首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Both NRIP1 and DOK1 genes are considered candidate tumor suppressor genes (TSGs). Also, cell polarity-related genes PARD3, PRKCI and DLGAP3, and autophagy-related genes ULK1 and ULK2 genes are considered to play crucial roles in tumorigenesis. The aim of our study was to find whether these genes were mutated in colorectal cancer (CRC). In a genome database, we observed that each of these genes harbored mononucleotide repeats in the coding sequences, which could be mutated in cancers with high microsatellite instability (MSI-H). For this, we studied 124 CRCs for the frameshift mutations of these genes and their intratumoral heterogeneity (ITH). NRIP1, DOK1, PARD3, PRKCI, DLGAP3, ULK1 and ULK2 harbored 18 (22.8%), 2 (2.5%), 2 (2.5%), 2 (2.5%), 5 (6.3%), 2 (2.5%) and 2 (2.5%) of 79 CRCs with MSI-H, respectively. However, we found no such mutations in microsatellite stable (MSS) cancers in the nucleotide repeats. We also studied ITH for the frameshift mutations in 16 cases of CRCs and detected that the frameshift mutations of NRIP1, DOK1, PARD3, PRKCI, DLGAP3, ULK1 and ULK2 showed regional ITH in 5 (31.3%), 2 (12.5%), 0 (0%), 0 (0%), 1 (6.3%), 1 (6.3%) and 3 (18.8%) cases, respectively. Our data exhibit that candidate cancer-related genes NRIP1, DOK1, PARD3, PRKCI, DLGAP3, ULK1 and ULK2 harbor mutational ITH as well as the frameshift mutations in CRC with MSI-H. Also, the results suggest that frameshift mutations of these genes might play a role in tumorigenesis through their inactivation in CRC.  相似文献   

2.
Head and neck squamous cell carcinoma (HNSCC) remains a significant cause of morbidity and mortality. There has been a great interest in finding specific genomic changes which contribute to HNSCC tumorigenesis, especially within the chromosome 3p area, where high frequency of LOH (loss of heterozygosity) has been reported. However, tumorsuppressor genes that may account for the frequent LOH remain to be identified. Recently, one systematic study of genomic sequencing was performed on breast and colorectal cancers and 189 candidate cancer genes (CAN-genes) were reported. Among those CAN-genes, 13 genes are located on chromosome 3p. To investigate whether any of the 13 CAN-genes on chromosome 3p is relevant to HNSCC tumorigenesis, we examined their mutational profiles in eight HNSCC cell lines and 12 tumor-normal pairs of human HNSCC in this study. Three of the 13 CAN-genes, ALS2CL, EPHA3 and CMYA1, each was found to harbor a missense mutation (1/20, 5% for each of the three genes). The mutations appeared hemizygous and SNP array analyses showed that these missense mutations are accompanied by LOH on the remaining allele.In summary, our data offer further support that ALS2CL, EPHA3 and CMYA1 are bona-fide tumor-suppressor genes and contribute to the tumorigenesis of HNSCC. Our data suggest that multiple tumor-suppressor genes are likely to be involved in accounting for the high LOH on chromosome 3p in HNSCC.Key words: Chr3p, HNSCC, ALS2CL, EPHA3, CMYA1, tumor-suppressor gene, LOH, CAN-genes  相似文献   

3.
Small cell carcinoma (SCC) of the uterine cervix is a rare and aggressive form of neuroendocrine carcinoma, which resembles small cell lung cancer (SCLC) in its histology and poor survival rate. Here, we sought to define the genetic underpinning of SCCs of the uterine cervix and compare their mutational profiles with those of human papillomavirus (HPV)‐positive head and neck squamous cell carcinomas, HPV‐positive cervical carcinomas, and SCLCs using publicly available data. Using a combination of whole‐exome and targeted massively parallel sequencing, we found that the nine uterine cervix SCCs, which were HPV18‐positive (n = 8) or HPV16‐positive (n = 1), harbored a low mutation burden, few copy number alterations, and other than TP53 in two cases no recurrently mutated genes. The majority of mutations were likely passenger missense mutations, and only few affected previously described cancer‐related genes. Using RNA‐sequencing, we identified putative viral integration sites on 18q12.3 and on 8p22 in two SCCs of the uterine cervix. The overall nonsilent mutation rate of uterine cervix SCCs was significantly lower than that of SCLCs, HPV‐driven cervical adeno‐ and squamous cell carcinomas, or HPV‐positive head and neck squamous cell carcinomas. Unlike SCLCs, which are reported to harbor almost universal TP53 and RB1 mutations and a dominant tobacco smoke‐related signature 4, uterine cervix SCCs rarely harbored mutations affecting these genes (2/9, 22% TP53; 0% RB1) and displayed a dominant aging (67%) or APOBEC mutational signature (17%), akin to HPV‐driven cancers, including cervical adeno‐ and squamous cell carcinomas and head and neck squamous cell carcinomas. Taken together, in contrast to SCLCs, which are characterized by highly recurrent TP53 and RB1 alterations, uterine cervix SCCs were positive for HPV leading to inactivation of the suppressors p53 and RB, suggesting that these SCCs are convergent phenotypes.  相似文献   

4.
Interferon regulatory factor 8 (IRF8), as a central element of IFN-γ-signaling, plays a critical role in tumor suppression. However, its expression and underlying molecular mechanism remain elusive in renal cell carcinoma (RCC). Here, we examined IRF8 expression and methylation in RCC cell lines and primary tumors, and further assessed its tumor suppressive functions. We found that IRF8 was widely expressed in human normal tissues including kidney, but frequently downregulated by promoter methylation in RCC cell lines. IRF8 methylation was detected in 25% of primary tumors, but not in adjacent non-malignant renal tissues, and associated with higher tumor nuclear grade of RCC. Ectopic expression of IRF8 inhibited colony formation and migration abilities of RCC cells, through inducing cell cycle G2/M arrest and apoptosis. IFN-γ could induce IRF8 expression in RCC cells, together with increased cleaved-PARP. We further found that IRF8 inhibited expression of oncogenes YAP1 and Survivin, as well as upregulated expression of tumor suppressor genes CASP1, p21 and PTEN. Collectively, our data demonstrate that IRF8 as a functional tumor suppressor is frequently methylated in RCC, and IRF8-mediated interferon signaling is involved in RCC pathogenesis.  相似文献   

5.
6.
《Cancer science》2018,109(1):225-230
Recent sequencing studies demonstrated the MYD88 L265P mutation in more than 70% of primary central nervous system lymphomas (PCNSL), and the clinical significance of this mutation has been proposed as diagnostic and prognostic markers in PCNSL. In contrast, mutational analyses using cell‐free DNAs have been reported in a variety of systemic lymphomas. To investigate how sensitively the MYD88 L265P mutation can be identified in cell‐free DNA from PCNSL patients, we carried out droplet digital PCR (ddPCR) and targeted deep sequencing (TDS) in 14 consecutive PCNSL patients from whom paired tumor‐derived DNA and cell‐free DNA was available at diagnosis. The MYD88 L265P mutation was found in tumor‐derived DNA from all 14 patients (14/14, 100%). In contrast, among 14 cell‐free DNAs evaluated by ddPCR (14/14) and TDS (13/14), the MYD88 L265P mutation was detected in eight out of 14 (ddPCR) and in 0 out of 13 (TDS) samples, implying dependence on the detection method. After chemotherapy, the MYD88 L265P mutation in cell‐free DNAs was traced in five patients; unexpectedly, the mutations disappeared after chemotherapy was given, and they remained undetectable in all patients. These observations suggest that ddPCR can sensitively detect the MYD88 L265P mutation in cell‐free DNA and could be used as non‐invasive diagnostics, but may not be applicable for monitoring minimal residual diseases in PCNSL.  相似文献   

7.
BackgroundPrimary central nervous system lymphoma (PCNSL) is a highly aggressive type of extranodal non-Hodgkin lymphoma, of which approximately 90% of the cases are diffuse large B-cell lymphoma (DLBCL). In recent years, the incidence of PCNSL has significantly increased in women and older men. Although advanced treatments such as high-dose methotrexate (HD-MTX) and targeted agents have been introduced, the prognosis of these patients remains poorer than those with other forms of non-Hodgkin's lymphoma.MethodsTwelve cases of Chinese PCNSL were analyzed to detect their genetic alterations using whole-exome sequencing (WES). We identified 448 potential somatic single nucleotide variants (SNVs) with a median of 12 SNVs per PCNSL sample and 35 small indels with potentially protein-changing features in 9 PCNSL samples.ResultsWe found that myeloid differentiation factor 88 (MYD88) had the highest mutation frequency, which affected the activity of the nuclear factor-κB (NF-κB) pathway. PCNSL samples with low-density lipoprotein receptor-related protein 1B (LRP1B) mutations had a higher mutation rate than samples with wild-type LRP1B. Polycystic kidney and hepatic disease 1 (PKHD1), the causal gene of autosomal recessive polycystic kidney disease (ARPKD), was identified in 2 PCNSL cases and exhibited missense mutations. Pathway analysis revealed enrichment in pathways associated with central carbon metabolism in cancer, renal cell carcinoma, nicotine addiction, bladder cancer, and long-term depression.ConclusionsWES revealed significantly mutated genes associated with the molecular mechanisms of PCNSL, which could serve as therapeutic targets to improve patient outcomes.  相似文献   

8.
9.
Introduction: Approximately 35% of NSCLC patients in East Asia have EGFR mutations. Next-generation sequencing (NGS) provides a comprehensive mutational profile in lung cancer patients. Material and Method: Clinicopathologic characteristics and mutational profiling data was analyzed from nonsmall cell lung carcinoma /Adenocarcinoma over a duration of 42 months (October 2014 to March 2018) using next-generation sequencing Ion Ampliseq Cancer Hotspot panel v2 (Ampliseq, Life Technologies) on the Ion torrent PGM platform. Results: A total of 154 cases were processed during this period. The average number of mutations/case varied from one to four 72.07% (111/154), of these cases had minimum one genetic alteration. The most common mutated gene was TP53 gene (37.6%, n = 58) followed by EGFR (32.4%, n = 50), KRAS (18.18%, n = 28), ERBB2 (3.2%, n = 5), BRAF (1.94%, n = 3). EGFR positivity was more in females (43.3%) and non-smokers (52.08%) in comparison to males (26.7%) and smokers (16.1%). Conclusion: In this paper, we have described the comprehensive mutational profiling of a large cohort of advanced lung adenocarcinoma patients from the eastern part of India. To the best of our knowledge, this is one of the largest studies from the country describing mutations in BRAF, ERBB2, TP53 genes and their clinicopathologic/histopathologic associations in lung cancers.  相似文献   

10.
BackgroundHigh-dose chemotherapy (HDC) with autologous stem cell transplantation (ASCT) has been investigated in patients with primary central nervous system lymphoma (PCNSL) and non-Hodgkin lymphoma (NHL) with CNS involvement and has shown promising results.Patients and MethodsA retrospective analysis was performed of 48 consecutive patients who had undergone HDC/ASCT with TBC (thiotepa, busulfan, cyclophosphamide) conditioning for PCNSL (27 patients), secondary CNS lymphoma (SCNSL) (8 patients), or relapsed disease with CNS involvement (13 patients) from July 2006 to December 2017. Of the 27 patients with PCNSL, 21 had undergone ASCT at first complete remission (CR1).ResultsThe 2-year progression-free survival (PFS) rate was 80.5% (95% confidence interval [CI], 69.9-92.9) and the 2-year overall survival (OS) rate was 80.1% (95% CI, 69.2%-92.7%) among all patients. The 2-year PFS and OS rate for patients with PCNSL in CR1 was 95.2% (95% CI, 86.6%-100%) and 95.2% (95% CI, 86.6%-100%), respectively. On univariate analysis of the patients with PCNSL, ASCT in CR1 was the only variable statistically significant for outcome (P = .007 for PFS; P = .008 for OS). Among patients with SCNSL or CNS relapse, the 2-year PFS and OS rate were comparable at 75.9% (95% CI, 59.5%-96.8%) and 75.3% (95% CI, 58.6%-98.6%), respectively. The most common side effects were febrile neutropenia (89.6%; of which 66.7% had an infectious etiology identified), nausea/vomiting (85.4%), diarrhea (93.8%), mucositis (89.6%), and electrolyte abnormalities (89.6%). Four patients (8.3%) died of treatment-related overwhelming infection; of these patients, 3 had SCNSL.ConclusionHDC and ASCT using TBC conditioning for both PCNSL and secondary CNS NHL appears to have encouraging long-term efficacy with manageable side effects.  相似文献   

11.
The majority of ocular adnexal (OA) lymphomas (OAL) are extranodal marginal zone lymphomas (MZL). First high throughput sequencing (HTS) studies on OA-MZL showed inconsistent results and the distribution of mutations in reactive lymphoid lesions of this anatomic region has not yet been sufficiently addressed. We characterized OAL and lymphoid lesions of the OA by targeted HTS. The study included 34 OA-MZL, 11 chronic conjunctivitis, five mature small cell B-cell lymphomas spreading to the OA, five diseases with increase of IgG4+ plasma cells, three Burkitt lymphomas (BL), three diffuse large B-cell lymphomas (DLBCL), three mantle cell lymphomas, three idiopathic orbital inflammations/orbital pseudo tumors (PT), and three OA lymphoid hyperplasia. All cases were negative for Chlamydia. The mutational number was highest in BL and lowest in PT. The most commonly (and exclusively) mutated gene in OA-MZL was TNFAIP3 (10 of 34 cases). Altogether, 20 out of 34 patients harbored mutually exclusive mutations of either TNFAIP3, BCL10, MYD88, ATM, BRAF, or NFKBIE, or nonexclusive mutations of IRF8, TNFRSF14, KLHL6, and TBL1XR1, all encoding for NK-κB pathway compounds or regulators. Thirteen patients (38%) had, to a great part, mutually exclusive mutations of chromatin modifier-encoding genes: KMT2D, CREBBP, BCL7A, DNMT3A, EP300, or HIST1H1E. Only four patients harbored co-occurring mutations of genes encoding for NK-κB compounds and chromatin modifiers. Finally, PTEN, KMT2D, PRDM1, and HIST1H2BK mutations were observable in reactive lymphoid lesions too, while such instances were devoid of NF-κB compound mutations and/or mutations of acetyltransferase-encoding genes. In conclusion, 80% of OA-MZL display mutations of either NK-κB compounds or chromatin modifiers. Lymphoid lesions of the OA bearing NF-κB compound mutations and/or mutations of acetyltransferase-encoding genes highly likely represent lymphomas.  相似文献   

12.
IntroductionOptimal management of elderly patients with primary central nervous system lymphoma (PCNSL) after induction therapy is unclear. Whole-brain radiotherapy and autologous stem cell transplantation carry increased toxicity in patients older than 60 years of age, which might outweigh the benefits in this group. Temozolomide (TMZ) has established antineoplastic activity in the central nervous system in other disease states, with a favorable toxicity profile.Patients and MethodsWe report efficacy and tolerability in a series of 10 patients treated off-label with TMZ maintenance after completion of R-MPV (rituximab, methotrexate, procarbazine and vincristine) treatment for or primary diagnosed PCNSL.ResultsMedian progression-free survival (PFS) was 57 months, 2-year PFS was 67%, and 5-year PFS was 33%. Median overall survival (OS) was 63 months, 2-year OS was 88%, and 5-year OS was 57%. TMZ was generally well tolerated, with the most common toxicity of Grade 3 or higher being thrombocytopenia in 3 patients (30%).ConclusionThese outcomes suggest that TMZ might have activity for maintenance in elderly patients with PCNSL, when more aggressive treatments are contraindicated.  相似文献   

13.
Precision medicine depends on the accurate identification of actionable mutations in a tumor sample. It is unknown how heterogeneous the distribution of such mutations can be in a tumor. Morphological (i.e. histopathological) heterogeneity is well described in lung adenocarcinoma and has been specifically recognized in the most recent official clinico-pathological classification. The most predominant subtype present is now used to classify each lung adenocarcinoma. No molecular profile exists to explain the intratumoral differences in lung adenocarcinoma morphology, despite the consistently observed association between specific predominant subtypes and poorer survival. Given a recent proposal stratifying lung adenocarcinoma into subtypes of differing metastatic potential, we questioned the assumption that major mutations are present uniformly throughout tumors; especially those showing discrete different subtypes.We selected formalin-fixed paraffin embedded lung adenocarcinoma specimens that showed discrete areas of different subtypes, extracted subtype DNA samples from those areas and screened for mutations in hotspot regions of the EGFR, KRAS and BRAF genes using high resolution melting. Sanger sequencing was used to confirm all identified mutations. Chromogenic in situ hybridization (CISH) was used to identify mutant allele specific imbalances in tumors with EGFR mutations.Interestingly, we found that KRAS and BRAF mutations could be confined to morphological domains of higher grade. On the other hand, EGFR mutations were found through all histological subtypes in each tumor consistent with the driver status of this mutation.Intratumoral heterogeneity has major implications for tumorigenesis, chemoresistance and the role of histopathology in molecular screening for precision medicine. This study not only confirms that intratumoral mutational heterogeneity does occur, but also that it is associated with morphologically distinct regions in some tumors. From a practical perspective, small biopsies may not adequately represent a tumor''s full mutational profile, particularly for later arising but prognostically important mutations such as those in the KRAS and BRAF genes.  相似文献   

14.
To identify novel methylation-silenced genes in gastric cancer, we carried out a genome-wide search for genes that are up-regulated after treatment with the demethylating agent, 5-aza-2′-deoxycytidine (5Aza-dC). When three gastric cancer cell lines (SNU-1,-601, and -719) were treated with 5Aza-dC, 143 genes were found to be upregulated by twofold or more using oligonucleotide microarrays. Six of these genes, i.e. TFPI2, GPX3, GPX1, IGFBP6, IRF7 and DMRT1, showed promoter hypermethylation in one or more gastric cancer cell lines, but were unmethylated in normal gastric mucosa by bisulphite sequencing and methylation-specific PCR analysis. The following percentages of these genes were found to be aberrantly methylated in gastric cancer samples; TFPI2 (80.9%), GPX3 (30.1%), DMRT1 (46.9%), GPX1 (16.7%), IGFBP6 (22.6%) and IRF7 (32.1%). Interestingly, the survival of patients possessing methylated alleles of TFPI2 (123/152, 80.9%) was poorer than that of patients with unmethylated alleles (p = 0.023). Multivariate analysis confirmed that TFPI2 methylation is a significant and independent prognostic factor in gastric carcinoma. Furthermore, altered TFPI2 expression, as demonstrated by immunohistochemistry in 566 consecutive gastric cancer tissues, was found to be significantly associated with sex (p = 0.003), WHO classification (p < 0.001), and a mixed subtype by Lauren’s classification (p < 0.001). Thus, the present study identified several novel genes, which were methylated in gastric cancer and among them, methylation of TFPI2 was an unfavourable prognostic marker.  相似文献   

15.
The clinical relevance of variant allele frequency (VAF) of recurrent mutations in myelodysplastic syndromes (MDS) has been increasingly reported. However, the prognostic value of mutational VAF across the genetic spectrum of MDS has not been extensively evaluated. In this study, we profiled the mutational spectrum of 382 newly diagnosed MDS patients using targeted next-generation sequencing. Exploratory analysis found that mutational VAF of some genes including TET2, TP53, and SF3B1 had significant associations with patient survival. Specifically, TET2 VAF ≥ 32% (HR 1.69, P = 0.025) and TP53 VAF ≥ 27% (HR 3.58, P < 0.001) were independently associated with shorter overall survival (OS). In contrast, SF3B1 VAF ≥ 15% had an independent association with better prognosis (HR 0.52, P = 0.048). In addition, high TET2 VAF was associated with an increased response to hypomethylating agents relative to low TET2 VAF (P = 0.009). Patients with high TP53 VAF more often possessed complex karyotypes than those with low VAF (P = 0.034). And patients with high SF3B1 VAF were more frequently classified as MDS with ring sideroblasts (MDS-RS) category than those with low VAF (P = 0.012). Meanwhile, we found that for some other genes like EZH2 and NRAS, once their mutations appeared, it meant poor survival regardless of mutational VAF. These findings suggest that mutational VAF of certain genes should be considered into the routine prognostic prediction and risk stratification of MDS patients.  相似文献   

16.
Sarcomas represent a heterogeneous group of mesenchymal malignancies arising at various locations in the soft tissue and bone. Though a rare disease, sarcoma affects ~200,000 patients worldwide every year. The prognosis of patients with sarcoma is poor, and targeted therapy options are limited; therefore, accurate diagnosis and classification are essential for effective treatment. Sarcoma samples were acquired from 199 patients, in which TP53 (39.70%, 79/199), CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT (14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 20/199) were identified as the most commonly mutated genes (>10% incidence). Among 64 soft-tissue sarcomas that were unclassified by immunohistochemistry, 15 (23.44%, 15/64) were subsequently classified using next-generation sequencing (NGS). For the most part, the sarcoma subtypes were evenly distributed between male and female patients, while a significant association with sex was detected in leiomyosarcomas. Statistical analysis showed that osteosarcoma, Ewing''s sarcoma, gastrointestinal stromal tumors and liposarcoma were all significantly associated with the patient age, and that angiosarcoma was significantly associated with high tumor mutational burden. Furthermore, serially mutated genes associated with myxofibrosarcoma, gastrointestinal stromal tumor, osteosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma and Ewing''s sarcoma were identified, as well as neurotrophic tropomyosin-related kinase (NTRK) fusions of IRF2BP2-NTRK1, MEF2A-NTRK3 and ITFG1-NTRK3. Collectively, the results of the present study suggest that NGS-targeting provides potential new biomarkers for sarcoma diagnosis, and may guide more precise therapeutic strategies for patients with bone and soft-tissue sarcomas.  相似文献   

17.
We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis.  相似文献   

18.
19.
Recent studies investigating the genetic determinants of cancer suggest that some of the genetic alterations contributing to tumorigenesis may be inherited, but the vast majority is somatically acquired during the transition of a normal cell to a cancer cell. A systematic understanding of the genetic and molecular determinants of cancers has already begun to have a transformative effect on the study and treatment of cancer, particularly through the identification of a range of genetic alterations in protein kinase genes, which are highly associated with the disease. Since kinases are prominent therapeutic targets for intervention within the cancer cell, studying the impact that genomic alterations within them have on cancer initiation, progression, and treatment is both logical and timely. In fact, recent sequencing and resequencing (i.e., polymorphism identification) efforts have catalyzed the quest for protein kinase ‘driver’ mutations (i.e., those genetic alterations which contribute to the transformation of a normal cell to a proliferating cancerous cell) in distinction to kinase ‘passenger’ mutations which reflect mutations that merely build up in course of normal and unchecked (i.e., cancerous) somatic cell replication and proliferation. In this review, we discuss the recent progress in the discovery and functional characterization of protein kinase cancer driver mutations and the implications of this progress for understanding tumorigenesis as well as the design of ‘personalized’ cancer therapeutics that target an individual’s unique mutational profile.  相似文献   

20.
MUM1/IRF4 is normally expressed in late germinal center/post germinal center B-cells. Previous studies of chronic lymphocytic leukemia in bone marrow and lymph node have demonstrated variable expression of MUM1/IRF4 and conflicting prognostic significance. In this study we evaluated MUM1/IRF4 expression in peripheral blood CLL cells utilizing Histogel cell blocks. MUM1/IRF4 was absent in 4/36 (11%) specimens. The remaining cases demonstrated variable intensity and proportion of positive cells: <20% positive 16/36 (44%), 20 - 50% positive 12/36 (33%), >50% 4/36 (11%). No correlation was identified between MUM1/IRF4 and percent of CD38 positive cells, CD38 status (+/-), ZAP-70 status (+/-), and IgVH mutational status. The variability in MUM1/IRF4 staining suggests a level of biologic complexity that is not adequately reflected in the current binary models of CLL pathobiology. This heterogeneity may reflect the role of MUM1/IRF4 as an effector and integrator of several lymphocyte activation pathways including antigenic and environmental stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号