首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza A virus is an important respiratory pathogen of swine that causes significant morbidity and economic impact on the swine industry. Vaccination is the first choice for prevention and control of influenza infections. Live attenuated influenza vaccines (LAIV) are approved for use in humans and horses and their application provides broad protective immunity, however no LAIV against swine influenza virus (SIV) exists in the market. Previously we reported that an elastase-dependant mutant SIV A/Sw/Sk-R345V (R345V) derived from A/Sw/Saskatchewan/18789/02 (H1N1) (SIV/Sk02) is highly attenuated in pigs. Two intratracheal administrations of R345V induced strong cell-mediated and humoral immune responses and provided a high degree of protection to antigenically different SIV infection in pigs. Here we evaluated the immunogenicity and the protective efficacy of R345V against SIV infection by intranasal administration, the more practical route for vaccination of pigs in the field. Our data showed that intranasally administered R345V live vaccine is capable of inducing strong antigen-specific IFN-γ response from local tracheo-bronchial lymphocytes and antibody responses in serum and respiratory mucosa after two applications. Intranasal vaccination of R345V provided pigs with complete protection not only from parental wild type virus infection, but also from homologous antigenic variant A/Sw/Indiana/1726/88 (H1N1) infection. Moreover, intranasal administration of R345V conferred partial protection from heterologous subtypic H3N2 SIV infection in pigs. Thus, R345V elastase-dependent mutant SIV can serve as a live vaccine against antigenically different swine influenza viruses in pigs.  相似文献   

2.
《Vaccine》2015,33(20):2360-2366
The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu® and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0–7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998–2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test.  相似文献   

3.
Influenza virus infections continue to cause production losses in the agricultural industry in addition to being a human public health concern. The primary method to control influenza is through vaccination. However, currently used killed influenza virus vaccines must be closely matched to the challenge virus. The ability of an elastase-dependent live attenuated influenza A virus was evaluated to protect pigs against the pandemic H1N1 2009 influenza virus. Pigs vaccinated intranasally or intratracheally with the elastase-dependent swine influenza virus (SIV) vaccine had significantly reduced macroscopic and microscopic lung lesions and lower viral loads in the lung and in nasal swabs. Thus, elastase-dependent SIV mutants can be used as live-virus vaccines against swine influenza in pigs. In addition, low levels of cross-neutralizing antibodies to H1N1 2009 were elicited prior to challenge by the swine adapted H1N1 avian strain vaccine.  相似文献   

4.
《Vaccine》2015,33(31):3667-3672
Vaccination during pregnancy is practiced in swine farms as one measure to control swine influenza virus (SIV) infection in piglets at an early age. Vaccine-induced maternal antibodies transfer to piglets through colostrum and stabilize the herd: however, maternally derived antibodies (MDA) interfere with immune response following influenza vaccination in piglets at the later stage of life. In addition, MDA is related to enhanced respiratory disease in SIV infection. Previously, we have developed a bivalent live attenuated influenza vaccine (LAIV) which harbors both H1 and H3 HAs. We demonstrated vaccination of this LAIV provided protection to homologous and heterologous SIV infection in pigs. In this study we aimed to investigate the influence of MDA on LAIV efficacy. To this end, SIV sero-negative sows were vaccinated with a commercial vaccine. After parturition, nursery piglets were vaccinated with LAIV intranasally or intramuscularly, and were then challenged with SIV. We report that MDA hampered serum antibody response induced by intramuscular vaccination but not by intranasal vaccination of the LAIV. Viral challenge in the presence of MDA caused exacerbated respiratory disease in unvaccinated piglets. In contrast, all LAIV vaccinated piglets were protected from homologous viral infection regardless of the route of vaccination and the presence of MDA. Our results demonstrated that LAIV conferred protection in the presence of MDA without inciting exacerbated respiratory disease.  相似文献   

5.
Vaccine-associated enhanced respiratory disease (VAERD) can occur when pigs are challenged with heterologous virus in the presence of non-neutralizing but cross-reactive antibodies elicited by whole inactivated virus (WIV) vaccine. The aim of this study was to compare the effects of heterologous δ1-H1N2 influenza A virus (IAV) challenge of pigs after vaccination with 2009 pandemic H1N1 virus (H1N1pdm09) recombinant hemagglutinin (HA) subunit vaccine (HA-SV) or temperature-sensitive live attenuated influenza virus (LAIV) vaccine, and to assess the role of immunity to HA in the development of VAERD. Both HA-SV and LAIV vaccines induced high neutralizing antibodies to virus with homologous HA (H1N1pdm09), but not heterologous challenge virus (δ1-H1N2). LAIV partially protected pigs, resulting in reduced virus shedding and faster viral clearance, as no virus was detected in the lungs by 5 days post infection (dpi). HA-SV vaccinated pigs developed more severe lung and tracheal lesions consistent with VAERD following challenge. These results demonstrate that the immune response against the HA protein alone is sufficient to cause VAERD following heterologous challenge.  相似文献   

6.
《Vaccine》2022,40(19):2723-2732
Control of swine influenza A virus (swIAV) in North America and Europe is complicated because multiple antigenically distinct swIAV strains co-circulate in the field, and no vaccine is available that can provide broad cross-protection against all these swIAVs. In 2017, the first live attenuated influenza vaccine (LAIV) for swine was licensed in the US. The non-structural protein 1 (NS1)-truncated cluster I H3N2 strain A/swine/Texas/4199-2/98 NS1del126 (TX98 LAIV) in this vaccine provides partial cross-protection against heterologous North American cluster II and IV H3N2 swIAV strains. Its efficacy against European or more recent North American H3N2 lineages remains to be investigated. In this study, we evaluated the level of cross-protection against heterologous IAVs representative of the major H3N2 swIAV lineages in Europe and North America. TX98 LAIV prevented both nasal shedding and replication in the lungs of a North American cluster IV H3N2 swIAV for 2/4 pigs, prevented considerable nasal shedding of a North American novel human-like H3N2 swIAV for 2/4 pigs, and reduced replication of a European H3N2 swIAV in the lower respiratory tract to minimal titers for 1/3 pigs. Although TX98 LAIV elicited neutralizing antibodies against the homologous virus in serum and to a lesser extent in nose and lungs, no significant cross-reactive antibody titers against the heterologous swIAVs were detected. Partial cross-protection therefore likely relies on cellular and mucosal immune responses against conserved parts of the swIAV proteins. Since TX98 LAIV can offer partial protection against a broad range of H3N2 swIAVs, it might be a suitable priming vaccine for use in a heterologous prime-boost vaccination strategy.  相似文献   

7.
《Vaccine》2018,36(12):1606-1613
Swine influenza virus is endemic worldwide and it is responsible for significant economic losses to the swine industry. A vaccine that stimulates a rapid and long-lasting protective immune response to prevent this infection is highly sought. Poly[di(sodium carboxylatoethylphenoxy)-phosphazene (PCEP) has demonstrated adjuvant activity when formulated as part of multiple vaccines in mice and pigs. In this study we examined the magnitude and type of immune response induced in pigs vaccinated via the intramuscular or intradermal routes with inactivated swine influenza virus (SIV) H1N1 vaccine formulated with PCEP. Intradermal administration of PCEP-adjuvanted inactivated SIV vaccine stimulated significant anti-SIV antibody titres, increased neutralizing antibodies, and significantly reduced lung virus load with limited reduction of gross lung lesions after challenge with virulent H1N1 relative to control animals. These results indicate that PCEP may be effective as a vaccine adjuvant against swine influenza viruses in pigs and should be considered a potential candidate adjuvant for future swine intradermal influenza vaccines.  相似文献   

8.
In the U.S., despite available swine influenza virus (SIV) vaccines, multiple influenza subtypes as well as antigenic and genetic variants within subtypes continue to circulate in the swine population. One of the challenges to control and eliminate SIV is that the currently used inactivated influenza virus vaccines do not provide adequate cross-protection against multiple antigenic variants of SIV in the field. We previously generated a recombinant H3N2 swine influenza virus (SIV) based on the influenza A/SW/TX/4199-2/98 virus (TX98) containing an NS1 gene expressing a truncated NS1 protein of 126 amino acids, TX98-NS1Delta126 virus. This recombinant strain was demonstrated to be highly attenuated in swine and showed potential for use as a modified live-virus vaccine (MLV) after intratracheal application in pigs. However, this route of inoculation is not practical for vaccination in the field. In the present study, we first compared intramuscular and intranasal routes of application of the MLV, and found that the intranasal route was superior in priming the local (mucosal) immune response. Pigs were then vaccinated via the intranasal route and challenged with wild type homologous TX98 H3N2 virus, with a genetic and antigenic variant H3N2 SIV (influenza A/SW/CO/23619/99 virus, CO99) and a heterosubtypic H1N1 SIV (influenza A/SW/IA/00239/2004 virus, IA04). The intranasally vaccinated pigs were completely protected against homologous challenge. In addition, MLV vaccination provided nearly complete protection against the antigenic H3N2 variant CO99 virus. When challenged with the H1N1 IA04 virus, MLV vaccinated animals displayed reduced fever and virus titers despite minimal reduction in lung lesions. In vaccinated pigs, there was no serologic cross-reactivity by HI assays with the heterologous or heterosubtypic viruses. However, there appeared to be substantial cross-reactivity in antibodies at the mucosal level with the CO99 virus in MLV vaccinated pigs.  相似文献   

9.
CL Loving  AL Vincent  L Pena  DR Perez 《Vaccine》2012,30(40):5830-5838
In the United States there are currently two influenza vaccine platforms approved for use in humans-conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza A virus (IAV) vaccination is designing a platform that provides protection across strains. Pandemic H1N1 (pH1N1) IAV swept the globe in 2009 and crossed the species barrier, infecting swine in several countries. Pigs are a natural host for IAV and serve as a model for evaluating immune responses following vaccination and challenge. Recently, a temperature-sensitive (ts) LAIV was developed by introducing modifications in the polymerase genes of a swine-like triple reassortant (tr) virus and when paired with pandemic HA and NA, provided sterilizing immunity upon intratracheal challenge with virulent pH1N1 virus. The utility of a ts LAIV is expanded in this report to show vaccination of pigs induced a cell-mediated immune response characterized by an increased number of antigen-specific IFN-secreting cells and expanded T cell populations when compared to pigs vaccinated with a whole inactivated virus (WIV) vaccine. Following challenge, there was a significant increase in the percentage of proliferating lymphocytes in the LAIV group compared to the WIV group following restimulation with pH1N1 in vitro. Also, there was an increase in the percentage of CD4/CD8 double-positive memory T cells in LAIV vaccinated pigs compared to WIV vaccinated pigs. Hemagglutination inhibition and serum neutralization titers were significantly higher in the LAIV-vaccinated pigs compared to the WIV vaccinated pigs following the initial dose of vaccine. Taken together, these results indicate the ts LAIV vaccine, generated from a triple reassortant IAV, elicits greater cell-mediated and humoral immune responses in pigs.  相似文献   

10.
Pearce MB  Belser JA  Houser KV  Katz JM  Tumpey TM 《Vaccine》2011,29(16):2887-2894
In March 2009, a swine origin influenza A (2009 H1N1) virus was introduced into the human population and quickly spread from North America to multiple continents. Human serologic studies suggest that seasonal influenza virus vaccination or infection would provide little cross-reactive serologic immunity to the pandemic 2009 H1N1 virus. However, the efficacy of seasonal influenza infection or vaccination against 2009 H1N1 virus replication and transmission has not been adequately evaluated in vivo. Here, ferrets received one or two doses of the US licensed 2008-2009 live attenuated influenza vaccine (LAIV) intranasally. An additional group of ferrets were inoculated with the A/Brisbane/59/07 (H1N1) virus to model immunity induced by seasonal influenza virus infection. All vaccinated and infected animals possessed high titer homologous hemagglutination-inhibition (HI) and neutralizing antibodies, with no demonstrable cross-reactive antibodies against 2009 H1N1 virus. However, in comparison to non-immune controls, immunized ferrets challenged with pandemic A/Mexico/4482/09 virus displayed a significant reduction in body temperature and virus shedding. The impact of single-dose LAIV inoculation on 2009 H1N1 disease and virus transmission was also measured in vaccinated ferrets that were challenged with pandemic A/Netherlands/1132/09 virus. Although a single dose of LAIV reduced virus shedding and the frequency of transmission following homologous seasonal virus challenge, it failed to reduce respiratory droplet transmission of 2009 H1N1 virus. The results demonstrate that prior immunization with seasonal LAIV or H1N1 virus infection provides some cross-protection against the 2009 H1N1 virus, but had no significant effect on the transmission efficiency of the 2009 H1N1 virus.  相似文献   

11.
Xu J  Huang D  Liu S  Lin H  Zhu H  Liu B  Lu C 《Vaccine》2012,30(20):3119-3125
Swine influenza virus (SIV) is not only an important respiratory pathogen in pigs but also a potent threat to human health. Although immunization with recombinant poxviruses expressing protective antigens as vaccines has been widely used for against many infectious diseases, development of recombinant swinepox virus (rSPV) vector for the purpose has been less successful. Here, we report the construction of a recombinant swinepox virus (rSPV-HA1) expressing hemagglutinin (HA1) of H1N1 SIV. Immune responses and protection efficacy of the vaccination vector were evaluated in both the mouse model and the natural host: pig. Prime and boost inoculations of rSPV-HA1 yielded high levels of neutralization antibody against SIV and elicited potent H1N1 SIV-specific IFN-γ response from T-lymphocytes. Complete protection of pigs against H1N1 SIV challenge was observed. No pigs showed evident systemic and local reactions to the vaccine and no SIV shedding was detected from pigs vaccinated with rSPV-HA1 after challenge. Our data demonstrated that the recombinant swinepox virus encoding HA1 of SIV H1N1 may serve as a promising SIV vaccine for protection against SIV infection.  相似文献   

12.
Wesley RD  Tang M  Lager KM 《Vaccine》2004,22(25-26):3427-3434
Swine influenza virus (SIV), subtype H3N2, is a recent reassortant virus that emerged in 1998 in North American swine causing severe respiratory and reproductive disease. In this study, two replication-defective adenovirus recombinants were developed as potential vaccines against H3N2 influenza viruses. Three groups of 3-week-old pigs (10 pigs per group) were vaccinated intramuscularly (IM) with the recombinants; one group was vaccinated with the recombinant adenovirus expressing the influenza virus H3 hemagglutinin (HA) protein, one group was vaccinated with the recombinant adenovirus expressing the nucleoprotein (NP), and one group was vaccinated with both recombinants in a mixture. Two additional control groups (10 pigs per group) were included in the animal trial. One control group was challenged with a virulent H3N2 field strain and one control group remained unchallenged. The results showed that pigs in the groups given the recombinant adenovirus expressing HA alone and HA plus NP developed high levels of virus-specific hemagglutination-inhibition (HI) antibody by 4 weeks post vaccination. Pigs in the group vaccinated with both recombinant viruses in a mixture were completely protected. Complete protection was shown by the lack of nasal shedding of virus following challenge and by the lack of lung lesions at 1 week following the challenge infection. Thus, replication-incompetent adenovirus vaccines given simultaneously to pigs are efficacious for SIV and have the additional advantage over commercial vaccines that suckling piglets have no pre-existing maternally-derived antibody to block early life vaccination.  相似文献   

13.
Zhu H  Ding X  Chen X  Yao P  Xu F  Xie R  Yang Z  Liang W  Zhang Y  Li Y  Shen J  He P  Guo Z  Su B  Sun S  Zhu Z 《Vaccine》2011,29(33):5421-5423
In order to develop an animal model and an assay method to evaluate protective immune response to H5N1 avian influenza vaccination, H5N1 avian influenza vaccine was prepared. New Zealand rabbits were assigned to receive two doses of vaccine with different hemagglutinin (HA) dosage. The sera from vaccinated rabbits was evaluated to determine antibody titer and specificity using different tested methods including hemagglutination inhibition assay (HI), neutralizing assay (NT), cross-HI assay, cross-single immunodiffusion assay and cross-neutralization assay. The titer of HI antibody from rabbits immunized with different doses of HA were no less than 1:40 among groups 14 days after the first immunization. Whereas the NT antibody titer was less than 1:10 among groups 14 days after the first immunization. NT antibodies can be detected 14 days after the second immunization in rabbits immunized at HA doses higher than 6 μg, and the NT antibody titers were equal to or higher than 1:40. A good concentration-dependent NT antibody response can be detected in the vaccinated rabbits 14 days after the second immunization, and in contrast, no concentration-dependent relationship can be seen for HA antibody. The cross-HI test showed sera from vaccinated rabbits could cross react with influenza A H5N1 virus with the titers higher than 1:40. No cross reaction among different types (influenza A/H1N1 virus, influenza A/H3N2 virus, influenza B virus and influenza A/H5N1 virus) can be detected in the sera using the single immunodiffusion assay and using NT antibody test. This showed NT antibody test was demonstrated as a more accurate assay method for evaluating vaccination and quality of the vaccine than HI antibody test.  相似文献   

14.
After recent emergence of new avian influenza A(H7N9) viruses in humans many people and Governments are asking about H7 influenza vaccine which could provide cross-protection against new viruses, until H7N9 vaccine is prepared from a relevant strain. Here we scientifically justify that available H7N3 live attenuated influenza vaccine (LAIV) can be protective against H7N9 viruses due to the presence of conserved immune epitopes in its hemagglutinin. We used Immune Epitope Database analysis resource to predict B-cell and CTL epitopes distributed across H7N3 HA molecule and assessed their identity with new H7N9 viruses at near 70% and 60% of the epitopes, respectively. In addition, we tested serum samples of volunteers participated in phase I clinical trial of H7N3 LAIV for the presence of anti-H7N9 hemagglutination-inhibition and neutralizing antibodies and found seroconversions in 44.8% of vaccinated persons, which suggests the potential of H7N3 LAIV to protect against new H7N9 avian influenza viruses.  相似文献   

15.
Cherukuri A  Servat E  Woo J 《Vaccine》2012,30(2):237-246
Currently, a robust set of immune correlates for live attenuated influenza vaccine (LAIV) efficacy in humans has not been fully elucidated. The serum hemagglutination inhibition (HAI) assay has been historically used to measure humoral immune responses to injectable inactivated influenza vaccination. However, serum antibody titers do not reliably reflect the complete mechanism of action of LAIV, which is an intranasally delivered vaccine and is expected to induce local mucosal and cellular immune responses in addition to humoral immune responses. Therefore, we designed a study to evaluate potential immune correlates of LAIV vaccination in the ferret animal model of influenza infection. Ferrets were vaccinated with increasing doses of LAIV and four weeks later challenged with a homologous wild-type (wt) H1N1 strain. Humoral immune responses measured following LAIV vaccination included HAI, serum antibodies and antibody secreting cells (ASC); and the responses were found to correlate with the dose level of LAIV administered in this model. Protection from wt virus challenge was determined by measuring inhibition of wt viral replication in nasal washes and in lung tissue. Results demonstrated that LAIV doses ≥ 5.0 log10 Plaque Forming Units (PFU) elicited vaccine-specific IgG and IgA ASC frequencies and induced complete protection in the lungs. Further, we developed a novel model utilizing seropositive older ferrets to demonstrate that in the background of previous wt influenza infection LAIV induces a robust vaccine-specific B-cell response even in the absence of serum antibody response, a result that suggests that effector B-cell responses generated by LAIV are not inhibited by prior viral exposure. Finally, we demonstrated that LAIV elicits strain-specific memory B-cell responses that are measurable in a background of wt influenza infections. Taken together, results from these studies identified the antigen-specific ASC frequency as a useful early biomarker of LAIV-induced B-cell immune response.  相似文献   

16.
Influenza is an economically important respiratory disease affecting swine world-wide with potential zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically distinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the increased rate of genetic change and a potential lack of cross-protection between vaccine strains and circulating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were administered an inactivated H1N2 vaccine with a human-like (δ-cluster) H1 six and three weeks before challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions. Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pandemic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do not share cross-reacting HI or SN antibodies.  相似文献   

17.
《Vaccine》2017,35(42):5666-5673
Influenza is a major respiratory pathogen and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV3) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoprotein, haemagglutinin (HA), play an important role in virus neutralization through different mechanism. The objective of this study was to dissect the HA specific antibody responses induced after LAIV3 immunization to the influenza A viruses in children and adults.Plasma was collected from 20 children and 20 adults pre- and post-LAIV3 vaccination (up to a year) and analysed by the haemagglutination inhibition (HI) and ELISA assays. We found that LAIV3 boosted the HA specific IgG response against the head and the full-length of H3N2 in children, but not adults. Adults had higher levels of pre-existing stalk antibodies (towards H3N2 and H1N1), but these were not boosted by LAIV3. Importantly, we observed a trend in boosting of H1N1 HA stalk specific antibodies in children after LAIV3. Whereas, heterosubtypic H5 and H7 full-length HA specific antibodies were not boosted in either children or adults. In conclusion, LAIV3 elicited H3-head and low levels of H1 stalk specific antibody responses in children, supporting the prophylactic use of LAIV in children.  相似文献   

18.
Avian influenza in poultry continues to be a great concern worldwide, and the currently licensed inactivated influenza vaccines are not effective against the novel strains of influenza virus that continue to emerge in the field. This warrants the development of more broadly protective influenza vaccines or vaccination regimens. Live attenuated influenza vaccines (LAIVs) and subunit vaccines derived from viral peptides, such as the highly conserved ectodomain of influenza virus matrix protein 2 (M2e), can offer a more broadly reactive immune response. In chickens, we previously showed that a chimeric norovirus P particle containing M2e (M2eP) could provide partial but broad immunity, when administered as a standalone vaccine, and also enhanced the protective efficacy of inactivated vaccine when used in a combination regimen. We also demonstrated that a naturally-selected NS1-truncated H7N3 LAIV (pc4-LAIV) was highly efficacious against antigenically distant heterologous H7N2 low pathogenicity avian influenza virus challenge, especially when used as the priming vaccine in a prime-boost vaccination regimen. In this study, we investigated the cross-subtype protective efficacy of pc4-LAIV in conjunction with M2eP using single vaccination, combined treatment, and prime-boost approaches. Chickens vaccinated with pc4-LAIV showed significant reduction of tracheal shedding of a low pathogenicity H5N2 challenge virus. This cross-subtype protective efficacy was further enhanced, during the initial stages of challenge virus replication, in chickens that received a vaccination regimen consisting of priming with pc4-LAIV at 1?day of age and boosting with M2eP. Further, H5N2-specific serum IgG and pc4-LAIV-specific hemagglutination-inhibition antibody titers were enhanced in LAIV-primed and M2eP boost-vaccinated chickens. Taken together, our data point to the need of further investigation into the benefits of combined and prime-boost vaccination schemes utilizing LAIV and epitope-based vaccines, to develop more broadly protective vaccination regimens.  相似文献   

19.
Because of the time required to identify and produce an antigenically well-matched pandemic vaccine, vaccines that offer broader cross-reactive immunity and protection are desirable. We have compared a live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) based on a related H5 hemagglutinin (HA) from a nonpathogenic avian influenza virus, A/Duck/Pottsdam/1042-6/86 (H5N2), for the ability to induce cross-reactive immunity and/or cross-protective efficacy against a contemporary highly pathogenic H5N1 viruses. Both LAIV and IIV provided cross-protection from systemic infection, severe disease, and death following lethal challenges with antigenically distinct A/Vietnam/1203/2004 (VN/1203) virus. Substantial levels of serum anti-VN/1203 HA IgG were detected in mice that received either IIV or LAIV, while nasal wash anti-VN/1203 HA IgA was detected in mice that received LAIV. Formulation of IIV with alum adjuvant augmented neutralizing antibody responses and protective efficacy. These results demonstrated that vaccination of mice with H5 IIV or LAIV induced a high degree of cross-protection from illness and death following lethal challenges with a heterologous H5N1 virus.  相似文献   

20.
《Vaccine》2019,37(37):5535-5543
Recent studies have suggested that among those receiving seasonal influenza vaccine (SIV), reduced immunogenicity is observed in recently vaccinated (RV; within the past season or 2) persons when compared with those not recently vaccinated (NRV). We performed a meta-analysis to assess the effect of recent immunization with SIV on serum H5 hemagglutination inhibition (HAI) antibody responses after influenza A/H5N1 vaccination using data from a series of randomized controlled trials. The primary outcome was seroconversion measured by HAI assays following receipt of 2 doses of H5N1 vaccine. The geometric mean titer (GMT) of serum HAI antibody after vaccination was the secondary outcome. Analyses were performed using propensity score (PS) matching. The PS for each individual in the meta-analysis cohort was calculated using logistic regression and covariates included age, gender, race, antigen dose, adjuvant, statin use and vaccine manufacturer. 2015 subjects enrolled in 7 clinical trials were eligible for inclusion in the meta-analysis cohort; among these, 915 (45%) were RV. 901 RV subjects were matched (1:1) with replacement to a subject who was NRV. Subjects who received SIV within the previous season were significantly less likely to seroconvert following H5N1 vaccination (adjusted odds ratio 0.76; 95%CI 0.60–0.96; p = 0.024), and the GMT was 18% higher among NRV subjects (GM ratio of HAI antibody 1.18; 95%CI 1.04–1.33; p = 0.008). Further work is needed to better define the effects of, and mechanisms contributing to, reduced immune responses to H5N1 vaccine among RV subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号