首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
The conventional method for measuring brain ATP synthesis is 31P saturation transfer (ST), a technique typically dependent on prolonged pre‐saturation with γ‐ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ‐ATP magnetization in the absence of B1 field following co‐inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ‐ATP reaction is 0.21 ± 0.04 s?1 and the ATP synthesis rate is 9.9 ± 2.1 mmol min?1 kg?1 in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable 31P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the 31P–31P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ? γ‐ATP. The sufficiently separated intra‐ and extracellular Pi signals also permit the distinction of pH between intra‐ and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative 31P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
31P magnetic resonance spectroscopy (31P MRS) can measure intracellular pH (pHi) using the chemical shift difference between pH‐dependent inorganic phosphate (Pi) and a pH‐independent reference peak. This study compared three different frequency reference peaks [phosphocreatine (PCr), α resonance of adenosine triphosphate (αATP) and water (using 1H MRS)] in a cohort of 10 volunteers and eight patients with non‐Hodgkin's lymphoma (NHL). Well‐resolved chemical shift imaging (CSI) spectra were acquired on a 1.5T scanner for muscle, liver and tumour. The pH was calculated for all volunteers and patients using the available methods. The consistency of the resulting pH was evaluated. The direct Pi–PCr method was best for those spectra with a very well‐defined PCr, such as muscle (pH=7.05 ± 0.02). In liver, the Pi–αATP method gave more consistent results (pH=7.30 ± 0.06) than the calibrated water‐based method (pH=7.27 ± 0.11). In NHL nodes, the measured pH using the Pi–αATP method was 7.25 ± 0.12. Given that the measured range includes some biological variation in individual patients, treatment‐related changes of the order of 0.1 pH units should be detectable. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

3.
Non‐invasive determination of mitochondrial content is an important objective in clinical and sports medicine. 31P MRS approaches to obtain information on this parameter at low field strength typically require in‐magnet exercise. Direct observation of the intra‐mitochondrial inorganic phosphate (Pi) pool in resting muscle would constitute an alternative, simpler method. In this study, we exploited the higher spectral resolution and signal‐to‐noise at 7T to investigate the MR visibility of this metabolite pool. 31P in vivo MR spectra of the resting soleus (SOL) muscle were obtained with 1H MR image‐guided surface coil localization (six volunteers) and of the SOL and tibialis anterior (TA) muscle using 2D CSI (five volunteers). A resonance at a frequency 0.38 ppm downfield from the cytosolic Pi resonance (Pi1; pH 7.0 ± 0.04) was reproducibly detected in the SOL muscle in all subjects and conditionally attributed to the intra‐mitochondrial Pi pool (Pi2; pH 7.3 ± 0.07). In the SOL muscle, the Pi2/Pi1 ratio was 1.6 times higher compared to the TA muscle in the same individual. Localized 3D CSI results showed that the Pi2 peak was present in voxels well away from blood vessels. Determination of the T1 of the two Pi pools in a single individual using adiabatic excitation of the spectral region around 5 ppm yielded estimates of 4.3 ± 0.4 s vs 1.4 ± 0.5 s for Pi1 and Pi2, respectively. Together, these results suggest that the intra‐mitochondrial Pi pool in resting human skeletal muscle may be visible with 31P MRS at high field. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's 1H MR spectroscopy (1H‐MRS) signal, reducing sensitivity to changes. While single‐voxel 1H‐MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1‐mm3 resolution MRI into GM, WM and CSF masks that were co‐registered with the MRSI grid to yield their partial volumes in approximately every 1 cm3 spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i‐ metabolite's GM and WM concentrations CiGM, CiWM. With the voxels' GM and WM volumes as independent coefficients, the over‐determined system of equations was solved for the global averaged CiGM and CiWM. Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N‐acetylaspartate, creatine, choline and myo‐inositol CiGM concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6mM, respectively, and CiWM concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5–10% (more for ratios), which can often double the sample size required to establish statistical significance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In vivo 31P MRS demonstrates that human melanoma xenografts in immunosuppressed mice treated with lonidamine (LND, 100 mg/kg intraperitoneally) exhibit a decrease in intracellular pH (pHi) from 6.90 ± 0.05 to 6.33 ± 0.10 (p < 0.001), a slight decrease in extracellular pH (pHe) from 7.00 ± 0.04 to 6.80 ± 0.07 (p > 0.05) and a monotonic decline in bioenergetics (nucleoside triphosphate/inorganic phosphate) of 66.8 ± 5.7% (p < 0.001) relative to the baseline level. Both bioenergetics and pHi decreases were sustained for at least 3 h following LND treatment. Liver exhibited a transient intracellular acidification by 0.2 ± 0.1 pH units (p > 0.05) at 20 min post‐LND, with no significant change in pHe and a small transient decrease in bioenergetics (32.9 ± 10.6%, p > 0.05) at 40 min post‐LND. No changes in pHi or adenosine triphosphate/inorganic phosphate were detected in the brain (pHi, bioenergetics; p > 0.1) or skeletal muscle (pHi, pHe, bioenergetics; p > 0.1) for at least 120 min post‐LND. Steady‐state tumor lactate monitored by 1H MRS with a selective multiquantum pulse sequence with Hadamard localization increased approximately three‐fold (p = 0.009). Treatment with LND increased the systemic melanoma response to melphalan (LPAM; 7.5 mg/kg intravenously), producing a growth delay of 19.9 ± 2.0 days (tumor doubling time, 6.15 ± 0.31 days; log10 cell kill, 0.975 ± 0.110; cell kill, 89.4 ± 2.2%) compared with LND alone of 1.1 ± 0.1 days and LPAM alone of 4.0 ± 0.0 days. The study demonstrates that the effects of LND on tumor pHi and bioenergetics may sensitize melanoma to pH‐dependent therapeutics, such as chemotherapy with alkylating agents or hyperthermia. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Measurement of tissue lactate using 1H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single‐voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (–CH) resonance and the 1.3 ppm –CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi‐LASER sequence was written (“FOCI‐LASER”, abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF‐fLASER, includes a selective multiple‐quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF‐fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple‐quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single‐voxel single‐shot MQF‐fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti‐cancer treatments as well as in measurements of tissue hypoxia. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

8.
Phosphorus MRS offers a non‐invasive tool for monitoring cell energy and phospholipid metabolism and can be of additional value in diagnosing cancer and monitoring cancer therapy. In this study, we determined the transverse relaxation times of a number of phosphorous metabolites in a group of breast cancer patients by adiabatic multi‐echo spectroscopic imaging at 7 T. The transverse relaxation times of phosphoethanolamine, phosphocholine, inorganic phosphate (Pi), glycerophosphocholine and glycerophosphatidylcholine were 184 ± 8 ms, 203 ± 17 ms, 87 ± 8 ms, 240 ± 56 ms and 20 ± 10 ms, respectively. The transverse relaxation time of Pi in breast cancer tissue was less than half that of healthy fibroglandular tissue. This effect is most likely caused by an up‐regulation of glycolysis in breast cancer tissue that leads to interaction of Pi with the GAPDH enzyme, which forms part of the reversible pathway of exchange of Pi with gamma‐adenosine tri‐phosphate, thus shortening its apparent transverse relaxation time. As healthy breast tissue shows very little glycolytic activity, the apparent T2 shortening of Pi due to malignant transformation could possibly be used as a biomarker for cancer.  相似文献   

9.
Phosphorus (31P) MRS, combined with saturation transfer (ST), provides non‐invasive insight into muscle energy metabolism. However, even at 7 T, the standard ST method with T1app measured by inversion recovery takes about 10 min, making it impractical for dynamic examinations. An alternative method, i.e. four‐angle saturation transfer (FAST), can shorten the examination time. The aim of this study was to test the feasibility, repeatability, and possible time resolution of the localized FAST technique measurement on an ultra‐high‐field MR system, to accelerate the measurement of both Pi‐to‐ATP and PCr‐to‐ATP reaction rates in the human gastrocnemius muscle and to test the feasibility of using the FAST method for dynamic measurements. We measured the exchange rates and metabolic fluxes in the gastrocnemius muscle of eight healthy subjects at 7 T with the depth‐resolved surface coil MRS (DRESS)‐localized FAST method. For comparison, a standard ST localized method was also used. The measurement time for the localized FAST experiment was 3.5 min compared with the 10 min for the standard localized ST experiment. In addition, in five healthy volunteers, Pi‐to‐ATP and PCr‐to‐ATP metabolic fluxes were measured in the gastrocnemius muscle at rest and during plantar flexion by the DRESS‐localized FAST method. The repeatability of PCr‐to‐ATP and Pi‐to‐ATP exchange rate constants, determined by the slab‐selective localized FAST method at 7 T, is high, as the coefficients of variation remained below 20%, and the results of the exchange rates measured with the FAST method are comparable to those measured with standard ST. During physical activity, the PCr‐to‐ATP metabolic flux decreased (from FCK = 8.21 ± 1.15 mM s?1 to FCK = 3.86 ± 1.38 mM s?1) and the Pi‐to‐ATP flux increased (from FATP = 0.43 ± 0.14 mM s?1 to FATP = 0.74 ± 0.13 mM s?1). In conclusion, we could demonstrate that measurements in the gastrocnemius muscle are feasible at rest and are short enough to be used during exercise with the DRESS‐localized FAST method at 7 T. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

10.
Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo 31P MRSI of creatine kinase (CK)‐expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by 1H MRS suffers from low signal‐to‐noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. 1H MRS and 31P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ‐ATP, pH and Pi/ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using 31P MRS to noninvasively monitor hepatocyte transplant success with CK‐expressing hepatocytes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The contribution of MRS(I) to the in vivo evaluation of cancer‐metabolism‐derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1‐13C] pyruvate (Pyr). Hot‐spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13C‐labelled ratio with respect to untreated or non‐responding tumour. For therapeutic agents inducing tumour hypoxia, the 13C‐labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2‐hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N‐acetylaspartate (plain ratio or CNI index)) or the whole 1H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.  相似文献   

12.
Here, we show that the sensitivity of 31P MRSI of 31P spins J‐coupled to protons can be increased by almost a factor of three when compared with an optimal direct detection free induction decay. By direct detection integrated with multi‐echo polarization transfer (DIMEPT), multiple signals from polarization transfer and direct detection can be acquired in one repetition time, with minimal mutual interference, provided that the number of refocusing pulses in the multi‐echo polarization transfer part is even. The DIMEPT sequence was implemented on a 7‐T body scanner and tested on a phantom and on the breasts of five healthy volunteers. The in vivo signal‐to‐noise ratio (SNR) enhancement for the J‐coupled phosphomonoesters was 270% when compared with an Ernst angle pulse‐acquire sequence. However, the phosphodiester signals, presumably mainly mobile phospholipids, had T2 values that were too short to be enhanced. Uncoupled 31P spins, with sufficiently long T2 values, such as inorganic phosphate, were SNR enhanced by a factor of 1.9 relative to an Ernst‐angle excitation pulse‐acquire sequence by multi‐echo direct detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Total N‐acetyl‐aspartate + N‐acetyl‐aspartate–glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS (1H–MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%–65% of the brain. Here we wish to demonstrate that non‐localized, whole‐head (WH) 1H–MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T1‐weighted MRI for tissue segmentation, non‐localizing, approximately 3 min WH 1H–MRS (TE/TR/TI = 5/10 1 /940 ms) and 30 min 1H–MR spectroscopic imaging (MRSI) (TE/TR = 35/2100 ms) in a 360 cm3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the “brain‐only” VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air‐tissue susceptibility‐driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non‐localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH‐1H‐MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders.  相似文献   

14.
1H MRS measurements of lactate are often confounded by overlapping lipid signals. Double‐quantum (DQ) filtering eliminates lipid signals and permits single‐shot measurements, which avoid subtraction artefacts in moving tissues. This study evaluated a single‐voxel‐localized DQ filtering method qualitatively and quantitatively for measuring lactate concentrations in the presence of lipid, using high‐grade brain tumours in which the results could be compared with standard acquisition as a reference. Paired standard acquisition and DQ‐filtered 1H MR spectra were acquired at 3T from patients receiving treatment for glioblastoma, using fLASER (localization by adiabatic selective refocusing using frequency offset corrected inversion pulses) single‐voxel localization. Data were acquired from 2 × 2 × 2 cm3 voxels, with a repetition time of 1 s and 128 averages (standard acquisition) or 256 averages (DQ‐filtered acquisition), requiring 2.15 and 4.3 min respectively. Of 37 evaluated data pairs, 20 cases (54%) had measureable lactate (fitted Cramér–Rao lower bounds ≤ 20%) in either the DQ‐filtered or the standard acquisition spectra. The measured DQ‐filtered lactate signal was consistently downfield of lipid (1.33 ± 0.03 ppm vs 1.22 ± 0.08 ppm; p = 0.002), showing that it was not caused by lipid breakthrough, and that it matched the lactate signal seen in standard measurements (1.36 ± 0.02 ppm). In the absence of lipid, similar lactate concentrations were measured by the two methods (mean ratio DQ filtered/standard acquisition = 1.10 ± 0.21). In 7/20 cases with measurable lactate, signal was not measureable in the standard acquisition owing to lipid overlap but was quantified in the DQ‐filtered acquisition. Conversely, lactate was undetected in seven DQ‐filtered acquisitions but visible using the standard acquisition. In conclusion, the DQ filtering method has proven robust in eliminating lipid and permits uncontaminated measurement of lactate. This is important validation prior to use in tissues outside the brain, which contain large amounts of lipid and which are often susceptible to motion.  相似文献   

15.
Phosphorus (31P) MRS is a powerful tool for the non‐invasive investigation of human liver metabolism. Four in vivo 31P localization approaches (single voxel image selected in vivo spectroscopy (3D‐ISIS), slab selective 1D‐ISIS, 2D chemical shift imaging (CSI), and 3D‐CSI) with different voxel volumes and acquisition times were demonstrated in nine healthy volunteers. Localization techniques provided comparable signal‐to‐noise ratios normalized for voxel volume and acquisition time differences, Cramer–Rao lower bounds (8.7 ± 3.3%1D‐ISIS, 7.6 ± 2.5%3D‐ISIS, 8.6 ± 4.2%2D‐CSI, 10.3 ± 2.7%3D‐CSI), and linewidths (50 ± 24 Hz1D‐ISIS, 34 ± 10 Hz3D‐ISIS, 33 ± 10 Hz2D‐CSI, 34 ± 11 Hz3D‐CSI). Longitudinal (T1) relaxation times of human liver metabolites at 7 T were assessed by 1D‐ISIS inversion recovery in the same volunteers (n = 9). T1 relaxation times of hepatic 31P metabolites at 7 T were the following: phosphorylethanolamine – 4.41 ± 1.55 s; phosphorylcholine – 3.74 ± 1.31 s; inorganic phosphate – 0.70 ± 0.33 s; glycerol 3‐phosphorylethanolamine – 6.19 ± 0.91 s; glycerol 3‐phosphorylcholine – 5.94 ± 0.73 s; γ‐adenosine triphosphate (ATP) – 0.50 ± 0.08 s; α‐ATP – 0.46 ± 0.07 s; β‐ATP – 0.56 ± 0.07 s. The improved spectral resolution at 7 T enabled separation of resonances in the phosphomonoester and phosphodiester spectral region as well as nicotinamide adenine dinucleotide and uridine diphosphoglucose signals. An additional resonance at 2.06 ppm previously assigned to phosphoenolpyruvate or phosphatidylcholine is also detectable. These are the first 31P metabolite relaxation time measurements at 7 T in human liver, and they will help in the exploration of new, exciting questions in metabolic research with 7 T MR. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In vivo water‐ and fat‐suppressed 1H magnetic resonance spectroscopy (MRS) and 31P magnetic resonance adiabatic multi‐echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31P metabolites were determined, and the reproducibility of 1H and 31P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi‐exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi‐exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ‐ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono‐exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1H total choline (tChol) and the 31P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31P MRS imaging was superior to the reproducibility of 1H MRS for tChol. 1H and 31P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.  相似文献   

17.
Xiang Y  Shen J 《NMR in biomedicine》2011,24(9):1054-1062
In this study, in vivo 13C MRS was used to investigate the labeling of brain metabolites after intravenous administration of [1‐13C]ethanol. After [1‐13C]ethanol had been administered systemically to rats, 13C labels were detected in glutamate, glutamine and aspartate in the carboxylic and amide carbon spectral region. 13C‐labeled bicarbonate HCO (161.0 ppm) was also detected. Saturating acetaldehyde C1 at 207.0 ppm was found to have no effect on the ethanol C1 (57.7 ppm) signal intensity after extensive signal averaging, providing direct in vivo evidence that direct metabolism of alcohol by brain tissue is minimal. To compare the labeling of brain metabolites by ethanol with labeling by glucose, in vivo time course data were acquired during intravenous co‐infusion of [1‐13C]ethanol and [13C6]‐D ‐glucose. In contrast with labeling by [13C6]‐D ‐glucose, which produced doublets of carboxylic/amide carbons with a J coupling constant of 51 Hz, the simultaneously detected glutamate and glutamine singlets were labeled by [1‐13C]ethanol. As 13C labels originating from ethanol enter the brain after being converted into [1‐13C]acetate in the liver, and the direct metabolism of ethanol by brain tissue is negligible, it is suggested that orally or intragastrically administered 13C‐labeled ethanol may be used to study brain metabolism and glutamatergic neurotransmission in investigations involving alcohol administration. In vivo 13C MRS of rat brain following intragastric administration of 13C‐labeled ethanol is demonstrated. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

18.
MRS of 13C4‐labelled glutamate (13C4‐Glu) during an infusion of a carbon‐13 (13C)‐labelled substrate, such as uniformly labelled glucose ([U‐13C6]‐Glc), provides a measure of Glc metabolism. The presented work provides a single‐shot indirect 13C detection technique to quantify the approximately 2.51 ppm 13C4‐Glu satellite proton (1H) peak at 9.4 T. The methodology is an optimized point‐resolved spectroscopy (PRESS) sequence that minimizes signal contamination from the strongly coupled protons of N‐acetylaspartate (NAA), which resonate at approximately 2.49 ppm. J‐coupling evolution of protons was characterized numerically and verified experimentally. A (TE1, TE2) combination of (20 ms, 106 ms) was found to be suitable for minimizing NAA signal in the 2.51 ppm 1H 13C4‐Glu spectral region, while retaining the 13C4‐Glu 1H satellite peak. The efficacy of the technique was verified on phantom solutions and on two rat brains in vivo during an infusion of [U‐13C6]‐Glc. LCModel was employed for analysis of the in vivo spectra to quantify the 2.51 ppm 1H 13C4‐Glu signal to obtain Glu C4 fractional enrichment time courses during the infusions. Cramér‐Rao lower bounds of about 8% were obtained for the 2.51 ppm 13C4‐Glu 1H satellite peak with the optimal TE combination.  相似文献   

19.
Short‐TE 1H MRS has great potential for brain cancer diagnostics. A major difficulty in the analysis of the spectra is the contribution from short‐T2 signal components, mainly coming from mobile lipids. This complicates the accurate estimation of the spectral parameters of the resonance lines from metabolites, so that a qualitative to semi‐quantitative interpretation of the spectra dominates in practice. One solution to overcome this difficulty is to measure and estimate the short‐T2 signal component and to subtract it from the total signal, thus leaving only the metabolite signals. The technique works well when applied to spectra obtained from healthy individuals, but requires some optimisation during data acquisition. In the clinical setting, time constraints hardly allow this. Here, we propose an iterative estimation of the short‐T2 signal component, acquired in a single acquisition after measurement of the full spectrum. The method is based on QUEST (quantitation based on quantum estimation) and allows the refinement of the estimate of the short‐T2 signal component after measurement. Thus, acquisition protocols used on healthy volunteers can also be used on patients without further optimisation. The aim is to improve metabolite detection and, ultimately, to enable the estimation of the glutamine and glutamate signals distinctly. These two metabolites are of great interest in the characterisation of brain cancer, gliomas in particular. When applied to spectra from healthy volunteers, the new algorithm yields similar results to QUEST and direct subtraction of the short‐T2 signal component. With patients, up to 12 metabolites and, at least, seven can be quantified in each individual brain tumour spectrum, depending on the metabolic state of the tumour. The refinement of the short‐T2 signal component significantly improves the fitting procedure and produces a separate short‐T2 signal component that can be used for the analysis of mobile lipid resonances. Thus, in brain tumour spectra, distinct estimates of signals from glutamate and glutamine are possible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
An adiabatic multi‐echo spectroscopic imaging (AMESING) sequence, used for 31P MRSI, with spherical k‐space sampling and compensated phase‐encoding gradients, was implemented on a whole‐body 7‐T MR system. One free induction decay (FID) and up to five symmetric echoes can be acquired with this sequence. In tissues with low T2* and high T2, this can theoretically lead to a potential maximum signal‐to‐noise ratio (SNR) increase of almost a factor of three, compared with a conventional FID acquisition with Ernst‐angle excitation. However, with T2 values being, in practice, ≤400 ms, a maximum enhancement of approximately two compared with low flip Ernst‐angle excitation should be feasible. The multi‐echo sequence enables the determination of localized T2 values, and was validated with 31P three‐dimensional MRSI on the calf muscle and breast of a healthy volunteer, and subsequently applied in a patient with breast cancer. The T2 values of phosphocreatine, phosphodiesters (PDE) and inorganic phosphate in calf muscle were 193 ± 5 ms, 375 ± 44 ms and 96 ± 10 ms, respectively, and the apparent T2 value of γ‐ATP was 25 ± 6 ms. A T2 value of 136 ± 15 ms for inorganic phosphate was measured in glandular breast tissue of a healthy volunteer. The T2 values of phosphomonoesters (PME) and PDE in breast cancer tissue (ductulolobular carcinoma) ranged between 170 and 210 ms, and the PME to PDE ratios were calculated to be phosphoethanolamine/glycerophosphoethanolamine = 2.7, phosphocholine/glycerophosphocholine = 1.8 and PME/PDE = 2.3. Considering the relatively short T2* values of the metabolites in breast tissue at 7 T, the echo spacing can be short without compromising spectral resolution, whilst maximizing the sensitivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号