首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2015,33(1):108-116
In 2013, avian H7N9 influenza viruses were detected infecting people in China resulting in high mortality. Influenza H7 vaccines that provide cross-protection against these new viruses are needed until specific H7N9 vaccines are ready to market. In this study, an available H7N3 cold-adapted, temperature sensitive, live attenuated influenza vaccine (LAIV) elicited protective immune responses in ferrets against H7N9 viruses. The H7N3 LAIV administered alone (by intranasal or subcutaneous administration) or in a prime-boost strategy using inactivated H7N9 virus resulted in high HAI titers and protected 100% of the animals against H7N9 challenge. Naïve ferrets passively administered immune serum from H7N3 LAIV infected animals were also protected. In contrast, recombinant HA protein or inactivated viruses did not protect ferrets against challenge and elicited lower antibody titers. Thus, the H7N3 LAIV vaccine was immunogenic in healthy seronegative ferrets and protected these ferrets against the newly emerged H7N9 avian influenza virus.  相似文献   

2.
《Vaccine》2016,34(6):744-749
Since the first case of human infection in March 2013, continued reports of H7N9 cases highlight a potential pandemic threat. Highly immunogenic vaccines to this virus are urgently needed to protect vulnerable populations who lack protective immunity. In this study, an egg- and adjuvant-independent adenoviral vector-based, hemagglutinin H7 subtype influenza vaccine (HAd-H7HA) demonstrated enhanced cell-mediated immunity as well as serum antibody responses in a mouse model. Most importantly, this vaccine provided complete protection against homologous A/H7N9 viral challenge suggesting its potential utility as a pandemic vaccine.  相似文献   

3.

Background

Serum antibody to the hemagglutinin (HA) surface protein of influenza virus induced by influenza vaccination is a correlate of protection against influenza. The neuraminidase (NA) protein is also on the surface of the virus; antibody to it has been shown to impair virus release from infected cells and to reduce the intensity of influenza infections in animal models and in humans challenged with infectious virus. Recently we have shown that NA inhibiting antibody can independently contribute to immunity to naturally-occurring influenza immunity in the presence of antibody to the HA.

Purpose

The present study was conducted to evaluate induction of antibody to the NA and the HA by commercially available influenza vaccines.

Methods

Healthy young adults were vaccinated with one of five commercially available trivalent inactivated vaccines or live influenza vaccine. Frequencies of serum antibody and fold geometric mean titer (GMT) increases four weeks later were measured to each of the three vaccine viruses (A/H1N1, A/H3N2, B) in hemagglutination-inhibition (HAI) and neutralization (neut) assays. Frequency and fold GMT increase in neuraminidase-inhibition (NI) antibody titers were measured to the influenza A viruses (A/H1N1, A/H3N2).

Results

No significant reactogenicity occurred among the vaccinated subjects. The Fluvirin inactivated vaccine induced more anti-HA antibody responses and a higher fold GMT increase than the other inactivated vaccines but there were no major differences in response frequencies or fold GMT increase among the inactivated vaccines. Both the frequency of antibody increase and fold GMT increase were significantly lower for live vaccine than for any inactivated vaccine in HAI and neut assays for all three vaccine viruses. Afluria inactivated vaccine induced more N1 antibody and Fluarix induced more N2 antibody than the other vaccines but all inactivated vaccines induced serum NI antibody. The live vaccine failed to elicit any NI responses for the N2 NA of A/H3N2 virus and frequencies were low for the N1 of A/H1N1 virus.

Conclusions

Trivalent inactivated influenza vaccines with similar HA dosage induce similar serum anti-HA antibody responses in healthy adults. Current inactivated vaccines all induce serum anti-NA antibody to the N1 and N2 NA proteins but some are better than others for N1 or N2. The live vaccine, Flumist, was a poor inducer of either anti-HA or anti-NA serum antibody compared to inactivated vaccine in the healthy adults. In view of the capacity for contributing to immunity to influenza in humans, developing guidelines for NA content and induction of NA antibody is desirable.  相似文献   

4.
Development of H7N7 highly pathogenic avian influenza virus (HPAIV) vaccines is an urgent issue since human cases of infection with this subtype virus have been reported and most humans have no immunity against H7N7 viruses. We made an H7N7 vaccine combining components from an influenza virus library of non-pathogenic type A influenza viruses. Antibody and T cell recall responses specific against the vaccine strain were elicited by subcutaneous inoculation with the whole virus particle vaccine with or without alum as an adjuvant in cynomolgus macaques. No significant difference was observed in magnitude of antibody responses between vaccination with alum and vaccination without alum, though vaccination with alum induced longer recall responses of CD8+ T cells than did vaccination without alum. After challenge with a subtype of H7N7 HPAIV, the virus was detected in nasal swabs of unvaccinated macaques for 8 days but only for 1 day in the animals vaccinated either with or without alum, although the macaques vaccinated with alum showed elevated body temperature more briefly after infection. These findings demonstrated that this H7N7 HPAIV strain is pathogenic to macaques and that the vaccine conferred protective immunity to macaques against H7N7 HPAIV infection.  相似文献   

5.
Highly pathogenic avian influenza viruses of the H5N1 subtype are responsible for an increasing number of infections in humans since 2003. More than 60% of the infections is lethal and new infections are reported frequently. In the light of the pandemic threat caused by these events the rapid availability of safe and effective vaccines is desirable. Modified vaccinia virus Ankara (MVA) expressing the HA gene of an influenza A/H5N1 virus is a promising candidate vaccine that induced protective immunity against infection with homologous and heterologous influenza A/H5N1 viruses in mice. We also evaluated the recombinant MVA vector expressing the HA of influenza A/H5N1 virus A/Vietnam/1194/04 (MVA-HA-VN/04) in non-human primates. Cynomolgus macaques were immunized twice and then challenged with influenza virus A/Vietnam/1194/04 (clade 1) or A/Indonesia/5/05 (clade 2.1) to assess the level of protective immunity. Immunization with MVA-HA-VN/04 induced (cross-reactive) antibodies and prevented virus replication in the upper and lower respiratory tract and the development of severe necrotizing bronchointerstitial pneumonia. Therefore MVA-HA-VN/04 is a promising vaccine candidate for the induction of protective immunity against highly pathogenic avian influenza A/H5N1 viruses.  相似文献   

6.
《Vaccine》2021,39(33):4628-4640
Current influenza vaccines rely on inducing antibody responses to the rapidly evolving hemagglutinin (HA) and neuraminidase (NA) proteins, and thus need to be strain-matched. However, predictions of strains that will circulate are imperfect, and manufacturing of new vaccines based on them takes months. As an alternative, universal influenza vaccines target highly conserved antigens. In proof of concept studies of universal vaccine candidates in animal models challenge is generally conducted only a short time after vaccination, but protective immunity lasting far longer is important for the intended public health impact. We address the challenge of providing long-term protection. We demonstrate here broad, powerful, and long-lasting immune protection for a promising universal vaccine candidate. A single intranasal dose of recombinant adenoviruses (rAd) expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) was used. Extending our previous studies of this type of vaccine, we show that antibody and T-cell responses persist for over a year without boosting, and that protection against challenge persists a year after vaccination and remains broad, covering both group 1 and 2 influenza A viruses. In addition, we extend the work to influenza B. Immunization with influenza B nucleoprotein (B/NP)-rAd also gives immune responses that last a year without boosting and protect against challenge with influenza B viruses of mismatched HA lineages. Despite host immunity to adenoviral antigens, effective readministration is possible a year after primary vaccination, as shown by successful immunization to a transgene product the animals had not seen before. Protection against challenge with divergent and highly pathogenic A/H7N9 virus was weaker but was enhanced by a second dose of vaccine. Thus, this mucosal vaccination to conserved influenza antigens confers very long-lasting immune protection in animals against a broad range of influenza A and B viruses.  相似文献   

7.
Park KS  Seo YB  Lee JY  Im SJ  Seo SH  Song MS  Choi YK  Sung YC 《Vaccine》2011,29(33):5481-5487
Most influenza vaccines target hemagglutinin (HA) in order to protect the host against infection. However, theses vaccines are strain-specific due to major antigenic variations of HA. Since it is difficult to predict epidemic and pandemic strains of influenza virus, the development of effective vaccines against divergent influenza viruses is urgently needed. Although M2e-based vaccines are associated with weaker protection than HA-based vaccines that induce neutralizing antibodies against challenge virus matched-strain, the extracellular domain of Matrix 2 protein (M2e) is one of a potential broad-spectrum immunogen because it contains highly conserved sequences among influenza A viruses. In this study, M2e sequence was fused to H1N1 HA DNA (M2e-HA) and the immunogenicity and antiviral efficacy of this DNA vaccine was evaluated in response to challenge with a heterosubtypic H5N2 avian influenza virus. Compared to vaccination with HA or M2e DNA alone, vaccination with M2e-HA DNA or combination of M2e DNA and HA DNA (M2e DNA + HA DNA) induced a broad immunity without evidence of immune interference. In addition, HA-specific CD8+ and M2e-specific T cell responses elicited by M2e-HA DNA vaccination were significantly higher than those of HA or M2e DNA vaccine alone, respectively. Following challenge with a heterosubtypic influenza virus infection, vaccination with M2e-HA DNA conferred complete protection against mortality. In combination, these results suggest that DNA vaccines expressing a fusion protein, M2e-HA, may provide an attractive approach for the development of broad-spectrum influenza vaccines.  相似文献   

8.
The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components.  相似文献   

9.
Antibody to the neuraminidase (NA) antigen of influenza viruses has been shown to correlate with immunity to influenza in humans and animal models. In a previous report, we showed that an inactivated influenza vaccine containing 60 μg of the hemagglutinin (HA) of each strain induced significantly more serum anti-HA antibody among elderly persons than did the standard vaccine containing 15 μg of the HA of each component. We developed a lectin-based assay for anti-NA antibody and used it to measure anti-NA antibody responses among subjects who had participated in that study. The high dosage vaccine contained eight times as much NA activity as the standard vaccine and induced a significantly higher frequency of antibody responses and higher mean postvaccination anti-NA titers to the N1 and N2 of the A/H1N1 and A/H3N2 viruses in the vaccines than did the standard vaccine. Ensuring an increased antibody response to the NA antigen in inactivated influenza virus vaccines should increase the protection against influenza. An increased quantity of the NA antigen in the vaccine will ensure an increased response.  相似文献   

10.
After recent emergence of new avian influenza A(H7N9) viruses in humans many people and Governments are asking about H7 influenza vaccine which could provide cross-protection against new viruses, until H7N9 vaccine is prepared from a relevant strain. Here we scientifically justify that available H7N3 live attenuated influenza vaccine (LAIV) can be protective against H7N9 viruses due to the presence of conserved immune epitopes in its hemagglutinin. We used Immune Epitope Database analysis resource to predict B-cell and CTL epitopes distributed across H7N3 HA molecule and assessed their identity with new H7N9 viruses at near 70% and 60% of the epitopes, respectively. In addition, we tested serum samples of volunteers participated in phase I clinical trial of H7N3 LAIV for the presence of anti-H7N9 hemagglutination-inhibition and neutralizing antibodies and found seroconversions in 44.8% of vaccinated persons, which suggests the potential of H7N3 LAIV to protect against new H7N9 avian influenza viruses.  相似文献   

11.
Wang S  Parker C  Taaffe J  Solórzano A  García-Sastre A  Lu S 《Vaccine》2008,26(29-30):3626-3633
The trivalent inactivated vaccine (TIV) is used to prevent seasonal influenza virus infection in humans, however, the immunogenicity of this vaccine may be influenced by the priming effect of previous influenza vaccinations or exposure to antigenically related influenza viruses. The current study examines the immunogenicity of a clinically licensed TIV in rabbits na?ve to influenza antigens. Animals were immunized with either the licensed TIV, a bivalent (H1 and H3) HA DNA vaccine or the combination of both. Temporal and peak level serum anti-influenza virus IgG responses were determined by enzyme-linked immunosorbent assay (ELISA). Functional antibody responses were measured by hemagglutination inhibition and microneutralization against either A/NewCaledonia//20/99 (H1N1) or A/Panama/2007/99 (H3N2) influenza viruses. Our results demonstrate that the immunogenicity of the TIV is low in sero-negative animals. More significantly, the heterologous DNA prime-TIV boost regimen was more immunogenic than the homologous prime-boost using either TIV or DNA vaccines alone. This finding justifies further investigation of HA DNA vaccines as a priming immunogen for the next generation of vaccines against seasonal or pandemic influenza virus infections.  相似文献   

12.
《Vaccine》2020,38(6):1286-1290
The H9N2 avian influenza viruses cause significant economic losses in poultry worldwide and could potentially cause human pandemic. Currently, the available vaccines have limited efficacy due to antigenic drift of H9N2. To improve vaccine efficacy, we developed monovalent vaccine strain via the modification of neutralizing epitopes on hemagglutinin (HA) to broaden the protection against H9N2 viruses. In this study, single and multiple mutation were introduced to amino acid at position 148, 150 (site I) and 183, 186, 188 (site II) on the full-length HA gene of H9N2 strain (A/Hong Kong/33982/2009). These mutant HA constructs were displayed on the baculovirus surface (BacH9), and evaluated for their cross-protective efficacy against H9N2 viruses in a mouse model. Our findings indicate that mice immunized with multiple BacH9 mutant constructs (148–150 183 and 186) induced cross-protective immunity against circulating H9N2 in the viral challenge study and prove to be a promising vaccine candidate for H9N2.  相似文献   

13.
《Vaccine》2019,37(47):7117-7122
In recent years, cell-based influenza vaccines have gained a great interest over the egg-based vaccines. Several inactivated H7N9 vaccines have been evaluated in clinical trials, including whole-virion vaccines, split vaccines and subunit vaccines. Recently, we developed a new suspension MDCK (sMDCK) cell line for influenza viruses production. However, the properties of purified antigen from sMDCK cells remain unclear. In this study, the stability of influenza H7N9 vaccine bulk derived from sMDCK cells was investigated, and the data were compared with the vaccine antigen derived from our characterized adhesion MDCK (aMDCK) cells in serum-free medium. The influenza H7N9 bulks derived from sMDCK and aMDCK cells were stored at 2–8 °C for different periods of time, and a number of parameters selected to monitor the H7N9 vaccine antigen stability were evaluated at each interval (1, 3 and 12 months). The monitored parameters included virus morphology, hemagglutinin (HA) activity, HA concentration, antigenicity, and immunogenicity. The sMDCK-derived H7N9 bulk showed similar morphology to that of the aMDCK-derived H7N9 bulk, and there were no obvious changes after the extended storage periods. Furthermore, the HA titer, HA concentration, and antigenicity of sMDCK-derived H7N9 bulk were stable after 28 months of storage. Finally, the results of hemagglutination inhibition and neutralization tests showed that sMDCK- and aMDCK-derived H7N9 vaccines had comparable immunogenicity. These results indicated that sMDCK-derived H7N9 bulk has good stability compared to that of aMDCK-derived H7N9 bulk. Thus, the newly developed suspension MDCK cell line shows a great alternative for manufacturing cell-based influenza vaccines.  相似文献   

14.
《Vaccine》2019,37(37):5567-5577
Seasonal influenza virus infections cause significant morbidity and mortality every year. Annual influenza virus vaccines are effective but only when well matched with circulating strains. Therefore, there is an urgent need for better vaccines that induce broad protection against drifted seasonal and emerging pandemic influenza viruses. One approach to design such vaccines is based on targeting conserved regions of the influenza virus hemagglutinin. Sequential vaccination with chimeric hemagglutinin constructs can refocus antibody responses towards the conserved immunosubdominant stalk domain of the hemagglutinin, rather than the variable immunodominant head. A complementary approach for a universal influenza A virus vaccine is to induce T-cell responses to conserved internal influenza virus antigens. For this purpose, replication deficient recombinant viral vectors based on Chimpanzee Adenovirus Oxford 1 and Modified Vaccinia Ankara virus are used to express the viral nucleoprotein and the matrix protein 1. In this study, we combined these two strategies and evaluated the efficacy of viral vectors expressing both chimeric hemagglutinin and nucleoprotein plus matrix protein 1 in a mouse model against challenge with group 2 influenza viruses including H3N2, H7N9 and H10N8. We found that vectored vaccines expressing both sets of antigens provided enhanced protection against H3N2 virus challenge when compared to vaccination with viral vectors expressing only one set of antigens. Vaccine induced antibody responses against divergent group 2 hemagglutinins, nucleoprotein and matrix protein 1 as well as robust T-cell responses to the nucleoprotein and matrix protein 1 were detected. Of note, it was observed that while antibodies to the H3 stalk were already boosted to high levels after two vaccinations with chimeric hemagglutinins (cHAs), three exposures were required to induce strong reactivity across subtypes. Overall, these results show that a combinations of different universal influenza virus vaccine strategies can induce broad antibody and T-cell responses and can provide increased protection against influenza.  相似文献   

15.
The development of safe and effective vaccines for avian influenza viruses is a priority for pandemic preparedness. Adjuvants improve the efficacy of vaccines and may allow antigen sparing during a pandemic. We have previously shown that influenza virus-like particles (VLPs) comprised of HA, NA, and M1 proteins represent a candidate vaccine for avian influenza H9N2 virus [Pushko P, Tumpey TM, Fang Bu, Knell J, Robinson R, Smith G. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 2005;23(50):5751-9]. In this study, an H9N2 VLP vaccine and recombinant HA (rH9) vaccine were evaluated in three animal models. The H9N2 VLP vaccine protected mice and ferrets from challenge with A/Hong Kong/1073/99 (H9N2) virus. Novasome adjuvant improved immunogenicity and protection. Positive effect of the adjuvant was also detected using the rH9 vaccine. The results have implications for the development of safe and effective vaccines for avian influenza viruses with pandemic potential.  相似文献   

16.
Kodihalli S  Kobasa DL  Webster RG 《Vaccine》2000,18(23):2592-2599
The cross-species transfer of a H5N1 influenza virus from birds to humans, and the systemic spread of this virus in mice, has accelerated the efforts to devise protective strategies against lethal influenza viruses. DNA vaccination with the highly conserved nucleoprotein gene appears to provide cross protection against influenza A viruses in murine models. Whether such vaccines would protect human hosts against different influenza A viruses, including strains with pandemic potential, is unclear. Our aim in this study is to evaluate the ability of a combination DNA vaccine consisting of two plasmids encoding the HA genes from two different subtypes and a DNA vaccine encoding the viral nucleoprotein gene from a H5 virus to induce protection against highly lethal infection caused by H5 and H7 influenza viruses in chickens. Chickens given a single dose of plasmids expressing H5 and H7 hemagglutinins protected the birds from infection by either subtype. However, birds immunized with nucleoprotein DNA and challenged with either A/Ck/Vic/1/85(H7N7) or A/Ty/Ir/1/83 (H5N8) showed definite signs of infection, suggesting inadequate immunity against viral infection. Fifty percent of the nucleoprotein DNA immunized birds survived infection by influenza A/Ty/Ir/1/83 (H5N8) virus (virus of same subtype) while 42% survived infection by influenza A/Ck/Vic/1/85/(H7N7) virus (virus of a different subtype). These studies demonstrate that immunization with DNA encoding a type-specific gene may not be effective against either homologous or heterologous strains of virus, particularly if the challenge virus causes a highly lethal infection. However, the combination of HA subtype vaccines are effective against lethal infection caused by viruses expressing any of the HA subtypes used in the combination preparation.  相似文献   

17.
《Vaccine》2019,37(32):4533-4542
Both influenza A and B viruses cause outbreaks of seasonal influenza resulting in significant morbidity and mortality. There are two antigenically distinct lineages of influenza B virus, Yamagata lineage (YL) and Victoria lineage (VL). Since both B lineages have been co-circulating for years, more than 70% of influenza vaccines currently manufactured are quadrivalent consisting of influenza A (H1N1), influenza A (H3N2), influenza B (YL) and influenza B (VL) antigens. Although quadrivalent influenza vaccines tend to elevate immunity to both influenza B lineages, estimated overall vaccine efficacy against influenza B is still only around 42%. Thus, a more effective influenza B vaccine is needed.To meet this need, we generated BM2-deficient, single-replication (BM2SR) influenza B vaccine viruses that encode surface antigens from influenza B/Wisconsin/01/2010 (B/WI01, YL) and B/Brisbane/60/2008 (B/Bris60, VL) viruses. The BM2SR-WI01 and BM2SR-Bris60 vaccine viruses are replication-deficient in vitro and in vivo, and can only replicate in a cell line that expresses the complementing BM2 protein. Both BM2SR viruses were non-pathogenic to mice, and vaccinated animals showed elevated mucosal and serum antibody responses to both Yamagata and Victoria lineages in addition to cellular responses. Serum antibody responses included lineage-specific hemagglutinin inhibition antibody (HAI) responses as well as responses to the stem region of the hemagglutinin (HA). BM2SR vaccine viruses provided apparent sterilizing immunity to mice against intra- and inter-lineage drifted B virus challenge. The data presented here support the feasibility of BM2SR as a platform for next-generation trivalent influenza vaccine development.  相似文献   

18.
《Vaccine》2022,40(48):6998-7008
The current study aimed to develop broadly protective vaccines for avian influenza. In an earlier study, HA stalk (universal flu vaccine) was found to be broadly protective against different subtypes of influenza virus in mice. Hence, we were interested to know its breadth of protective efficacy either alone or combined with inactivated rgH5N2 (clade 2.3.2.1a) vaccine against challenge viruses of homologous H5N1, heterologous H5N8 (clade 2.3.4.4) and heterosubtypic H9N2 virus in specific pathogen-free chickens. The rgH5N2 vaccine alone or in combination with HA stalk elicited sufficient pre-challenge immunity in the form of haemagglutination inhibiting (HI) antibodies and neutralizing antibodies (MNT) against H5N1, H5N8, and H9N2 in chickens. The rgH5N2 vaccine alone or in combination with HA stalk also attenuated the shedding of H5N1, H5N8 and H9N2 in chickens and protected against the lethal challenge of H5N1 or H5N8. In contrast, all HA stalk immunised chickens died upon H5N1 or H5N8 challenge and H9N2 challenged chickens survived. Our study suggests that the rgH5N2 vaccine can provide clinical protection against H5N1, H5N8 and can attenuate the viral shedding of H9N2 in chickens.  相似文献   

19.
In this study, recombinant virus-like particles (VLPs) were evaluated as a candidate vaccine against emerging influenza viruses with pandemic potential. The VLPs are composed of the hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins of the H5N1 A/Indonesia/05/2005 (clade 2.1; [Indo/05]) virus, which were expressed using baculovirus in Spodoptera frugiperda (Sf9) cells. Ferrets received either 2 injections of the VLP vaccine at escalating doses (based on HA content), recombinant HA, or were mock vaccinated. Vaccinated ferrets were then challenged with either H5N1 Indo/05 or H5N1 A/Viet Nam 1203/2004 (VN/04) wild-type viruses. All ferrets that received the VLP vaccine survived regardless of the VLP dose or challenge strain, whereas seven of eight mock vaccinated ferrets died. The VLP vaccine induced HAI antibodies against the homologous H5N1 clade 2.1 strain, as well as heterologous strains from H5N1 clades 1, 2.2, and 2.3. The magnitude of the HAI titers correlated with VLP dose. Neutralizing antibody responses against the Indo/05 and VN/04 strains showed a similar pattern. Affinity of the anti-HA antibodies raised by the H5N1 Indo/05 VLPs had a higher association rate to the homologous clade 2.1 HA than to the clade 1 (VN/04) HA; however, once bound, antibodies had similar slow disassociation rates. These results provide support for continued development of the H5N1 VLPs as a candidate vaccine against pandemic influenza. Exploration of immunologic correlates of protection for H5N1 vaccines beyond HAI and neutralizing antibody responses is warranted.  相似文献   

20.
《Vaccine》2016,34(14):1688-1695
Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. Conclusion: MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号