首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 6 毫秒
1.
2.
The purpose of this study was to evaluate the feasibility of an eight‐channel dual‐tuned transceiver surface RF coil array for combined 1H/19F MR of the human knee at 7.0 T following application of 19F‐containing drugs. The 1H/19F RF coil array includes a posterior module with two 1H loop elements and two anterior modules, each consisting of one 1H and two 19F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized 19F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) – a 19F‐containing non‐steroidal anti‐inflammatory drug – to determine T1 and T2 and to study the 19F signal‐to‐dose relationship. The suitability of the proposed approach for 1H/19F MR was examined in healthy subjects. Reflection coefficients of each channel were less than ?17 dB and coupling between channels was less than ?11 dB. QL/QU was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1/T2 = 673/31 ms at 101 mmol/L and T1/T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in‐plane spatial resolution of (1.5 × 1.5) mm2 achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined 1H/19F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real‐time bioavailability studies and quantification of 19F‐containing medicinal compounds in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The ability to perform small animal functional cardiac imaging on clinical MRI scanners may be of particular value in cases in which the availability of a dedicated high field animal MRI scanner is limited. Here, we propose radial MR cardiac imaging in the rat on a whole‐body clinical 3 T scanner in combination with interspersed projection navigators for self‐gating without any additional external triggering requirements for electrocardiogram (ECG) and respiration. Single navigator readouts were interspersed using the same TR and a high navigator frequency of 54 Hz into a radial golden‐angle acquisition. The extracted navigator function was thresholded to exclude data for reconstruction from inhalation phases during the breathing cycle, enabling free breathing acquisition. To minimize flow artifacts in the dynamic cine images a center‐out half echo radial acquisition scheme with ramp sampling was used. Navigator functions were derived from the corresponding projection navigator data from which both respiration and cardiac cycles were extracted. Self‐gated cine acquisition resulted in high‐quality cardiac images which were free of major artifacts with spatial resolution of up to 0.21 × 0.21 × 1.00 mm3 and a contrast‐to‐noise ratio (CNR) of 21 ± 3 between the myocardium and left ventricle. Self‐gated golden ratio based radial acquisition successfully acquired cine images of the rat heart on a clinical MRI system without the need for dedicated animal ECG equipment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Self‐administered acupressure has potential as a low‐cost alternative treatment for insomnia. To evaluate the short‐term effects of self‐administered acupressure for alleviating insomnia, a pilot randomized controlled trial was conducted. Thirty‐one subjects (mean age: 53.2 years; 77.4% female) with insomnia disorder were recruited from a community. The participants were randomized to receive two lessons on either self‐administered acupressure or sleep hygiene education. The subjects in the self‐administered acupressure group (n = 15) were taught to practise self‐administered acupressure daily for 4 weeks. The subjects in the comparison group (n = 16) were advised to follow sleep hygiene education. The primary outcome was the Insomnia Severity Index (ISI). Other measures included a sleep diary, Hospital Anxiety and Depression Scale and Short‐form Six‐Dimension. The subjects in the self‐administered acupressure group had a significantly lower ISI score than the subjects in the sleep hygiene education group at week 8 (effect size = 0.56, P = 0.03). However, this observed group difference did not reach a statistically significant level after Bonferroni correction. With regard to the secondary outcomes, moderate between‐group effect sizes were observed in sleep onset latency and wake after sleep onset based on the sleep diary, although the differences were not significant. The adherence to self‐administered acupressure practice was satisfactory, with 92.3% of the subjects who completed the lessons still practising acupressure at week 8. In conclusion, self‐administered acupressure taught in a short training course may be a feasible approach to improve insomnia. Further fully powered confirmatory trials are warranted.  相似文献   

5.
Self‐healing UV‐cured polymeric materials based on ionic interactions possess many distinct advantages such as reliability, long lifetime, and green preparation process, and thus obtain great potential development. In this work, a series of UV‐curable imidazolium monomers with different structures are designed and synthesized, and then imidazolium ionic interaction‐based self‐healing materials are prepared through fast and eco‐friendly UV‐curing technology. Also, the structures of imidazolium monomers on properties of self‐healing UV‐cured polymers are investigated. The results show that the structures of imidazolium monomers have no obvious influences on photopolymerization properties of the polymers. The hydroxyl group and polar ether chains in imidazolium monomers can increase the glass transition temperature (Tg) of the polymers. The large substituent at 1‐position of the imidazole ring enhances tensile strain of the polymers due to the reduction of the intermolecular force. The intermolecular forces and content of imidazole ionic groups all affect self‐healing efficiency of the polymers. The polymer containing HD‐IM‐E with a long and nonpolar pendent side chains exhibits an excellent self‐healing efficiency (>90%) and can be healed repeatedly. Importantly, the self‐healing polymer can also be used as a flexible electronic substrate to fabricate a flexible electronic device with good self‐healing function.  相似文献   

6.
7.
We examine a previously published branch‐based approach for modeling airway diameters that is predicated on the assumption of self‐consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that take account of error. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys, and one ozone‐exposed monkey. Our results showed substantial departures from self‐consistency in all five subjects. When departures from self‐consistency exist, we do not recommend using the self‐consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. The new variance model can be used instead. Measurement error has an important impact on the estimated morphometry models and needs to be addressed in the analysis. Anat Rec,, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Acute kidney injury of various origins shares a common link in the pathophysiological chain of events: imbalance between renal medullary oxygen delivery and oxygen demand. For in vivo assessment of kidney haemodynamics and oxygenation in animals, quantitative but invasive physiological methods are established. A very limited number of studies attempted to link these invasive methods with parametric Magnetic Resonance Imaging (MRI) of the kidney. Moreover, the validity of parametric MRI (pMRI) as a surrogate marker for renal tissue perfusion and renal oxygenation has not been systematically examined yet. For this reason, we set out to combine invasive techniques and non‐invasive MRI in an integrated hybrid setup (MR‐PHYSIOL) with the ultimate goal to calibrate, monitor and interpret parametric MR and physiological parameters by means of standardized interventions. Here we present a first report on the current status of this multi‐modality approach. For this purpose, we first highlight key characteristics of renal perfusion and oxygenation. Second, concepts for in vivo characterization of renal perfusion and oxygenation are surveyed together with the capabilities of MRI for probing blood oxygenation‐dependent tissue stages. Practical concerns evoked by the use of strong magnetic fields in MRI and interferences between MRI and invasive physiological probes are discussed. Technical solutions that balance the needs of in vivo physiological measurements together with the constraints dictated by small bore MR scanners are presented. An early implementation of the integrated MR‐PHYSIOL approach is demonstrated including brief interventions of hypoxia and hyperoxia.  相似文献   

9.
10.
Overhauser‐enhanced MRI (OMRI) is an electron‐proton double‐resonance imaging technique of interest for its ability to non‐invasively measure the concentration and distribution of free radicals. In vivo OMRI experiments are typically undertaken at ultra‐low magnetic field (ULF), as both RF power absorption and penetration issues—a consequence of the high resonance frequencies of electron spins—are mitigated. However, working at ULF causes a drastic reduction in MRI sensitivity. Here, we report on the design, construction and performance of an OMRI platform optimized for high NMR sensitivity and low RF power absorbance, exploring challenges unique to probe design in the ULF regime. We use this platform to demonstrate dynamic imaging of TEMPOL in a rat model. The work presented here demonstrates improved speed and sensitivity of in vivo OMRI, extending the scope of OMRI to the study of dynamic processes such as metabolism.  相似文献   

11.
We have developed a 3D cell/tissue culture bioreactor compatible with hyperpolarized (HP) 13C MR and interrogated HP [1‐13C]lactate production and efflux in human renal cell carcinoma (RCC) cells. This platform is capable of resolving intracellular and extracellular HP lactate pools, allowing the kinetic measurement of lactate production and efflux in the context of cancer aggressiveness and response to therapy. HP 13C MR studies were performed on three immortalized human renal cell lines: HK2, a normal renal proximal tubule cell line from which a majority of RCCs arise, UMRC6, a cell line derived from a localized RCC, and UOK262, an aggressive and metastatic RCC. The intra‐ (Lacin) and extracellular (Lacex) HP lactate signals were robustly resolved in dynamic 13C spectra of the cell lines due to a very small but reproducible chemical shift difference (0.031 ± 0.0005 ppm). Following HP [1‐13C]pyruvate delivery, the ratio of HP Lacin/Lacex was significantly lower for UOK262 cells compared with both UMRC6 and HK2 cells due to a significant (p < 0.05) increase in the Lacex pool size. Lacin/Lacex correlated with the MCT4 mRNA expression of the cell lines, and inhibition of MCT4 transport using DIDS resulted in a significant reduction in the HP Lacex pool size. The extension of these studies to living patient‐derived RCC tissue slices using HP [1,2‐13C2]pyruvate demonstrated a similarly split lactate doublet with a high Lacex pool fraction; in contrast, only a single NMR resonance is noted for HP [5‐13C]glutamate, consistent with intracellular localization. These studies support the importance of lactate efflux as a biomarker of cancer aggressiveness and metastatic potential, and the utility of the MR compatible 3D cell/tissue culture bioreactor to study not only cellular metabolism but also transport. Additionally, this platform offers a sophisticated way to follow therapeutic interventions and screen novel therapies that target lactate export. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号