共查询到14条相似文献,搜索用时 0 毫秒
1.
Alberto Cagigi Simone Pensieroso Nicolas Ruffin Stefano Sammicheli Rigmor Thorstensson Qiang Pan-Hammarström Bo Hejdeman Anna Nilsson Francesca Chiodi 《Vaccine》2013
The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure. 相似文献
2.
Cheguo Tsai Catherine Caillet Hongxing Hu Fan Zhou Heng Ding Guoliang Zhang Boping Zhou Shixia Wang Shan Lu Philippe Buchy Vincent Deubel Frederick R. Vogel Paul Zhou 《Vaccine》2009
Neutralizing antibody is associated with the prevention and clearance of influenza virus infection. Microneutralization (MN) and hemagglutination inhibition (HI) assays are currently used to evaluate neutralizing antibody responses against human and avian influenza viruses, including H5N1. The MN assay is somewhat labor intensive, while HI is a surrogate for neutralization. Moreover, use of replication competent viruses in these assays requires biosafety level 3 (BSL-3) containment. Therefore, a neutralization assay that does not require BSL-3 facilities would be advantageous. Toward this goal, we generated a panel of pseudotypes expressing influenza hemagglutinin (HA) and neuraminidase (NA) and developed a pseudotype-based neutralization (PN) assay. Here we demonstrate that HA/NA pseudotypes mimic release and entry of influenza virus and that the PN assay exhibits good specificity and reveals quantitative difference in neutralizing antibody titers against different H5N1 clades and subclades. Using immune ferret sera, we demonstrated excellent correlation between the PN, MN, and HI assays. Thus, we conclude that the PN assay is a sensitive and quantifiable method to measure neutralizing antibodies against diverse clades and subclades of H5N1 influenza virus. 相似文献
3.
We sought to determine susceptibility to highly pathogenic avian influenza (HPAI) H5N1 virus and to explore immune protection of inactivated H5N1 vaccine in streptozotocin-induced type 1 diabetic mice. Susceptibility of diabetic mice to an H5N1 virus was evaluated by comparing the median lethal dose (LD50) and the lung virus titers with those of the healthy after the viral infection. To evaluate the influence of diabetes on vaccination, diabetic and healthy mice were immunized once with an inactivated H5N1 vaccine and then challenged with a lethal dose of H5N1 virus. The antibody responses, survival rates, lung virus titers and body weight changes were tested. Mice with type 1 diabetes had higher lung virus titers and lower survival rates than healthy mice after H5N1 virus infection. Inactivated H5N1 vaccine induced protective antibody in diabetic mice, but the antibody responses were postponed and weakened. In spite of this, diabetic mice could be protected against the lethal virus challenge by a single dose of immunization when the amount of the antigen increased. These results indicated that type 1 diabetic mice were more susceptible to H5N1 influenza virus infection than healthy mice, and can be effectively protected by inactivated H5N1 vaccine with increased antigen. 相似文献
4.
Maria E. Sundaram Simin Nikbin Meydani Mary Vandermause David K. Shay Laura A. Coleman 《Nutrition Research》2014
It has been hypothesized that micronutrient levels play a role in the immune response to vaccination; however, population-level research on the association between micronutrient levels and immune response to influenza vaccination is needed. In this study, we hypothesized that decreasing levels of nutrients would be associated with decreased hemagglutination inhibition (HAI) responses to influenza vaccination. Therefore, the purpose of this study was to determine whether serum vitamin A, vitamin E, or zinc levels are associated with influenza vaccine response determined by HAI titer in adults 65 years or older. Participants in this study included 205 community-dwelling adults 65 years or older who resided in Marshfield, WI, USA, from fall 2008 through spring 2009. Participants received trivalent influenza vaccine and donated blood samples before and 21 to 28 days after vaccination. Prevaccination levels of serum retinol, α-tocopherol, and zinc as well as prevaccination and postvaccination HAI titer levels were measured. No participants were vitamin A or vitamin E deficient; 20% had low serum zinc levels (<70 μg/dL). Continuous variables and categorical quartiles coding for vitamin A, vitamin E, and zinc levels were not related to prevaccination or postvaccination seroprotection or seroconversion for any of the vaccine components (influenza A [H1N1], A [H3N2], or B), after adjusting for age, sex, body mass index, and prevaccination HAI geometric mean titer. In conclusion, our study population showed no association between variations in levels of serum vitamin A, vitamin E, or zinc and influenza vaccine response as measured by HAI in adults older than 65 years. Thus, associations between micronutrients and other measures of vaccine response, such as cell-mediated immune parameters, should also be explored. 相似文献
5.
Background
Although influenza is a major public health concern among adults ≥60 years of age, few large, prospective studies of influenza vaccines have been conducted in this population. The goal of the present study was to directly compare the safety and efficacy of LAIV and TIV in adults ≥60 years of age.Materials and methods
A prospective, randomized, open-label, multicenter trial was conducted in South Africa. In March-April 2002, 3009 community-dwelling ambulatory adults 60-95 years of age were randomized 1:1 to receive a single dose of LAIV or TIV. Surveillance for influenza illness was conducted through November. Serum antibody titers were evaluated in all participants, and interferon-γ enzyme-linked immunosorbent spot assay responses were evaluated in a cohort of subjects. Solicited reactogenicity and adverse events were monitored for days 0-10 postvaccination; serious adverse events were monitored for the entire study.Results
Influenza illness caused by vaccine-matched strains was detected in 0.8% (12/1494) and 0.5% (8/1488) of LAIV and TIV recipients, respectively; the relative efficacy of LAIV vs TIV was −49% (95% CI: −259, 35). As expected, greater serum antibody responses were seen with TIV, and greater cellular responses were seen with LAIV (although not for influenza B). Among subjects with culture-confirmed influenza illness, post hoc analyses revealed trends toward less feverishness (LAIV, 14%; TIV, 46%; P = 0.05) and less fever (LAIV, 9%; TIV, 31%; P = 0.16) among LAIV recipients. In each treatment group, 38-39% and 24-25% of subjects had baseline hemagglutination inhibition titers of ≤4 for A/H1 and A/H3, but 7 of 8 TIV cases and 7 of 12 LAIV cases of matched-strain influenza occurred among these subjects. Runny nose/nasal congestion (+13%), cough (+5%), sore throat (+5%), lethargy (+3%), and decreased appetite (+2%) were reported by more LAIV vs TIV recipients. Injection site reactions were reported by 27% of TIV recipients. SAEs were reported by a similar proportion of LAIV and TIV recipients (9% vs 8%).Conclusions
Given the low incidence of influenza in both groups, no conclusions were possible regarding the relative efficacy of LAIV and TIV. There was a trend toward less feverishness/fever among LAIV recipients who developed influenza compared with TIV recipients with influenza, consistent with results from studies comparing the vaccines in children. A disproportionate number of influenza illnesses occurred among baseline seronegative subjects, particularly for those receiving TIV, which suggests that this subgroup has the greatest need for improved influenza vaccination. The safety profiles of LAIV and TIV were consistent with results from previous studies in older adults and no significant safety concerns were identified.clinicaltrials.gov identifier, NCT00192413. 相似文献6.
Circulation of an antigenically variant lineage of highly pathogenic avian influenza (HPAI) H5N1 virus in chicken breeder flocks in Egypt is a continuing problem. The protective efficacy of multiple repeated vaccinations using the currently available H5N2 vaccines is unclear. Here, broiler breeder chickens were vaccinated at weeks 6, 12 and 18 with an inactivated H5N2 commercial vaccine. HI-titer against an Egyptian H5N1 field isolate of classic clade 2.2.1 (EGYcls/H5N1) were significantly lower after the first immunization but increased after booster vaccinations. In contrast, no HI titers were induced against an antigenically distinct field virus of the variant lineage of clade 2.2.1 (EGYvar/H5N1). Upon challenge at week 50 mild, if any, clinical signs were observed in the group infected with EGYcls/H5N1 although one of eight (12.5%) birds died. Mortality reached 6/8 (75%) in the EGYvar/H5N1 challenge group. Virus excretion in all vaccinated groups was reduced in amplitude, but in vaccinated surviving birds, time of virus excretion was extended to up to ten days. Strikingly, challenged vaccinated birds kept laying eggs almost throughout the observation period. Virus was detected on the outer egg-shell of 17 of 40 eggs. The majority of the infected eggs were derived from the EGYcls/H5N1 challenged animals; here the virus was detected also in the yolk and albumin. Repeated vaccination using a commercial H5N2-based vaccine broadened the antigen profile of induced antibodies but did not provide adequate protection against heterologous virus variant. In addition, the observation of AIV contaminated eggs from infected flocks highlights the risk of silent virus spread by vaccinated animals and point to eggs as a possible vector. 相似文献
7.
Oil-in-water emulsions are potent human adjuvants commonly used in effective pandemic influenza vaccines; however, such emulsions that can induce both Th1-biased systemic immune responses and strong mucosal immune responses via an easy method of administration are lacking. To address this need for new adjuvants, we developed a novel oil/water emulsion, SPO1, which allows convenient mucosal immunization via an intranasal spray as well as by parenteral routes. Our report shows that SPO1 was able to boost up immunological resistance by inducing effective mucosal and serum antibodies, and the immune response was polarized to a Th1 pattern, as demonstrated by high IgG2α antibody levels and interferon-gamma production by splenocytes from intranasally (i.n.) immunized mice. Up-regulation of co-stimulatory and antigen-presenting molecules on dendritic cells was also observed in vivo after i.n. immunization, suggesting a possible mechanism for the adjuvant effects of SPO1. Another explanation may simply be a depot of antigen at the immunization site, as evidenced by in vivo imaging of i.n. immunized mice. In conclusion, our results demonstrate that a novel oil/water emulsion, SPO1, is a potent Th1 adjuvant for use in influenza and other vaccines, as it induces strong mucosal and systemic immune responses. 相似文献
8.
《Vaccine》2021,39(47):6930-6935
BackgroundVaccines are the main prophylactic measure against pandemic influenza. Adjuvanted, cell culture–derived vaccines, which are not subject to limitations of egg-based vaccine production, have the potential to elicit an antibody response against heterologous strains and may be beneficial in the event of an A/H5N1 pandemic.MethodsA prespecified exploratory analysis of data from a phase 2, randomized, controlled, observer-blind multicenter trial (NCT01776554) to evaluate the immunogenicity of a MF59-adjuvanted, cell culture–based A/H5N1 influenza vaccine (aH5N1c), containing 7.5 µg hemagglutinin antigen per dose, in subjects 6 months through 17 years of age was conducted. Geometric mean titers (GMT) were determined using hemagglutination inhibition (HI) and microneutralization (MN) assays, and proportions of patients achieving seroconversion, HI and MN titers ≥ 1:40, and a 4-fold increase in MN titers against 5 heterologous strains (influenza A/H5N1 Anhui/2005, Egypt/2010, Hubei/2010, Indonesia/2005, and Vietnam/1203/2004) three weeks after administration of the second dose were assessed.ResultsAfter the second dose, HI GMTs against heterologous strains increased between 8- and 40-fold, and MN GMTs increased 13- to 160-fold on Day 43 vs Day 1. On Day 43, 32–72% of subjects had HI titers ≥ 1:40 and achieved seroconversion against the heterologous strains. Using the MN assay, 84–100% of subjects had MN titers ≥ 1:40 and 83–100% achieved an at least 4-fold increase in MN titers against the heterologous strains. The highest responses were consistently against A/H5N1 Egypt/2010.ConclusionsWhen given to children aged 6 months through 17 years, aH5N1c resulted in increased immunogenicity from baseline against all 5 heterologous A/H5N1 strains tested, demonstrating the potential of an MF59-adjuvanted, cell-derived A/H5N1 vaccine to provide cross-protection against other A/H5N1 strains (NCT01776554). 相似文献
9.
Ducks have played an important role in the emergence of H5N1 subtype of highly pathogenic avian influenza (HPAI), and the development of an effective vaccine against HPAI in ducks is a top priority. It has been shown that a recombinant fowlpox virus (FPV)-vectored vaccine can provide protection against HPAI in ducks. In this study, a recombinant fowlpox virus (rFPV-AIH5AIL6) coexpressing the haemagglutinin (HA) gene of the H5N1 subtype of the avian influenza virus (AIV) and chicken interleukin 6 gene was constructed and tested in Gaoyou and cherry valley ducks to evaluate the immune response in ducks. These animal studies demonstrated that rFPV-AIH5AIL6 induced a higher anti-AIV HI antibody response, an enhanced lymphocyte proliferation response, an elevated immune protection, and a reduction in virus shedding compared to a recombinant fowlpox virus expressing the HA gene alone (rFPV-SYHA). These data indicate that rFPV-AIH5AIL6 may be a potential vaccine against the H5 subtype of avian influenza in ducks and chicken interleukin 6 may be an effective adjuvant for increasing the immunogenicity of FPV-vectored AIV vaccines in ducks. 相似文献
10.
《Vaccine》2016,34(31):3576-3583
BackgroundWe analyzed the impact of the anti-T-cell agents basiliximab and antithymocyte globulins (ATG) on antibody and cell-mediated immune responses after influenza vaccination in solid-organ transplant recipients.Methods71 kidney and heart transplant recipients (basiliximab [n = 43] and ATG [n = 28]) received the trivalent influenza vaccine. Antibody responses were measured at baseline and 6 weeks post-vaccination by hemagglutination inhibition assay; T-cell responses were measured by IFN-γ ELISpot assays and intracellular cytokine staining (ICS); and influenza-specific memory B-cell (MBC) responses were evaluated using ELISpot.ResultsMedian time of vaccination from transplantation was 29 months (IQR 8–73). Post-vaccination seroconversion rates were 26.8% for H1N1, 34.1% for H3N2 and 4.9% for influenza B in the basiliximab group and 35.7% for H1N1, 42.9% for H3N2 and 14.3% for influenza B in the ATG group (p = 0.44, p = 0.61, and p = 0.21, respectively). The number of influenza-specific IFN-γ-producing cells increased significantly after vaccination (from 35 to 67.5 SFC/106 PBMC, p = 0.0007), but no differences between treatment groups were observed (p = 0.88). Median number of IgG-MBC did not increase after vaccination (H1N1, p = 0.94; H3N2 p = 0.34; B, p = 0.79), irrespective of the type of anti-T-cell therapy.ConclusionsAfter influenza vaccination, a significant increase in antibody and T-cell immune responses but not in MBC responses was observed in transplant recipients. Immune responses were not significantly different between groups that received basiliximab or ATG. 相似文献
11.
《Vaccine》2018,36(33):5097-5103
Current influenza vaccines do not provide effective protection against heterologous influenza viruses. The ability of the novel M2SR influenza vaccine to protect against drifted influenza viruses was evaluated in naïve ferrets and in ferrets with pre-existing immunity to influenza. In naïve ferrets, M2SR provided similar protection against drifted challenge viruses as the comparator vaccine, FluMist®. However, in ferrets with pre-existing immunity, M2SR provided superior protection than FluMist in two model systems.In the first model, ferrets were infected with influenza A H1N1pdm and influenza B viruses to mimic the diverse influenza exposure in humans. The pre-infected ferrets, seropositive to H1N1pdm and influenza B but seronegative to H3N2, were then vaccinated with H3N2 M2SR or monovalent H3N2 FluMist virus (A/Brisbane/10/2007, clade 1) and challenged 6 weeks later with a drifted H3N2 virus (clade 3C.2a). Antibody titers to Brisbane/10/2007 were higher in M2SR vaccinated ferrets than in FluMist vaccinated ferrets in the pre-infected ferrets whereas the opposite was observed in naïve ferrets. After challenge with drifted H3N2 virus, M2SR provided superior protection than FluMist monovalent vaccine.In the second model, the impact of homologous pre-existing immunity upon vaccine-induced protection was evaluated. Ferrets, pre-infected with H1N1pdm virus, were vaccinated 90 days later with H1N1pdm M2SR or FluMist monovalent vaccine and challenged 6 weeks later with a pre-pandemic seasonal H1N1 virus, A/Brisbane/59/2007 (Bris59). While cross-reactive serum IgG antibodies against the Bris59 HA were detected after vaccination, anti-Bris59 hemagglutination inhibition antibodies were only detected post-challenge. M2SR provided better protection against Bris59 challenge than FluMist suggesting that homologous pre-existing immunity affected FluMist virus to a greater degree than M2SR.These results suggest that the single replication intranasal M2SR vaccine provides effective protection against drifted influenza A viruses not only in naïve ferrets but also in those with pre-existing immunity in contrast to FluMist viruses. 相似文献
12.
《Vaccine》2020,38(39):6141-6152
Influenza vaccination is considered the most valuable means to prevent and control seasonal influenza infections, which causes various clinical symptoms, ranging from mild cough and fever to even death. Among various influenza vaccine types, the inactivated subunit type is known to provide improved safety with reduced reactogenicity. However, there are some drawbacks associated with inactivated subunit type vaccines, with the main ones being its low immunogenicity and the induction of Th2-biased immune responses. In this study, we investigated the role of a single-stranded RNA (ssRNA) derived from the intergenic region in the internal ribosome entry site of the Cricket paralysis virus as an adjuvant rather than the universal vaccine for a seasonal inactivated subunit influenza vaccine. The ssRNA adjuvant stimulated not only well-balanced cellular (indicated by IgG2a, IFN-γ, IL-2, and TNF-α) and humoral (indicated by IgG1 and IL-4) immune responses but also a mucosal immune response (indicated by IgA), a key protector against respiratory virus infections. It also increases the HI titer, the surrogate marker of influenza vaccine efficacy. Furthermore, ssRNA adjuvant confers cross-protective immune responses against heterologous influenza virus infection while promoting enhanced viral clearance. Moreover, ssRNA adjuvant increases the number of memory CD4+ and CD8+ T cells, which can be expected to induce long-term immune responses. Therefore, this ssRNA-adjuvanted seasonal inactivated subunit influenza vaccine might be the best influenza vaccine generating robust humoral and cellular immune responses and conferring cross-protective and long-term immunity. 相似文献
13.
《Vaccine》2022,40(10):1472-1482
BackgroundIncreased influenza vaccine efficacy is needed in the elderly at high-risk for morbidity and mortality due to influenza infection. Adjuvants may allow hemagglutinin (HA) dose-sparing with enhanced immunogenicity. MAS-1 is an investigational water-in-oil emulsion-based adjuvant/delivery system comprised of stable nanoglobular aqueous droplets.MethodsA phase 1, randomized, double-blind, safety and immunogenicity, adjuvant dose escalation trial was conducted in persons aged 65 years and older. MAS-1 adjuvant dose volumes at 0.3 mL or 0.5 mL containing 9 µg per HA derived from licensed seasonal trivalent influenza vaccine (IIV, Fluzone HD 60 µg per HA, Sanofi Pasteur) were compared to high dose (HD) IIV (Fluzone HD). Safety was measured by reactogenicity, adverse events, and safety laboratory measures. Immunogenicity was assessed by serum hemagglutination inhibition (HAI) antibody titers.ResultsForty-five subjects, aged 65–83 years, were randomly assigned to receive 9 µg per HA in 0.3 mL MAS-1 (15 subjects) or HD IIV (15 subjects) followed by groups randomly assigned to receive 9 µg per HA in 0.5 mL MAS-1 (10 subjects) or HD IIV (5 subjects). Injection site tenderness, induration, and pain, and headache, myalgia, malaise and fatigue were common, resolving before day 14 post-vaccination. Clinically significant late-onset injection site reactions occurred in four of ten subjects at the 0.5 mL adjuvant dose. Safety laboratory measures were within acceptable limits. MAS-1-adjuvanted IIV enhanced mean antibody titers, mean-fold increases in antibody titer, and seroconversion rates against vaccine strains for at least 168 days post-vaccination and enhanced cross-reactive antibodies against some non-study vaccine influenza viruses.ConclusionMAS-1 adjuvant provided HA dose-sparing without safety concerns at the 0.3 mL dose, but the 0.5 mL dose caused late injection site reactions. MAS-1-adjuvanted IIV induced higher HAI antibody responses with prolonged durability including against historical strains, thereby providing greater potential vaccine efficacy in the elderly throughout an influenza season.Clinical Trial Registry: ClinicalTrials.gov # NCT02500680. 相似文献
14.
《Vaccine》2019,37(32):4533-4542
Both influenza A and B viruses cause outbreaks of seasonal influenza resulting in significant morbidity and mortality. There are two antigenically distinct lineages of influenza B virus, Yamagata lineage (YL) and Victoria lineage (VL). Since both B lineages have been co-circulating for years, more than 70% of influenza vaccines currently manufactured are quadrivalent consisting of influenza A (H1N1), influenza A (H3N2), influenza B (YL) and influenza B (VL) antigens. Although quadrivalent influenza vaccines tend to elevate immunity to both influenza B lineages, estimated overall vaccine efficacy against influenza B is still only around 42%. Thus, a more effective influenza B vaccine is needed.To meet this need, we generated BM2-deficient, single-replication (BM2SR) influenza B vaccine viruses that encode surface antigens from influenza B/Wisconsin/01/2010 (B/WI01, YL) and B/Brisbane/60/2008 (B/Bris60, VL) viruses. The BM2SR-WI01 and BM2SR-Bris60 vaccine viruses are replication-deficient in vitro and in vivo, and can only replicate in a cell line that expresses the complementing BM2 protein. Both BM2SR viruses were non-pathogenic to mice, and vaccinated animals showed elevated mucosal and serum antibody responses to both Yamagata and Victoria lineages in addition to cellular responses. Serum antibody responses included lineage-specific hemagglutinin inhibition antibody (HAI) responses as well as responses to the stem region of the hemagglutinin (HA). BM2SR vaccine viruses provided apparent sterilizing immunity to mice against intra- and inter-lineage drifted B virus challenge. The data presented here support the feasibility of BM2SR as a platform for next-generation trivalent influenza vaccine development. 相似文献