products were diffusely scattered throughout the whole cell body. Our results indicate that, after once having recovered from ischemic damage, severe disturbance of the membrane Ca2+ export system proceeds from the early stage of delayed neuronal death and disturbs the re-export of accumulated cytosolic Ca2+, which might contribute to delayed neuronal death. Occult disruption of Ca2+ homeostasis seems to occur from an extremely early stage of delayed neuronal death in CA1 pyramidal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号