首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sakaguchi H  Li R  Taniguchi I 《Neuroreport》2000,11(12):2727-2731
The two main song control nuclei in the forebrain of zebra finches, the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA), are sexually dimorphic at many levels of their neural circuitry. These nuclei receive their cholinergic innervation from the ventral paleostriatum (VP), which is homologous to portions of the mammalian basal forebrain. We compared the cholinergic neurons in the VP between the sexes using choline acetyltransferase (ChAT) immunohistochemistry. Both the size and density of the ChAT-immunoreactive somata in areas of the VP that project to the HVC or RA in males were significantly larger than those in females. These sex differences in the VP may be reflected in the sex differences of behaviors such as song perception and production.  相似文献   

2.
Auditory-vocal cholinergic pathway in zebra finch brain   总被引:1,自引:0,他引:1  
Li R  Zuo MX  Sakaguchi H 《Neuroreport》1999,10(1):165-169
The two main song control nuclei in the zebra finch forebrain, the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA), receive cholinergic innervation from the ventral paleostriatum (VP) of the basal forebrain which may play a key role in song learning. By injecting two kinds of neuroanatomical tracers, we found that a topographically segregated pathway from nucleus ovoidalis (Ov) and nucleus dorsomedialis posterior thalami (DMP) to VP and further to RA and HVC. Ov is known as a major relay in the main ascending auditory pathway. The results suggest that cholinergic neurons in the VP which are responsible for song learning are regulated by auditory information from the Ov.  相似文献   

3.
Song learning in the male zebra finch closely correlates with the development of song-control nuclei, the high vocal center (HVc), the robust nucleus of the archistriatum (RA) and the lateral magnocellular nucleus of the anterior neostriatum (IMAN). We previously found that acetylcholine (ACh) content increases transiently in the RA during the sensitive period of song learning. In the present experiment, development of cholinergic neurons by immunohistochemical methods using monoclonal choline acetyltransferase (ChAT) antibodies, and enzymic activity of ChAT and acetylcholinesterase (AChE) were examined in the RA during the sensitive period of song learning. The developmental change of ChAT activity in the RA was closely parallel to that of the ACh concentration. On the other hand, the density of ChAT-immunoreactive fibers changed little in the RA. This indicates that the transient increase of ACh content during the sensitive period is due to ChAT activity, but not to the increasing density of the cholinergic fibers. The ACh in the RA might be related to plastic changes in the synapse of RA neurons.  相似文献   

4.
Immunocytochemistry with antibodies against cholinacetyltransferase (ChAT) and the novel peptide galanin (GA) were conducted as a single label or as double label experiments on the basal forebrain nuclei of brains from eleven human subjects without prior history of neurological disease. ChAT positive or cholinergic neurons form the major population of cells in the basal nucleus of Meynert. A minor portion of these ChAT positive neurons demonstrate a coexistence with GA positive immunoreactivity suggesting that they are cholinergic/GA neurons. Small fusiform neurons with long dendrites and complex local axonal networks are GA immunoreactive and are local circuit interneurons. The cholinergic cells in the basal nucleus are innervated by a fine network of GA immunoreactive axons and terminals which enwrap their perikarya and dendrites. It is suggested that GA in local circuit interneurons may provide a significant control or modulation of the cholinergic neurons and of cholinergic functions within the basal nucleus. In human diseases which feature a destruction of the basal forebrain cholinergic neurons, surviving GA neurons may inhibit most remaining cholinergic neurons and their function, with severe consequences.  相似文献   

5.
The present study used histochemical methods to map the distributions of choline acetyl transferase (ChAT) and acetylcholinesterase (AChE) in the vocal control nuclei of a psittacine, the budgerigar (Melopsittacus undulatus). The distributions of ChAT and AChE in budgerigars appeared similar to that in oscine songbirds despite evidence that these systems have evolved independently. The magnicellular nucleus of the lobus parolfactorius in budgerigars, like the area X in songbirds, contained many ChAT labeled somata, fibers, and varicosities and stained densely for AChE. In contrast, the robust nucleus of the archistriatum (RA) and the supralaminar area of the frontal neostriatum in budgerigars, like the RA and the magnicellular nucleus of the neostriatum (MAN) in songbirds, respectively, contained few or no ChAT labeled somata, fibers, and varicosities and stained lightly for AChE. The central nucleus of the lateral neostriatum in budgerigars, like the higher vocal center (HVC) in songbirds, contained no ChAT labeled somata, moderate densities of ChAT labeled fibers and varicosities, and moderate levels of AChE staining. Two nuclei, the oval nucleus of the hyperstriatum ventrale (HVo) and the oval nucleus of the anterior neostriatum (NAo), contained no ChAT labeled somata, dense ChAT labeled fibers and varicosities, and moderate to high levels of AChE staining. The HVo and the NAo have no counterparts in songbirds but may be important vocal control nuclei in the budgerigar. Cholinergic enzymes are also described in other regions which may be involved in budgerigar vocal behavior, including the basal forebrain, the torus semicircularis, and the hypoglossal nuclei (nXII). © 1996 Wiley-Liss, Inc.  相似文献   

6.
The projections of basal forebrain neurons to the thalamus and the brainstem were investigated in cats and primates by using retrograde transport techniques and choline acetyltransferase (ChAT) immunohistochemistry. In a first series of experiments, the lectin wheat germ-agglutinin conjugated with horseradish peroxidase (WGA-HRP) was injected into all major sensory, motor, intralaminar, and reticular (RE) thalamic nuclei of cats and into the mediodorsal (MD) and pulvinar-lateroposterior thalamic nuclei of macaque monkeys. In cats numerous neurons of the vertical and horizontal limbs of the diagonal band nucleus and the substantia innominata (SI), including its rostromedial portion termed the ventral pallidum (VP), were retrogradely labeled after WGA-HRP injections in the rostral pole of the RE complex, the MD, and anteroventral/anteromedial (AV/AM) thalamic nuclei. Fewer retrogradely labeled cells were observed in the same areas after injections in the ventromedial (VM) thalamic nucleus, and none or very few after other thalamic injections. After RE, MD, and AV/AM injections, 7-20% of all retrogradely labeled cells in the basal forebrain were also ChAT positive, while none of the retrogradely labeled neurons following VM injections displayed ChAT immunoreactivity. The basal forebrain projection to the MD nucleus was shown to arise principally from VP in both cats and macaque monkeys. In a second series of experiments performed in cats, injections of WGA-HRP in the brainstem peribrachial (PB) area comprising the pedunculopontine nucleus led to retrograde labeling of a moderate number of neurons in the lateral part of the VP, SI, and preoptic area (POA), only a few of which displayed ChAT immunoreactivity. In addition, a large number of retrogradely labeled cells were observed in the bed nuclei of the anterior commissure and stria terminalis after PB injections. In a third series of experiments, the use of the retrograde double-labeling method with fluorescent tracers in squirrel monkeys allowed us to identify a significant number of basal forebrain neurons sending axon collaterals to both the RE thalamic nucleus and PB brainstem area, while no double-labeled neurons were disclosed after injections confined to the ventral anterior/ventral lateral (VA/VL) thalamic nuclei and PB area or following injections in the cerebral cortex and PB area. Our findings reveal the existence of cholinergic and noncholinergic basal forebrain projections to the thalamus and the brainstem in both cats and macaque monkeys. We suggest that these projections may play a crucial role in the control of thalamic functions in mammals.  相似文献   

7.
The organisation of the song control nuclei of the Australian magpie (Gymnorhina tibicen), a species with highly complex song, was investigated. In contrast to most of the songbirds studied so far, the Australian magpie sings throughout the year and both males and females sing. All of the forebrain song nuclei, including the high vocal centre (HVC), the robust nucleus of the archistriatum (RA), Area X and the lateral and medial magnocellular nuclei of the anterior neostriatum (lMAN and mMAN) were found to be well developed in both male and female magpies. Consistent with the known vocal competence of juvenile magpies, all of the song nuclei were also well-developed in juvenile magpies (2--3 months old). HVC in both male and female magpies consists of a rostrolateral and a caudomedial region. The ventromedial part of RA differs from the dorsolateral part by having medium-sized neurons packed in higher density. The HVC to RA projections were labelled anterogradely by DiI and DiA. However, no HVC to Area X projections were labeled by DiI or DiA, suggesting a possible difference from songbirds studied previously.  相似文献   

8.
Seki Y  Okanoya K 《Neuroreport》2008,19(6):679-682
The song control system of songbirds consists mainly of the 'motor pathway' and 'anterior forebrain pathway'. The medial magnocellular nucleus of anterior nidopallium (mMAN) projects to the song control nucleus HVC, which is the point of divergence of the two pathways. We made simultaneous multiunit electrophysiological recordings from the mMAN and HVC in anesthetized Bengalese finches. We confirmed that the mMAN neurons showed song-selective auditory responses, and found temporal correlations between song-related activities of the mMAN and HVC neurons. The temporal relationship between the neural activation of the HVC and mMAN suggests that these nuclei are parts of a closed loop, which could provide internal feedback to the HVC for sequential syllable control.  相似文献   

9.
Only birds that learn complex vocalizations have telencephalic brain regions that control vocal learning and production, including HVC (high vocal center), a cortical nucleus that encodes vocal motor output in adult songbirds. HVC projects to RA (robust nucleus of the arcopallium), a nucleus in motor cortex that in turn projects topographically onto hindbrain neurons innervating vocal muscles. Individual neurons projecting from HVC to RA (HVC(RA) ) fire sparsely to drive RA activity during song production. To advance understanding of how individual HVC neurons encode production of learned vocalizations, we reconstructed single HVC axons innervating RA in adult male zebra finches. Individual HVC(RA) axons were not topographically organized within RA: 1) axon arbors of HVC cell bodies located near each other sent branches to different subregions of RA, and 2) branches of single HVC axons terminated in different locations within RA. HVC(RA) axons also had a simple, sparse morphology, suggesting that a single HVC neuron activates a limited population of postsynaptic RA neurons. These morphological data are consistent with previous work showing that single HVC(RA) neurons burst sparsely for a brief period of time during the production of a song, indicating that ensembles of HVC(RA) neurons fire simultaneously to drive small temporal segments of song behavior. We also examined the morphology of axons projecting from HVC to RA cup, a region surrounding RA that receives input from auditory cortex. Axons projecting to RA cup also sent some branches into RA, suggesting direct integration between the sensory and motor circuits for song control.  相似文献   

10.
Neurons are produced in the adult canary telencephalon. Many of these cells are incorporated into the high vocal center (nucleus HVC), which participates in the control of learned song. In the present work, 3H-thymidine and fluorogold were employed to follow the differentiation and survival of HVC neurons born in adulthood. We found that many HVC neurons born in September grow long axons to the robust nucleus of the archistriatum (nucleus RA) and thus become part of the efferent pathway for song control. Many of these new neurons have already established their connections with RA by 30 d after their birth. By 240 d, 75-80% of the September-born HVC neurons project to RA. Most of these new projection neurons survive at least 8 months. The longevity of HVC neurons born in September suggests that these cells remain part of the vocal control circuit long enough to participate in the yearly renewal of the song repertoire.  相似文献   

11.
The distribution of choline acetyltransferase immunoreactivity (ChAT-IR) was surveyed in the vocal motor system of adult male and female zebra finches and was compared with the pattern of histochemical acetylcholinesterase (AChE-His). In the vocal motor system the most prominent accumulation of ChAT-IR somata was found in lobus parolfactorius (LPO) including Area X. Immunoreactive neuropil was found to be concentrated in pericellular networks of fibers in male's Area X while the corresponding area in females could not be demarcated within the LPO. The density of ChAT-IR fiber networks was much higher in LPO, paleostriatum augmentatum and in a shelf region around nucleus robustus archistriatalis (RA) than in neostriatal and hyperstriatal parts of the telencephalon. AChE positive neurons and neuropil were observed in all ChAT-IR regions and, in addition, in the vocal motor nuclei nucleus hyperstriatum ventrale pars caudalis (HVc), nucleus magnocellularis in the anterior neostriatum (MAN), nucleus interfacialis (NIF) and RA. However, none of the latter nuclei contained ChAT-IR cell bodies. They were characterized by rare ChAT-IR neuropil. MAN and RA exhibited shelf regions with a higher degree of stained fibers. The discrepancy between the localization of AChE-His and ChAT-IR can hardly be explained by different classes of ChAT isoenzymes in neurons within the basal forebrain and the neostriatal, hyperstriatal and archistriatal vocal control nuclei not detected by our antibody. On the other hand, vocal control centers while receiving cholinergic inputs, might - except for Area X - not possess cholinergic efferent projections within the telencephalon.  相似文献   

12.
Songbirds have a complex vocal repertoire, much of which is learned by imitation. The vocal motor system of songbirds includes a set of telencephalic pathways dedicated to the acquisition and production of learned song. The main vocal motor pathway goes from the high vocal center (HVC) to the robust nucleus of the archistriatum (RA), which in turn innervates mesencephalic and medullary nuclei involved in vocalization. We used neural tract tracers (biotinylated dextran amines, fluorescein- and rhodamine-linked dextran amines, and Fluorogold) to show that RA of adult male canaries (Serinus canaria) and zebra finches (Taeniopygia guttata) sends an ipsilateral projection to the posterior portion of the dorsomedial thalamic nucleus (DMP). DMP projects to the medial portion of the magnocellular nucleus of the anterior neostriatum (mMAN), which is known to project to HVC, forming a feedback circuit. We also observed that the projection from DMP to mMAN is bilateral. Extracellular multi-unit recordings from awake restrained subjects have demonstrated that mMAN has auditory responses that are selective for the bird's own song. These auditory responses are similar to responses recorded simultaneously in HVC, but with a longer latency, suggesting that mMAN receives auditory information from HVC through the circuit we have described. We also saw a weaker projection from RA to the medial part of the dorsolateral nucleus of the thalamus (DLM), which is known to project to the lateral portion of the magnocellular nucleus of the anterior neostriatum (lMAN). lMAN is known to project to RA, completing yet another feedback circuit; lMAN is also part of the anterior forebrain pathway, which plays an essential role in song learning. These thalamo-telencephalic circuits are similar to thalamo-cortical circuits found in mammalian motor systems, and we suggest that the signals carried by these loops may be important for song perception, song learning, song production, and/or the bilateral coordination of vocal motor commands. J. Comp. Neurol. 380:275–290, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
In many songbirds, vocal learning‐related cellular plasticity was thought to end following a developmental critical period. However, mounting evidence in one such species, the zebra finch, suggests that forms of plasticity common during song learning continue well into adulthood, including a reliance on auditory feedback for song maintenance. This reliance wanes with increasing age, in tandem with age‐related increases in fine motor control. We investigated age‐related morphological changes in the adult zebra finch song system by focusing on two cortical projection neuron types that 1) share a common efferent target, 2) are known to exhibit morphological and functional change during song learning, and 3) exert opposing influences on song acoustic structure. Neurons in HVC and the lateral magnocellular nucleus of the anterior nidopallium (LMAN) both project to the robust nucleus of the arcopallium (RA). During juvenile song learning and adult song maintenance, HVC promotes song syllable stereotypy, whereas LMAN promotes learning and acoustic variability. After retrograde labeling of these two cell types in adults, there were age‐related increases in dendritic arbor in HVC‐RA but not LMAN‐RA neurons, resulting in an increase in the ratio of HVC‐RA:LMAN‐RA dendritic arbor. Differential growth of HVC relative to LMAN dendrites may relate to increases in song motor refinement, decreases in the reliance of song on auditory feedback, or both. Despite this differential growth with age, both cell types retain the capacity for experience‐dependent growth, as we show here. These results may provide insights into mechanisms that promote and constrain adult vocal plasticity. J. Comp. Neurol. 520:3673–3686, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The cholinergic innervation of the interpeduncular nucleus was investigated by use of fluorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) pharmacohistochemistry. Following propidium iodide or Evans Blue infusion into the interpeduncular nucleus, brains were processed for co-localization of transported fluorescent label and ChAT and AChE. Control infusions of tracers were made into the ventral tegmental area. In order to delimit the course of putative cholinergic afferents to the interpeduncular nucleus from extra-habenular sources, knife cuts surrounding the habenular nuclei were performed. Somata containing propidium iodide that were highly immunoreactive for ChAT were found primarily in the vertical and horizontal limbs of the diagonal band, the magnocellular preoptic area, and the dorsolateral tegmental nucleus, also referred to as the laterodorsal tegmental nucleus. A few such co-labeled somata were also detected in the medial septal nucleus, substantia innominata, nucleus basalis, and pedunculopontine tegmental nucleus. A good correlation was observed between intensely-staining, AChE-containing and ChAT-positive neurons projecting to the interpeduncular nucleus from the aforementioned structures. Although the medial habenula contained numerous cells demonstrating transported label following interpeduncular infusion of fluorescent tracers, the ChAT-positivity associated with somata in that nucleus was weak compared to ChAT-like immunoreactivity in known cholinergic neurons in the basal forebrain and brainstem. Knife cuts that separated the habenular nuclei from the stria medullaris and neural regions lateral and posterior to those nuclei while leaving the fasciculus retroflexus intact resulted in a reduction of ChAT-like immunoreactivity in the medial habenular nucleus, fasciculus retroflexus, and interpeduncular nucleus. These data suggest (1) that the cholinergic innervation of the interpeduncular nucleus derives primarily from ChAT-positive cells in the basal forebrain and dorsolateral tegmental nucleus and (2) that putative cholinergic fibers having their origin in the medial habenula, if they exist, constitute a minor portion of the cholinergic input to the interpeduncular nucleus.  相似文献   

15.
The nucleus basalis magnocellularis (NBM) contains cholinergic neurons that project to the neocortex and is densely innervated by excitatory amino acid-containing terminals. A dysfunction in the balance of excitatory inputs or an alteration in the sensitivity of NBM cells to glutamate may underlie the selective vulnerability to aging. Some large NBM neurons contain neurokinin B (NKB) mRNA. The present study investigated whether α-2-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) orN-methyl-d-aspartate (NMDA) differentially destroy NKB-containing, NKB-receptive, or cholinergic NBM cells, and whether this vulnerability is altered by aging. Injections of AMPA or NMDA significantly decreased neocortical ChAT activity, as compared to control levels, across all three age groups, with no interaction between lesion and age group. The results of in situ hybridization histochemistry and NKB receptor studies suggest that NKB-containing neurons in the NBM, and the neurons they innervate, are not vulnerable to NMDA or AMPA in either young or old rats. While NKB mRNA-positive cells were diffusely distributed throughout the basal forebrain, only a small proportion of the large NBM cells contained NKB mRNA. The results suggest that NKB does not extensively colocalize with acetylcholine within the basal forebrain of rats and that NBM NKB neurons do not directly innervate cholinergic cells.  相似文献   

16.
The avian high vocal center (HVC) is a complex forebrain nucleus that coordinates the sensorimotor integration necessary for song learning and production. It receives auditory and potentially somatosensory input, and sends major projections to vocal motor and anterior forebrain nuclei. The HVC has at least four morphological classes of neurons for which the connectivity remains uncertain. Previous studies have alluded to the functional identity of the cell classes, but none have provided the definitive evidence necessary for subsequent identification of behaviorally relevant changes within known neuronal populations. The cell filling technique we have adapted for use in the song system provides a method by which hodologically identified classes can be described with precision, and song related changes in their morphology can be readily identified. Neurons in female canaries (Serinus canarius) that project to Area X of the anterior forebrain pathway were retrogradely labeled, selectively filled with Lucifer Yellow in a fixed slice preparation, and converted to a Golgi-like stain through an immunocytochemical reaction. We have identified Area X-projecting neurons as belonging to the thick dendrite class of Nixdorf et al. [B.E. Nixdorf, S.S. Davis, T.J. DeVoogd, Morphology of golgi-impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries, J. Comp. Neurol. 284 (1989) 337–349] and have shown definitively that they are among the HVC neurons that can receive direct auditory input, as this cell class has short dendrites that extend into the shelf region ventral to HVC that is known to receive auditory inputs. Well-filled axons had collaterals that ramified and terminated within the nucleus, demonstrating a network through which Area X-projecting cells can contribute to intrinsic HVC communication.  相似文献   

17.
The postnatal development of cholinergic projection and local-circuit neurons in the rat forebrain was examined by use of choline acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) histochemistry. Although regional nuances were apparent, a general trend emerged in which cholinergic projection neurons in the basal nuclear complex (i.e., medial septal nucleus, vertical and horizontal diagonal band nuclei, magnocellular preoptic field, substantia innominata, nucleus basalis, and nucleus of the ansa lenticularis) demonstrated ChAT-like immunoreactivity earlier in postnatal development than intrinsically organized cholinergic cells in the caudate-putamen nucleus and nucleus accumbens, although this disparity was less apparent for local circuit neurons in the olfactory tubercle and Islands of Calleja complex. Ontologic gradients of enzyme expression also existed in some regions. A lateral to medial progression of ChAT and AChE appearance was observed as a function of increasing postnatal age in the nucleus accumbens and rostral caudate-putamen nucleus. By comparison, a rostrocaudal gradient of expression of ChAT-like immunoreactivity was apparent within the basal nuclear complex. Moderate to intense ChAT positivity, for example, appeared first in the medial septal nucleus. Furthermore, compared to more caudal regions, a greater proportion of AChE-positive neurons in rostral aspects of the basal forebrain expressed ChAT immunoreactivity on postnatal day 1, a difference that was no longer present by postnatal day 5. Cholinergic neurons in all forebrain regions also underwent an initial stage of progressive soma and proximal-dendrite hypertrophy, which peaked during the third postnatal week, followed by a period of cell-body and dendritic shrinkage that persisted into the fifth postnatal week when adult configurations were reached. These soma and dendritic size increases and decreases were not correlated with the magnitude of postnatal ChAT expression, which increased progressively until adult levels were attained approximately by the third to fifth weeks after birth. Expression of AChE in putative cholinergic neurons appeared to precede that of ChAT, especially in the caudate-putamen complex. Staining intensity of AChE also incremented earlier than that of ChAT.  相似文献   

18.
Administration of the neuroactive steroid hormone estrogen has been shown to effect cholinergic basal forebrain neuronal function. Antibodies directed against the estrogen receptor alpha (ERalpha) revealed dark (type 1) and light (type 2) nuclear positive neurons within the islands of Calleja, endopiriform nucleus, lateral septum, subfields of the cholinergic basal forebrain, bed nucleus of the stria terminalis, striohypothalamic region, medial preoptic region, periventricular, ventromedial, arcuate and tuberal mammillary nuclei of the hypothalamus, reuniens and anterior medial thalamic nuclei, amygdaloid complex, piriform cortex and subfornical organ. In contrast, only a few scattered ERalpha labeled neurons were found in cortex and hippocampus. ERalpha stained cell bodies were not seen in the striatum. Counts of ERalpha labeled neurons in intact female rats revealed significantly more type 2 neurons within the basal forebrain subfields. Quantitation of ERalpha immunoreactive neurons revealed a significant decrease in the relative number of type 1 neurons within the medial septum (MS), horizontal limb of the diagonal band (HDB) and substantia innominata/nucleus basalis (SI/NB) following ovariectomy. Quantitation following choline acetyltransferease (ChAT) immunohistochemistry revealed a significant decrease in the number of ChAT positive neurons within the MS, HDB and SI/NB, but not VDB following ovariectomy. Following ovx, the percentage of double labeled cholinergic basal forebrain neurons also declined significantly within the MS, VDB, HDB and SI/NB. These observations suggest that estrogen effects a subpopulation of cholinergic basal forebrain neurons and may provide insight into the biologic actions of this steroid in Alzheimer's disease.  相似文献   

19.
New neurons are added to the forebrain song control regions high vocal center (HVC) and Area X of juvenile songbirds but the identity and site of origin of these cells have not been fully characterized. We used oncoretroviral vectors to genetically label neuronal progenitors in different regions of the zebra finch lateral ventricle. A region corresponding to the mammalian medial and lateral ganglionic eminences generated medium spiny neurons found in Area X and in the striatum surrounding Area X, and at least two classes of interneurons found in HVC. In addition, our experiments indicate that the HVC projection neurons that project into nucleus robust nucleus of the arcopallium (RA) are born locally from the ventricular region immediately dorsal to HVC. The ability to genetically target neuron subpopulations that give rise to different song system cell types provides a tool for specific genetic manipulations of these cell types. In addition, our results suggest striking similarities between neurogenesis in the embryonic mammalian brain and in the brain of the juvenile songbird and provide further evidence for the existence of conserved cell types in the forebrain for birds and mammals.  相似文献   

20.
Nerve growth factor (NGF) is a neuronotrophic protein. Its effects on developing peripheral sensory and sympathetic neurons have been extensively characterized, but it is not clear whether NGF plays a role during the development of central nervous system neurons. To address this point, we examined the effect of NGF on the activity of neurotransmitter enzymes in several brain regions. Intracerebroventricular injections of highly purified mouse NGF had a marked effect on the activity of choline acetyltransferase (ChAT), a selective marker of cholinergic neurons. NGF elicited prominent increases in ChAT activity in the basal forebrain of neonatal rats, including the septum and a region which contains neurons of the nucleus basalis and substantia innominata. NGF also increased ChAT activity in the hippocampus and neocortex, terminal regions for the fibers of basal forebrain cholinergic neurons. In analogy with the response of developing peripheral neurons, the NGF effect was shown to be selective for basal forebrain cholinergic cells and to be dose-dependent. Furthermore, septal neurons closely resembled sympathetic neurons in the time course of their response to NGF. These observations suggest that endogenous NGF does play a role in the development of basal forebrain cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号