首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Purpose:

To compare the diagnostic accuracy of superparamagnetic iron oxide (SPIO)‐enhanced fluid‐attenuated inversion‐recovery echo‐planar imaging (FLAIR EPI) for malignant liver tumors with that of T2‐weighted turbo spin‐echo (TSE), T2*‐weighted gradient‐echo (GRE), and diffusion‐weighted echo‐planar imaging (DW EPI).

Materials and Methods:

SPIO‐enhanced magnetic resonance imaging (MRI) that included FLAIR EPI, T2‐weighted TSE, T2*‐weighted GRE, and DW EPI sequences was performed using a 3 T system in 54 consecutive patients who underwent surgical exploration with intraoperative ultrasonography. A total of 88 malignant liver tumors were evaluated. Images were reviewed independently by two blinded observers who used a 5‐point confidence scale to identify lesions. Results were correlated with results of histopathologic findings and surgical exploration with intraoperative ultrasonography. The accuracy of each MRI sequence was measured with jackknife alternative free‐response receiver operating characteristic analysis. The sensitivity of each observer with each MRI sequence was compared with McNemar's test.

Results:

Accuracy values were significantly higher with FLAIR EPI sequence (0.93) than with T2*‐weighted GRE (0.80) or DW EPI sequences (0.80) (P < 0.05). Sensitivity was significantly higher with the FLAIR EPI sequence than with any of the other sequences.

Conclusion:

SPIO‐enhanced FLAIR EPI sequence was more accurate in the diagnosis of malignant liver tumors than T2*‐weighted GRE and DW EPI sequences. SPIO‐enhanced FLAIR EPI sequence is helpful for the detection of malignant liver tumors. J. Magn. Reson. Imaging 2010;31:607–616. ©2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
Conventional T2‐weighted turbo/fast spin echo imaging is clinically accepted as the most sensitive method to detect brain lesions but generates a high signal intensity of cerebrospinal fluid (CSF), yielding diagnostic ambiguity for lesions close to CSF. Fluid‐attenuated inversion recovery can be an alternative, selectively eliminating CSF signals. However, a long time of inversion, which is required for CSF suppression, increases imaging time substantially and thereby limits spatial resolution. The purpose of this work is to develop a phase‐sensitive, dual‐acquisition, single‐slab, three‐dimensional, turbo/fast spin echo imaging, simultaneously achieving both conventional T2‐weighted and fluid‐attenuated inversion recovery–like high‐resolution whole‐brain images in a single pulse sequence, without an apparent increase of imaging time. Dual acquisition in each time of repetition is performed, wherein an in phase between CSF and brain tissues is achieved in the first acquisition, while an opposed phase, which is established by a sequence of a long refocusing pulse train with variable flip angles, a composite flip‐down restore pulse train, and a short time of delay, is attained in the second acquisition. A CSF‐suppressed image is then reconstructed by weighted averaging the in‐ and opposed‐phase images. Numerical simulations and in vivo experiments are performed, demonstrating that this single pulse sequence may replace both conventional T2‐weighted imaging and fluid‐attenuated inversion recovery. Magn Reson Med 63:1422–1430, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
Phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo imaging was recently introduced, producing high‐resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted‐averaging‐based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal‐to‐noise ratio‐optimized version of the phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three‐step prescribed signal evolution while those in the second acquisition are calculated using a two‐step pseudo‐steady state signal transition with a high flip‐angle pseudo‐steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip‐angle pseudo‐steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase‐sensitive dual‐acquisition single‐slab three‐dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal‐to‐noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid‐attenuated imaging. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
11.
12.
For the purpose of visualizing low‐flow as well as high‐flow blood vessels without using contrast agents, we propose a new technique called a hybrid of opposite‐contrast MR angiography (HOP‐MRA). HOP‐MRA is a combination of standard time‐of‐flight (TOF) using a full first‐order velocity‐compensation for white‐blood (WB) and flow‐sensitive black‐blood (FSBB) techniques, which use motion‐probing gradients to introduce intravoxel flow dephasing. A dual‐echo three‐dimensional gradient echo sequence was used to reduce both imaging time and misregistration. HOP‐MRA images were obtained using a simple‐weighted subtraction (SWS) or a frequency‐weighted subtraction (FWS) applying different spatial filtering for WB and BB images. We then assessed the relationships among the contrast‐to‐noise ratios (CNR) of the blood‐to‐background signals for those three images. In both volunteer and clinical brain studies, low‐flow vessels were well visualized and the background signal was well suppressed by HOP‐MRA compared with standard TOF‐ or BB‐MRA. The FWS was better than the SWS when whole‐maximum intensity projection was performed on a larger volume including with different types of tissue. The proposed HOP‐MRA was proven to visualize low‐flow to high‐flow vessels and, therefore, demonstrates excellent potential to become a clinically useful technique, especially for visualizing collateral vessels which is difficult with standard TOF‐MRA. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The potential signal‐to‐noise ratio (SNR) gain at ultrahigh field strengths offers the promise of higher image resolution in single‐shot diffusion‐weighted echo‐planar imaging the challenge being reduced T2 and T2* relaxation times and increased B0 inhomogeneity which lead to geometric distortions and image blurring. These can be addressed using parallel imaging (PI) methods for which a greater range of feasible reduction factors has been predicted at ultrahigh field strengths—the tradeoff being an associated SNR loss. Using comprehensive simulations, the SNR of high‐resolution diffusion‐weighted echo‐planar imaging in combination with spin‐echo and stimulated‐echo acquisition is explored at 7 T and compared to 3 T. To this end, PI performance is simulated for coil arrays with a variable number of circular coil elements. Beyond that, simulations of the point spread function are performed to investigate the actual image resolution. When higher PI reduction factors are applied at 7 T to address increased image distortions, high‐resolution imaging benefits SNR‐wise only at relatively low PI reduction factors. On the contrary, it features generally higher image resolutions than at 3 T due to smaller point spread functions. The SNR simulations are confirmed by phantom experiments. Finally, high‐resolution in vivo images of a healthy volunteer are presented which demonstrate the feasibility of higher PI reduction factors at 7 T in practice. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

14.

Purpose

To compare and evaluate images acquired with two different MR angiography (MRA) sequences, three‐dimensional (3D) half‐Fourier fast spin‐echo (FSE) and 3D true steady‐state free‐precession (SSFP) combined with two time‐spatial labeling inversion pulses (T‐SLIPs), for selective and non‐contrast‐enhanced (non‐CE) visualization of the portal vein.

Materials and Methods

Twenty healthy volunteers were examined using half‐Fourier FSE and true SSFP sequences on a 1.5T MRI system with two T‐SLIPs, one placed on the liver and thorax, and the other on the lower abdomen. For quantitative analysis, vessel‐to‐liver contrast (Cv‐l) ratios of the main portal vein (MPV), right portal vein (RPV), and left portal vein (LPV) were measured. The quality of visualization was also evaluated.

Results

In both pulse sequences, selective visualization of the portal vein was successfully conducted in all 20 volunteers. Quantitative evaluation showed significantly better Cv‐l at the RPVs and LPVs in half‐Fourier FSE (P < 0.0001). At the MPV, Cv‐l was better in true SSFP, but was not statistically different. Visualization scores were significantly better only at branches of segments four and eight for half‐Fourier FSE (P = 0.001 and 0.03, respectively).

Conclusion

Both 3D half‐Fourier FSE and true SSFP scans with T‐SLIPs enabled selective non‐CE visualization of the portal vein. Half‐Fourier FSE was considered appropriate for intrahepatic portal vein visualization, and true SSFP may be preferable when visualization of the MPV is required. J. Magn. Reson. Imaging 2009;29:1140–1146. © 2009 Wiley‐Liss, Inc.  相似文献   

15.

Purpose:

To demonstrate the feasibility of two‐dimensional selective radio frequency (2DRF) excitations for fast‐spin‐echo imaging of inner fields‐of‐view (FOVs) in order to shorten acquisitions times, decrease RF energy deposition, and reduce image blurring.

Materials and Methods:

Fast‐spin‐echo images (in‐plane resolution 1.0 × 1.0 mm2 or 0.5 × 1.0 mm2) of inner FOVs (40 mm, 16 mm oversampling) were obtained in phantoms and healthy volunteers on a 3 T whole‐body MR system using blipped‐planar 2DRF excitations.

Results:

Positioning the unwanted side excitations in the blind spot between the image section and the slice stack to measure yields minimum 2DRF pulse durations (about 6 msec) that are compatible with typical echo spacings of fast‐spin‐echo acquisitions. For the inner FOVs, the number of echoes and refocusing RF pulses is considerably reduced which compared to a full FOV (182 mm) reduces the RF energy deposition by about a factor of three and shortens the acquisition time, e.g., from 39 seconds to 12 seconds for a turbo factor of 15 or from 900 msec to 280 msec for a single‐shot acquisition, respectively. Furthermore, image blurring occurring for high turbo factors as in single‐shot acquisitions is considerably reduced yielding effectively higher in‐plane resolutions.

Conclusion:

Inner‐FOV acquisitions using 2DRF excitations may help to shorten acquisitions times, ameliorate image blurring, and reduce specific absorption rate (SAR) limitations of fast‐spin‐echo (FSE) imaging, in particular at higher static magnetic fields. J. Magn. Reson. Imaging 2010;31:1530–1537. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
There is increasing interest in the J‐PRESS technique, an in vivo implementation of two‐dimensional J‐spectroscopy combined with PRESS localization, for high‐field spectroscopy studies of the human brain. The experiment is designed to resolve scalar couplings in the second, indirectly detected dimension, but will only do so if the slice‐selective refocusing pulses in the PRESS sequence affect all coupled spins equally. At high magnet field strengths, due to limited RF pulse bandwidth, PRESS‐based localization results in spatially dependent evolution of coupling. In some regions of the localized volume, coupling evolves during the PRESS echo time, while in other regions it may be partially or fully refocused. This study investigates the impact of this effect on the appearance of the J‐PRESS spectrum for coupled spins, focusing on two commonly observed metabolites, lactate and N‐acetyl aspartate, showing that such behavior results in additional peaks in the J‐resolved spectrum (termed J‐refocused peaks). It is also demonstrated that increasing the bandwidth of refocusing pulses significantly reduces the size of such signals. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号