共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic inhalation of 2-butoxyethanol resulted in an increase in liver hemangiosarcomas and hepatic carcinomas in male mouse liver. No increase in liver neoplasia was observed in similarly exposed male and female rats or female mice. We proposed that the production of liver neoplasia in the male mouse is the result of oxidative damage secondary to the hemolytic deposition of iron in the liver. This occurs selectively in the male mouse and leads either directly or indirectly to liver neoplasia. To address this proposal, male B6C3F1 mice and male F344 rats were treated with 2-butoxyethanol (via daily gavage; five times per week) at doses of 0, 225, 450, and 900 mg/kg/day (mice) and 0, 225, and 450 mg/kg/day (rats) respectively. Following treatment for 7, 14, 28, and 90 days, DNA synthesis, oxidative damage, hematocrit, and iron deposition were measured in the livers. An increase in hemolysis (measured by a decrease in hematocrit and increase in relative spleen weight) was observed in 2-butoxyethanol-treated rats and mice in a dose-dependent manner. An increase in the percentage of iron-stained Kupffer cells was observed following treatment with 450 and 900 mg/kg of 2-butoxyethanol in mice and 225 and 450 mg/kg of 2-butoxyethanol in rats. A biphasic increase in oxidative damage (8-hydroxydeoxyguanosine and malondialdehyde) was seen in mouse liver after 7 and 90 days of treatment with 2-butoxyethanol, whereas no increases were observed in treated rat liver. Vitamin E levels were reduced by 2-butoxyethanol treatment in both mice and rat liver; however, the basal level of vitamin E was approximately 2.5-fold higher in rat than in mouse liver. A similar biphasic induction of DNA synthesis was seen following 2-butoxyethanol treatment in the mouse. In the mouse liver, increased DNA synthesis was observed in hepatocytes at 90 days and in endothelial cells at 7 and 14 days at all doses. No change in DNA synthesis was seen in 2-butoxyethanol-treated rat liver. No apparent differences in apoptosis and mitosis in the liver were observed in mouse and rat liver between 2-butoxyethanol treatment groups and untreated controls. These results suggest that DNA synthesis, possibly from oxidative stress or Kupffer cell activation, occurs selectively in the mouse liver, primarily in endothelial cells (a target of 2-butoxyethanol neoplasia), following exposure to 2-butoxyethanol. 相似文献
2.
Morphological transformation by 8-hydroxy-2'-deoxyguanosine in Syrian hamster embryo (SHE) cells. 总被引:2,自引:0,他引:2
8-Hydroxy-2'-deoxyguanosine (OH8dG) is one of the most prevalent oxidative DNA modifications found in eukaryotic cells. Previous studies have suggested an association between OH8dG formation and carcinogenesis. However, it is unclear whether OH8dG formation results in the necessary genotoxic events for cancer development. In the present study, the formation of OH8dG and its ability to transform Syrian hamster embryo (SHE) cells was examined. Methylene blue, a photosensitizer that in the presence of light can generate singlet oxygen by a type II mechanism, was used to produce oxidative DNA damage (predominantly OH8dG) in SHE cells. Photoactivated methylene blue produced a dose-dependent increase in OH8dG as well as a dose-dependent increase in morphological transformation in SHE cells. SHE cells transfected with DNA that contained increasing concentrations of OH8dG displayed a dose-dependent increase in morphological transformation. Treatment with beta-carotene (a singlet oxygen quencher) inhibited both the formation of OH8dG and the induction of morphological transformation in photoactivated methylene blue-treated SHE cells. These results suggest that formation of OH8dG can induce morphological transformation and provide further support for a role of OH8dG formation in the carcinogenesis process. 相似文献
3.
Lisa M Kamendulis Haizhou Zhang Yanhong Wang James E Klaunig 《Toxicological sciences》2002,68(2):437-443
Cyanide is a well-established poison known for its rapid lethal action and toxicity. Although long-term mammalian studies examining the carcinogenic potential of cyanide have not been previously reported, cyanide was reported to be positive in Salmonella typhimurium mutagenesis assay and induced aneuploidy in DROSOPHILA: To further evaluate the carcinogenic potential of cyanide, the ability of cyanide to induce morphological transformation in Syrian hamster embryo (SHE) cells was studied. Cyanide induced a dose-dependent increase in morphological transformation in SHE cells following a 7-day continuous treatment. A significant increase in transformation was observed at potassium cyanide doses of 200 microM and greater. Transformation induced by cyanide was inhibited in a dose-related manner by vitamin E, suggesting a role of oxidative stress in the induction of morphological transformation by cyanide. Further, it was shown that 500 microM cyanide induced oxidative DNA damage in SHE cells, evidenced by the formation of 8-hydroxy-2'-deoxyguanosine (50-66% increase over control). The induction of oxidative stress by cyanide involved an early and temporal inhibition of antioxidant enzymes (catalase and superoxide dismutase) as well as an increased production of reactive oxygen species (1.5- to 2.0-fold over control). 相似文献
4.
Torka S Poet Jolen J Soelberg Karl K Weitz Terryl J Mast Rodney A Miller Brian D Thrall Richard A Corley 《Toxicological sciences》2003,71(2):176-189
Chronic inhalation studies with 2-butoxyethanol (BE) conducted by the National Toxicology Program identified the forestomach and liver of B6C3F1 mice as target organs for tumorigenicity (NTP, 2000). Previous studies have shown that the liver tumors likely resulted from chronic hemolysis-induced oxidative stress. For the forestomach lesions seen in mice, chronic contact irritation (cytotoxicity) and regenerative hyperplasia are hypothesized to result in forestomach tumor development. To test this hypothesis, several experiments were conducted to address the sensitivity of the mouse forestomach to BE administered by various routes. Oral administration of undiluted BE was shown to cause irritation and a compensatory proliferative response in the mouse forestomach, confirming that direct contact between the forestomach and BE, which can occur via grooming of BE condensed on the fur during inhalation exposures, can cause irritation. However, only small amounts of BE (<10 mg/kg) were detected on the fur of mice at the end of 6-h, whole-body or nose-only inhalation exposures to the highest concentration used in the NTP chronic inhalation studies (250 ppm). Furthermore, no significant differences were detected in the end-exposure blood concentrations of BE and butoxyacetic acid (BAA) between these types of exposures. In addition, parenteral administration of BE (ip and sc injection) also resulted in forestomach lesions, indicating that there may be sources other than grooming for BE- or BAA-induced forestomach irritation. In the pharmacokinetic study, BE and, to a lesser extent, BAA was eliminated more slowly from the forestomach tissue of mice than from blood or other tissues, following either oral gavage or ip injection. The forestomach was the only tissue with detectable levels of BE at 24 h. BE and BAA were both excreted in the saliva and were present in stomach contents for a prolonged period of time following these routes of exposure, which may further contribute to forestomach tissue dosimetry. Thus, there appear to be multiple mechanisms behind the increased levels of BE and BAA in the forestomach tissue of mice, which together can contribute to a prolonged contact irritation, compensatory hyperplasia, and tumorigenicity in mice. The relevance of these effects in humans, who lack a forestomach, is questionable. 相似文献
5.
Priming dose of phenylhydrazine protects against hemolytic and lethal effects of 2-butoxyethanol 总被引:1,自引:1,他引:0
Protection against a high dose of a toxicant by prior exposure to another toxicant is called heteroprotection. Our objective was to establish a heteroprotection model in RBCs. Female Sprague Dawley rats treated with an LD90 dose of 2-butoxyethanol (BE, 1500 mg/kg in water, 5 ml/kg po) 14 days after priming with 0.9% NaCl suffered 90% mortality by 15 days, whereas all rats receiving the LD90 dose of BE 14 days after priming with phenylhydrazine (PHZ, 125 mg/kg in 0.9% NaCl, 3 ml/kg po) survived. Hematocrit decreased from normal 45% to 24% by day 3 after PHZ priming and improved thereafter. Increasing the time interval between the priming and LD90 dose to 21 days abolished the heteroprotection. RBCs obtained on days 7 and 14 after PHZ priming unlike those on day 21 were resilient to the hemotoxic metabolite of BE, butoxyacetic acid (BAA). Unaltered hepatic alcohol and aldehyde dehydrogenase activities upon PHZ priming suggested that bioactivation of BE to BAA was unaffected. Lower renal (6 and 12 h) and hepatic (12 h) BAA levels and 3 fold higher excretion of BAA in PHZ-primed rat urine suggested a protective role of toxicokinetics. Higher erythropoietin, reticulocytes, and resiliency of PHZ-primed rat RBCs indicated that newly formed RBCs are resilient to hemolytic BAA. The antioxidant levels in the PHZ-primed rat RBCs did not indicate a protective role in heteroprotection. In conclusion, the resistance of PHZ-primed rats against BE-induced hemotoxicity and lethality is mediated by a combination of altered toxicokinetics, robust erythropoiesis, and resiliency of new RBCs. 相似文献
6.
Cylindrospermopsin (CYN) is a cyanotoxin which has been implicated in human intoxication and animal mortality. Genotoxic activity of this hepatotoxin is known but its carcinogenic activity remains to be elucidated. In this work, CYN was assessed for its cell-transforming activity using the Syrian hamster embryo (SHE) cell transformation assay. This in vitro assay is used to evaluate the carcinogenic potential of chemical, physical and biological agents in SHE cells, which are primary, normal, diploid, genetically stable and capable of metabolic activation. We demonstrated that CYN induced a significant increase in morphological cell transformation in SHE cells following a 7-day continuous treatment in the range of non-cytotoxic concentrations 1 × 10−7-1 × 10−2 ng/mL. 相似文献
7.
Acrylamide-induced cellular transformation. 总被引:4,自引:0,他引:4
Joungjoa Park Lisa M Kamendulis Marvin A Friedman James E Klaunig 《Toxicological sciences》2002,65(2):177-183
Acrylamide is a monomer of polyacrylamide, whose products are used in biochemistry, the manufacture of paper, water treatment, and as a soil stabilizer. While polymeric acrylamide is nontoxic, the monomer can cause several toxic effects and has the potential for human occupational exposure. While acrylamide is not mutagenic in prokaryotic mutagenesis assays, chronic acrylamide treatment in rodents has been shown to produce tumors in both rats and mice. The mechanism for the induction of tumors by acrylamide is not known. In the present study, we examined the possibility that acrylamide might induce cellular transformation, using Syrian hamster embryo (SHE) cell morphological transformation as well as potential mechanisms for the cellular transformation. Results showed that treatment with 0.5 mM and higher concentrations of acrylamide continuously for 7 days induced morphological transformation. Cotreatment with acrylamide and N-acetyl-L-cysteine (NAC), a sulfhydryl group donor, resulted in the reduction of acrylamide-induced morphological transformation in SHE cells. Cotreatment with 1-aminobenzotriazole (ABT), a nonspecific P450 inhibitor, and acrylamide produced no change in morphological transformation when compared to acrylamide treatment only. Cotreatment with acrylamide and DL-buthionone-[S,R]-sulfoximine (BSO), a selective inhibitor of gamma-glutamylcysteine synthetase, increased the percent of morphologically transformed colonies compared to acrylamide treatment alone. Acrylamide reduced GSH levels in SHE cells, and cotreatment with acrylamide and NAC prevented the acrylamide-induced reduction of GSH. BSO treatment with acrylamide enhanced the depletion of GSH. These results suggest that acrylamide itself, but not oxidative P450 metabolites of acrylamide appear to be involved in acrylamide-induced cellular transformation and that cellular thiol status (possibly GSH) is involved in acrylamide-induced morphological transformation. 相似文献
8.
Chronic exposure to 2-butoxyethanol increased liver hemangiosarcomas in male mice. The mechanism for the selective induction of hemangiosarcomas by 2-butoxyethanol is unknown but has been suggested to occur through non-DNA-reactive mechanisms. The occurrence of liver hemangiosarcomas in male mice has been linked to oxidative damage subsequent to RBC hemolysis and iron deposition and activation of macrophages (Kupffer cells) in the liver, events that exhibit a threshold in both animals and humans. 2-Butoxyethanol is metabolized to 2-butoxyacetaldehyde and 2-butoxyacetic acid, and although the aldehyde metabolite is short lived, the potential exists for this metabolite to cause DNA damage. The present study examined whether 2-butoxyethanol and its metabolites, 2-butoxyacetaldehyde and 2-butoxyacetic acid, damaged mouse endothelial cell DNA using the comet assay. No increase in DNA damage was observed following 2-butoxyethanol (1-10mM), 2-butoxyacetaldehyde (0.1-1.0mM), or 2-butoxyacetic acid (1-10mM) in endothelial cells after 2, 4, or 24 h of exposure. Additional studies examined the involvement of hemolysis and macrophage activation in 2-butoxyethanol carcinogenesis. DNA damage was produced by hemolyzed RBCs (10 x 10(6), 4 h), ferrous sulfate (0.1-1.0 microM; 2-24 h), and hydrogen peroxide (50-100 microM; 1-4 h) in endothelial cells. Hemolyzed RBCs also activated macrophages, as evidenced by increased tumor necrosis factor (TNF) alpha, while neither 2-butoxyethanol nor butoxyacetic acid increased TNF-alpha from macrophages. The effect of activated macrophages on endothelial cell DNA damage and DNA synthesis was also studied. Coculture of endothelial cells with activated macrophages increased endothelial cell DNA damage after 4 or 24 h and increased endothelial cell DNA synthesis after 24 h. These data demonstrate that 2-butoxyethanol and related metabolites do not directly cause DNA damage. Supportive evidence also demonstrated that damaged RBCs, iron, and/or products from macrophage activation (possibly reactive oxygen species) produce DNA damage in endothelial cells and that activated macrophages stimulate endothelial cell proliferation. These events coupled together provide the events necessary for the induction of hemangiosarcomas by 2-butoxyethanol. 相似文献
9.
Michael J. Walsh Shannon W. Bruce Kamala Pant Paul L. Carmichael Andrew D. Scott Francis L. Martin 《Toxicology》2009
Primary Syrian hamster embryo (SHE) cells might be used to assess morphological transformation following treatment with chemical carcinogens. We employed attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to interrogate SHE colonies, as complex biomolecules absorb in the mid-infrared (IR; λ = 2–20 μm) giving vibrational spectra associated with structure and function. Early-passage SHE cells were cultured (pH 6.7) in the presence or absence of benzo[a]pyrene (B[a]P; 5.0 μg/ml). Unstained colonies were applied to an ATR crystal, and vibrational spectra were obtained in the ATR mode using a Bruker Vector 22 FTIR spectrometer with Helios ATR attachment. These were individually baseline-corrected and normalised. Spectra were then analysed using principal component analysis (PCA) plus linear discriminant analysis (LDA). PCA was used to reduce the dataset dimensions before LDA was employed to reveal clustering. This determined whether wavenumber–absorbance relationships expressed as single points (scores) in ‘hyperspace’ might on the basis of multivariate distance reveal biophysical differences associated with morphologies in vehicle control (non-transformed or transformed) or carcinogen-treated (non-transformed or transformed) cells. Retrospectively designated SHE colonies (following staining and microscopic analysis) clustered according to whether they were vehicle control (non-transformed), B[a]P-treated (non-transformed) or transformed (control and B[a]P-treated). Scores plots pointed to a B[a]P-treated phenotype and derived loadings plots highlighted distinguishing markers in control transformed vs. B[a]P-treated transformed; these were mostly associated with Amide I, Amide II and phosphate stretching (asymmetric and symmetric) vibrations. Combined application of ATR-FTIR spectroscopy and unsupervised (PCA)/supervised (LDA) may be a novel approach to scoring SHE colonies for morphological transformation. 相似文献
10.
The Syrian hamster embryo (SHE) cell transformation assay was used to test 28 chemical substances for their ability to induce morphologically transformed colonies. The purpose was to determine how well the assay method could be transferred from an experienced laboratory by including 18 chemicals previously evaluated and 10 new chemicals. Technical training was obtained in the experienced lab prior to testing. The assay was conducted at pH 6.7, a treatment period of 7 days was used, and single experiments were performed for each chemical. With this limited testing, 78% concordance with rodent bioassay results was obtained, and this high concordance would have increased if small, but statistically negative responses from single trials were overturned by positive data from repeat trials. Similarly, the results were highly concordant (90%) with the experienced lab results; only 2 chemical evaluations were discordant, and the use of repeat experiments would likely have eliminated these apparent disagreements. Thus, with appropriate training, the pH 6.7 SHE assay was successfully and reliably transferred. 相似文献
11.
Mechanisms for the induction of oxidative stress in Syrian hamster embryo cells by acrylonitrile. 总被引:2,自引:0,他引:2
Chronic administration of acrylonitrile to rats resulted in an increase in the incidence of glial neoplasms of the brain. Recent studies have shown that acrylonitrile induces oxidative stress in rat brain and cultured rat glial cells. Acrylonitrile also induces morphological transformation concomitant with an increase in the formation of oxidized DNA in Syrian Hamster Embryo (SHE) cells in a dose-dependent manner. The mechanism for the induction of oxidative stress in SHE cells remains unresolved. The present study examined the effects of acrylonitrile on enzymatic and nonenzymatic antioxidants in SHE cells. SHE cells were treated with subcytolethal doses of acrylonitrile (0, 25, 50, and 75 microg/ml) for 4, 24, and 48 h. Acrylonitrile (50 microg/ml and 75 microg/ml) increased the amount of reactive oxygen species in SHE cells at all time points. Glutathione (GSH) was depleted and catalase and superoxide dismutase activities were significantly decreased in SHE cells after 4 h of treatment. The inhibition of these antioxidants was temporal, returning to control values or higher after 24 and 48 h. Xanthine oxidase activity was increased following 24 and 48 h treatment with acrylonitrile. 1-aminobenzotriazole, a suicidal P450 enzyme inhibitor, attenuated the effects of acrylonitrile on catalase and xanthine oxidase in SHE cells, suggesting that P450 metabolism is required for acrylonitrile to produce its effects on these enzymes. Additional studies showed that in the absence of metabolic sources acrylonitrile had no effect on either catalase or superoxide dismutase activity. These results suggest that the induction of oxidative stress by acrylonitrile involves a temporal decrease in antioxidants and increase in xanthine oxidase activity that is mediated by oxidative metabolism of acrylonitrile. 相似文献
12.
Ines Amara Rim Timoumi Imen Graiet Intidhar Ben Salem Kamilath Adelou Salwa Abid‐Essefi 《Environmental toxicology》2019,34(9):1034-1042
The di (2‐ethylhexyl) phthalate (DEHP) is a plasticizer used in the polyvinyl chloride industry. Human exposure to this plasticizer is inevitable and contributes to several side effects. In this study, we examined whether DEHP induces apoptosis and oxidative stress in embryonic kidney cells (HEK‐293) and whether the nuclear factor E2‐related factor 2 (Nrf‐2)/heme oxygenase‐1 (HO‐1) antioxidant pathway is involved in the pathogenesis of this process. We demonstrated that DEHP is cytotoxic to HEK‐293 cells. It causes oxidative damage through the generation of free radicals, induces lipid peroxidation, and alters superoxide dismutase and catalase activities. Simultaneously, DEHP treatment decreases the expression and the protein level of Nrf‐2 and HO‐1. Inhibition of the Nrf‐2/HO‐1 pathway is related to the mitochondrial pathway of apoptosis. This apoptotic process is characterized by a loss of mitochondrial transmembrane potential (ΔΨm) and upregulation of the expression of caspase‐3 mRNA as well as its protein level. 相似文献
13.
14.
Oxidative DNA damage and repair in a cell lineage model of human proliferative breast disease (PBD).
Susan L Starcevic Nicole M Diotte Kim L Zukowski Mark J Cameron Raymond F Novak 《Toxicological sciences》2003,75(1):74-81
Oxidative damage to DNA is thought to play a significant role in mutagenesis, aging, and cancer. Sensitivity to oxidative DNA damage and DNA repair efficiency were examined using a series of human breast epithelial cell lines-MCF-10A, MCF-10AT, and MCF-10ATG3B-with progressively elevated Ras protein. Breast epithelial cells were treated with H2O2, in the absence and presence of the DNA-repair inhibitors hydroxyurea (HU) and cytosine arabinoside (Ara-C). DNA strand breaks were assessed by the mean olive tail moment (microm) using the alkaline single-cell gel electrophoresis (Comet) assay. In untreated cells, the mean olive tail moment values were 4.3 +/- 0.7, 8.3 +/- 1.1, and 7.1 +/- 0.6 microm in the MCF-10A, MCF-10AT, and MCF-10ATG3B cells, respectively. Five min H2O2 treatment produced concentration-dependent DNA damage, with the MCF-10A cells most susceptible and the tumorigenic MCF-10ATG3B cells the least susceptible. Treatment with 100 microM H2O2 resulted in approximately 17-, 6-, and 4.5-fold increases in mean olive tail moment values in the MCF-10A, MCF-10AT, and MCF-10ATG3B cells, respectively, compared to untreated cells. The HCC1937 tumor cell line responded in a manner comparable to the MCF-10ATG3B cells treated with H2O2, HU/Ara-C pre-treatment resulted in a approximately 1.5-fold increase in olive tail moment values in all three cell lines. Protein levels of antioxidant enzymes, including catalase, copper/zinc superoxide dismutase (Cu/Zn SOD), and manganese SOD (MnSOD) were determined in order to examine a potential mechanism for increased resistance to H2O2-mediated DNA damage. Levels of these enzymes increased progressively, with highest expression in MCF-10ATG3B cells. Increased cellular resistance also coincided with marked decreases in p53 protein levels. These results demonstrate that, in this cell lineage, sensitivity to oxidative DNA damage by H2O2 decreases with tumorigenicity (i.e., MCF-10A vs. MCF-10ATG3B), and show that DNA repair, altered Ras, and p53 expression, or compensatory mechanisms involving elevated antioxidant enzymes are involved in mediating these effects. 相似文献
15.
Mizuno K Kume T Muto C Takada-Takatori Y Izumi Y Sugimoto H Akaike A 《Journal of pharmacological sciences》2011,115(3):320-328
Oxidative stress plays pivotal roles in aging, neurodegenerative disease, and pathological conditions such as ischemia. We investigated the effect of sulforaphane and 6-(methysulfinyl) hexyl isothiocyanate (6-HITC), a naturally occurring isothiocyanate, on oxidative stress-induced cytotoxicity using primary neuronal cultures of rat striatum. Pretreatment with sulforaphane and 6-HITC significantly protected against H(2)O(2)- and paraquat-induced cytotoxicity in a concentration-dependent manner. Sulforaphane and 6-HITC induced the translocation of nuclear factor E2-related factor 2 (Nrf2) into the nucleus and increased the expression of γ-glutamylcysteine synthetase (γ-GCS), a rate-limiting enzyme in glutathione synthesis, and the intracellular glutathione content. Treatment with reduced glutathione (GSH) and N-acetyl-L-cysteine, a substance for glutathione synthesis, significantly prevented the cytotoxicity induced by H(2)O(2) and paraquat. Moreover, exposure to L-buthionine-sulfoximine, an irreversible inhibitor of γ-GCS, suppressed the protective effects of sulforaphane and 6-HITC. In contrast, sulforaphane and 6-HITC increased heme oxygenase-1 (HO-1) expression in neurons. However, zinc-protophorphyrin IX, a competitive inhibitor of HO-1, did not influence the protective effects of sulforaphane and 6-HITC. These results suggest that sulforaphane and 6-HITC prevent oxidative stress-induced cytotoxicity in rat striatal cultures by raising the intracellular glutathione content via an increase in γ-GCS expression induced by the activation of the Nrf2-antioxidant response element pathway. 相似文献
16.
17.
Priscilla L K Lim Jianchao Liu Mei L Go Urs A Boelsterli 《Toxicological sciences》2008,101(2):341-349
Although the mechanisms and susceptibility factors of troglitazone-associated idiosyncratic liver injury have not been elucidated, experimental evidence has identified oxidant stress and mitochondrial injury as a potential hazard in vitro. In search of upstream mediators of toxicity, we hypothesized that troglitazone-induced increased mitochondrial generation of superoxide might activate the thioredoxin-2 (Trx2)/apoptosis signal-regulating kinase 1 (Ask1) signaling pathway, leading to cell death, and that, hence, the mitochondrially targeted radical scavenger, mito-carboxy proxyl (CP), would prevent the increase in superoxide net levels and inhibit mitochondrial signaling and cell injury. Immortalized human hepatocytes (HC-04) were exposed to troglitazone (0-100 microM), which caused concentration and time-dependent apoptosis after 12-24 h (ketoconazole-insensitive). We found that troglitazone rapidly dissipated the mitochondrial inner transmembrane potential (DeltaPsi(m)) and independently increased the net levels of mitochondrial superoxide by 5-fold. This was followed by a shift of the redox ratio of mitochondrial Trx2 toward the oxidized state and subsequent activation of Ask1. Cell injury, but not the decrease in DeltaPsi(m), was prevented by cyclosporin A (3 microM), indicating that mitochondrial permeabilization, but not membrane depolarization, was causally involved in cell death. Mito-CP not only decreased troglitazone-induced superoxide levels but also prevented Trx2 oxidation and activation of Ask1 and protected cells from toxic injury. These data indicate that troglitazone, but not its oxidative metabolite(s), produce intramitochondrial oxidant stress that activates the Trx2/Ask1 pathway, leading to mitochondrial permeabilization. Furthermore, the data support our concept that targeted delivery of an antioxidant to mitochondria can inhibit upstream signaling and protect from troglitazone-induced lethal cell injury. 相似文献
18.
Induction of cytochrome P450 2E1 by ethanol is believed to be one of the central pathways by which ethanol generates a state of oxidative stress and causes hepatotoxicity. In order to evaluate the biochemical and toxicological actions of CYP2E1 and its sensitization of hepatotoxin-induced injury, an adenovirus which can mediate overexpression of CYP2E1 was constructed. Injecting this virus into mice through the tail vein elevated CYP2E1 protein and activity twofold in the liver of the mice compared with the mice injected with Ad-LacZ or saline. Transaminase levels were dramatically increased in mice injected with the CYP2E1 adenovirus. Histological evaluation of liver specimens of mice injected with Ad-2E1 showed liver cell injury. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay demonstrated that more cells were stained positively in the liver of the mice infected with Ad-2E1 than in the liver of the mice infected with Ad-LacZ. 3-Nitrotyrosine protein adducts and protein carbonyl adducts were increased in the liver of the mice infected with Ad-2E1 compared with Ad-LacZ. This potentiated toxicity most likely reflects interactions between CYP2E1- and adenovirus-mediated toxicity pathways. These results show that adenovirus-mediated overexpression of CYP2E1 could induce liver toxicity in mice and suggests a mechanism involving oxidative/nitrosative stress. 相似文献
19.
20.
Mark M Udden 《Toxicological sciences》2002,69(1):258-264
When 2-butoxyethanol (2-BE) is administered to rats, hemolysis occurs as the active metabolite butoxyacetic acid (BAA) is formed. Human red blood cells appear to be relatively resistant to the hemolytic effects of BAA in vitro, whereas rat red blood cells undergo changes in deformability, cell swelling, and hemolysis. In this study, exposure of human red blood cells to high concentrations of BAA resulted in loss of deformability and a small increase in mean cellular volume, but no significant hemolysis. These changes resembled the changes that occur in rat erythrocytes exposed to much lower concentrations of BAA. Therefore, a comparison was made between the sub-hemolytic effects of BAA at high concentrations (up to 10 mM) on human red cells with the sub-hemolytic effects of lower concentrations of BAA (up to 0.1 mM) on rat erythrocytes. Under these conditions, human and rat erythrocyte deformability decreased, while mean cellular volume (MCV) and osmotic fragility increased. Although there was a substantial shift in rat erythrocytes to lower densities, human erythrocyte density was only slightly decreased. Human and rat erythrocyte sodium also increased. Rat erythrocytes demonstrated increased spherocytosis. In a survey of blood samples from adults and children, none demonstrated an increase in hemolysis (n = 97) or MCV (n = 65) after exposure to 10 mM BAA for 4 h. In these experiments, in which hemolysis was not evident, human erythrocytes required exposure to a 100-fold greater concentration of BAA to develop changes in red cell deformability, osmotic fragility, and sodium content similar to those observed in rat erythrocytes. These concentrations are not likely to occur under normal human use of 2-BE-containing products. 相似文献