首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to test the reliability of sagittal spinal curvature measurements using 3-D ultrasound in patients with adolescent idiopathic scoliosis (AIS). Ultrasound spinous process angle (USSPA) and ultrasound laminae angle (USLA) were measured on sagittal ultrasound images, while the Cobb angle (XCA) was measured on sagittal X-ray images. Intra-class correlation coefficients (ICC) for the intra- and inter-observer variability, linear regression analysis and Bland-Altman method, including mean absolute difference (MAD), were investigated to evaluate the reliability and validity of the two ultrasound angles compared with XCA. Excellent measurement reliabilities were demonstrated for both ultrasound angles (ICC ≥ 0.91). Moderate to good and significant linear correlations and good agreement were demonstrated between the ultrasound methods and XCA (Thoracic [R2 ≥ 0.574] / Lumbar [R2 ≥ 0.635]). No significant differences were found for the MADs between both corrected ultrasound angles and XCA. Sagittal ultrasound angles were demonstrated to be reliable for assessing sagittal curvature using spinous processes and laminae and to have good and significant correlations with XCAs. Since it is non-ionizing and relatively low cost, this method opens the possibility of providing frequent curve monitoring and evaluation, and screening for AIS patients, particularly based on sagittal profiles.  相似文献   

2.
Vascular ultrasound imaging is inherently hampered by low lateral resolution and contrast. Steering of the ultrasound beams can be used to overcome these limitations in superficial artery imaging because the aperture-to-depth ratio is relatively high. However, in arteries located at larger depths, the steered beams do not overlap for larger steering angles. In this study, the ultrasound probe is physically translated over the abdomen to create large angles between acquisitions, while maintaining overlap on the abdominal aorta. In one phantom setup and 11 volunteers, 2-D cross-sectional multi-perspective ultrasound images of the abdominal aorta were acquired using seven angles between –45° and +45°. Automatic registration of the recorded images was performed by automatic feature detection of the aorta and spine. This automatic detection was successful in 62 out of 77 image sets. Compounded multi-perspective images showed an increase of contrast-to-noise ratios from 0.6 ± 0.1 to 1.2 ± 0.2 over the entire heart cycle in volunteers.  相似文献   

3.
A technique for measuring the curvature of the lumbar spine is described and evaluated. Two small electronic inclinometers are attached to the skin overlying the spinous processes of L1 and S1. The signal from these inclinometers is stored and then processed to give a record of lumbar curvature against time. Tests showed that recordings from the inclinometers were reproducible and correlated well (r=0.91) with flexion angles measured from X-rays. The dynamic response of the system was good enough to measure lumbar curvature during typical bending and lifting movements.  相似文献   

4.
We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.OCIS codes: (170.2520) Fluorescence microscopy, (170.6900) Three-dimensional microscopy, (170.6920) Time-resolved imaging, (170.3010) Image reconstruction techniques  相似文献   

5.
Monitoring spinal curvature in adolescent kyphoscoliosis requires regular radiographic examinations; however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favored over radiography because it does not emit ionizing radiation. Therefore, we tested an ultrasound system for spinal curvature measurement, with the help of spatial tracking of the ultrasound transducer. Tracked ultrasound was used to localize vertebral transverse processes as landmarks along the spine to measure curvature angles. The method was tested in two scoliotic spine models by localizing the same landmarks using both ultrasound and radiographic imaging and comparing the angles obtained. A close correlation was found between tracked ultrasound and radiographic curvature measurements. Differences between results of the two methods were 1.27 ± 0.84° (average ± SD) in an adult model and 0.96 ± 0.87° in a pediatric model. Our results suggest that tracked ultrasound may become a more tolerable and more accessible alternative to radiographic spine monitoring in adolescent kyphoscoliosis.  相似文献   

6.
目的:探索三维超声成像技术在临床上评估和测量青少年特发性脊柱侧凸(AIS)患者椎体侧凸角度的可行性;通过与磁共振成像(MRI)的测量方法比较,评价三维超声测量结果的信度与效度。方法:16例AIS女性患者在同一上午进行三维超声和MRI的全脊柱扫描。将三维超声和MRI的图像进行随机分配,两位评测者随机抽取图像进行测量;所有图像均需进行3次测量,每次测量间隔1周,且测量过程中对两位评测者采取盲法。在冠状面上,三维超声成像采用椎板中心法(COL)测量AIS的椎体侧凸角度;而MRI成像采用Cobb方法。通过计算组内相关系数(ICC[2,k])评价三维超声测量方法的信度;通过与MRI测量结果比较,采用配对t检验及Pearson相关系数,评价三维超声测量方法的效度。结果:在冠状面上,三维超声成像COL测量方法评估AIS患者椎体侧凸角度具有较高的评测者内和评测者间信度(ICC[2,K]0.9,P0.05)。三维超声成像COL测量方法和MRI成像Cobb测量方法评估AIS椎体侧凸角度的结果之间没有显著性差异(P0.05);两种测量方法具有较高的相关性(r0.9)。结论:三维超声成像技术可用于评估AIS患者椎体在冠状面上的侧凸角度,具有较高的信度和效度。  相似文献   

7.
Ultrasound assessment of myocardial strain can provide valuable information on regional cardiac function. However, Doppler-based methods often used in practice for strain estimation suffer from angle dependency. In this study, a partial solution to that fundamental limitation is presented. We have previously reported using simulated data sets that spatial compounding of axial velocities obtained at three steering angles can theoretically outperform 2-D speckle tracking for 2-D strain estimation in the mouse heart. In this study, the feasibility of the method was analyzed in vivo using spatial compounding of Doppler velocities on six mice with myocardial infarction and five controls, and results were compared with those of tagged microscopic magnetic resonance imaging (μMRI). Circumferential estimates quantified by means of both ultrasound and μMRI could detect regional dysfunction. Between echocardiography and μMRI, a good regression coefficient was obtained for circumferential strain estimates (r = 0.69), whereas radial strain estimates correlated only moderately (r = 0.37). A second echocardiography was performed after μMRI to test the reproducibility of the compounding method. This yielded a higher correlation coefficient for the circumferential component than for the radial component (r = 0.74 circumferentially, r = 0.49 radially).  相似文献   

8.
Skeletal muscle structural assembly (and its remodeling in response to loading–unloading states) can be investigated macroscopically by assessing muscle architecture, described as fascicle geometric disposition within the muscle. Over recent decades, various medical imaging techniques have been developed to facilitate the in vivo assessment of muscle architecture. However, the main advantages and limitations of these methodologies have been fragmentally discussed. In the present article, the main techniques used for the evaluation of muscle architecture are presented: conventional B-mode ultrasonography, extended-field-of-view ultrasound, 3-D ultrasound and magnetic resonance imaging-based diffusion tensor imaging. By critically discussing potentials and shortcomings of each methodology, we aim to provide readers with an overview of both established and new techniques for the in vivo assessment of muscle architecture. This review may serve as decision guidance facilitating selection of the appropriate technique to be applied in biomedical research or clinical routine.  相似文献   

9.
Observing the morphology of human skin is important in the diagnosis of skin cancer and inflammation and in the assessment of skin aging. High-frequency ultrasound imaging provides high spatial resolution of the deep layers of the skin, which cannot be visualized by optical methods. The objectives of the present study were to develop a three-dimensional (3-D) ultrasound microscope and to observe the morphology of normal human skin in vivo. A concave polyvinylidene fluoride transducer with a central frequency of 120 MHz was excited using an electric pulse generated by semiconductor switching. The transducer was scanned two-dimensionally by using two linear motors on the region-of-interest and the ultrasonic reflection was digitized with 2-GHz sampling. Consecutive B-mode images perpendicular to the skin surface were reconstructed to generate multiplanar reconstructed images and 3-D volume-rendering images clearly showing microstructures such as sebaceous glands and hair follicles. The 3-D ultrasound microscope could be used to successfully image the morphology of human skin noninvasively and may provide important information on skin structure.  相似文献   

10.
Radiation exposure with repeated radiography required at follow-up poses serious health concerns for scoliosis patients. Although spinous process angle (SPA) measurement of spinal curvatures with ultrasound has been reported with promising results, an evidence-based account on its accuracy for translational application remains undefined. This prospective study involved 952 idiopathic scoliosis patients (75.7% female, mean age 16.7 ± 3.0 y, Cobb 28.7 ± 11.6°). Among 1432 curves (88.1%) detected by ultrasound, there was good correlation between radiologic Cobb angles measured manually on EOS (E_Cobb) whole-spine radiographs and automatic ultrasound SPA measurement for upper spinal curves (USCs) (r = 0.873, apices T7–T12/L1 intervertebral disc) and lower spinal curves (LSCs) (r = 0.740, apices L1 or below) (p < 0.001). Taller stature was associated with stronger correlation. For E_Cobb <30°, 66.6% USCs and 62.4% LSCs had absolute differences between E_Cobb and predicted Cobb angle calculated from SPA ≤5°. Ultrasound could be a viable option in lieu of radiography for measuring coronal curves with apices at T7 or lower and Cobb angle <30°.  相似文献   

11.
The purpose of this study was to compare acquisition time efficiency and diagnostic agreement of neonatal brain ultrasound (US) scans obtained with a 3-D volume US acquisition protocol and the conventional 2-D acquisition protocol. Ninety-one consecutive premature neonatal brain ultrasound scans were prospectively performed on 59 neonates with the conventional 2-D acquisition protocol. Immediately after the 2-D study, a coronal 3-D ultrasound volume was acquired and later reconstructed into axial and sagittal planes. All 59 neonates were imaged in the neonatal intensive care unit to rule out intracranial hemorrhage. Total time for 2-D and 3-D acquisition protocols was recorded, and a two-tailed t-test was used to determine if study durations differed significantly. One pediatric neuroradiologist reviewed the reformatted 3-D images, tomographic ultrasound images. Results were compared with the clinical interpretation of the 2-D conventional study. The mean scanning time for the 2-D US acquisition protocol was 10.56 min (standard deviation [SD] = 7.11), and that for the 3-D volume US acquisition protocol was 1.48 min (SD = 0.59) (p ≤ 0.001). Inter-observer agreement revealed k values of 0.84 for hydrocephalus, 0.80 for germinal matrix hemorrhage/intraventricular hemorrhage, 0.74 for periventricular leukomalacia and 0.91 for subdural collection, hence near-perfect to substantial agreement between imaging protocols. There was a significant decrease in acquisition time for the 3-D volume ultrasound acquisition protocol compared with the conventional 2-D US protocol (p = <0.001), without compromising the diagnostic quality compared with a conventional 2-D US imaging protocol.  相似文献   

12.
Although real-time 3-D echocardiography has the potential to allow more accurate assessment of global and regional ventricular dynamics compared with more traditional 2-D ultrasound examinations, it still requires rigorous testing and validation should it break through as a standard examination in routine clinical practice. However, only a limited number of studies have validated 3-D strain algorithms in an in vivo experimental setting. The aim of the present study, therefore, was to validate a registration-based strain estimation methodology in an animal model. Volumetric images were acquired in 14 open-chest sheep instrumented with ultrasonic microcrystals. Radial strain (?RR), longitudinal strain (?LL) and circumferential strain (?CC) were estimated during different stages: at rest, during reduced and increased cardiac inotropy induced by esmolol and dobutamine infusion, respectively, and during acute ischemia. Agreement between image-based and microcrystal-based strain estimates was evaluated by their linear correlation, indicating that all strain components could be estimated with acceptable accuracy (r = 0.69 for ?RR, r = 0.64 for ?LL and r = 0.62 for ?CC). These findings are comparable to the performance of the current state-of-the-art commercial 3-D speckle tracking methods. Furthermore, shape of the strain curves, timing of peak values and location of dysfunctional regions were identified well. Whether 3-D elastic registration performs better than 3-D block matching-based methodologies still remains to be proven.  相似文献   

13.
To improve our understanding of the mechanical behavior of human atherosclerotic plaque tissue, fully 3-D geometrical, morphological and dynamical information is essential. For this purpose, four-dimensional (3-D+t) strain imaging using an ultrasound tomography approach (echo-computed tomography) was performed in carotid arteries in vitro. The method was applied to a carotid phantom (CPh), a porcine carotid artery (PC) and human carotid atherosclerotic plaque samples (HC, n = 5). Each sample was subjected to an intraluminal pressure, after which 2-D longitudinal ultrasound images were obtained for 36 angles along the circumferential direction. Local deformations were estimated using a 2-D strain algorithm, and 3-D radial strain data were reconstructed. At systole, median luminal strains of 15% (CPh) and 18% (PC) were found, which is in agreement with the stiffness of the material and applied pressure pulse. The elastographic signal-to-noise ratio was consistent in all directions and ranged from 16 to 36 dB. Furthermore, realistic but more complex strain patterns were found for the HC, with 99th percentile systolic strain values ranging from 0.1% to 18%.  相似文献   

14.
Preclinical imaging with photoacoustic tomography (PAT) has attracted wide attention in recent years since it is capable of providing molecular contrast with deep imaging depth. The automatic extraction and segmentation of the animal in PAT images is crucial for improving image analysis efficiency and enabling advanced image post-processing, such as light fluence (LF) correction for quantitative PAT imaging. Previous automatic segmentation methods are mostly two-dimensional approaches, which failed to conserve the 3-D surface continuity because the image slices were processed separately. This discontinuity problem further hampers LF correction, which, ideally, should be carried out in 3-D due to spatially diffused illumination. Here, to solve these problems, we propose a volumetric auto-segmentation method for small animal PAT imaging based on the 3-D optimal graph search (3-D GS) algorithm. The 3-D GS algorithm takes into account the relation among image slices by constructing a 3-D node-weighted directed graph, and thus ensures surface continuity. In view of the characteristics of PAT images, we improve the original 3-D GS algorithm on graph construction, solution guidance and cost assignment, such that the accuracy and smoothness of the segmented animal surface were guaranteed. We tested the performance of the proposed method by conducting in vivo nude mice imaging experiments with a commercial preclinical cross-sectional PAT system. The results showed that our method successfully retained the continuous global surface structure of the whole 3-D animal body, as well as smooth local subcutaneous tumor boundaries at different development stages. Moreover, based on the 3-D segmentation result, we were able to simulate volumetric LF distribution of the entire animal body and obtained LF corrected PAT images with enhanced structural visibility and uniform image intensity.  相似文献   

15.
The aim of this study was to assess the accuracy of an algorithm for automated measurement of left ventricular ejection fraction (LVEF) available on handheld ultrasound devices (HUDs). One hundred twelve patients admitted to the cardiology department underwent assessment performed with an HUD. In each case, the four-chamber apical view was obtained, and LVEF was calculated with LVivo software. Subsequently, during the examination performed with the use of the stationary echocardiograph, the 3-D measurement of LVEF was recorded. The average LVEFs measured with LVivo and the 3-D reference method were 46 ± 14% and 48 ± 14%, respectively. The correlation between the measurements obtained with the HUD and 3-D evaluation was high (r = 0.92, 95% confidence interval: 0.87–0.95, p < 0.0001). The mean difference between the LVEF obtained with LVivo and the 3-D LVEF was not significant (mean difference: –0.61%, 95% confidence interval: –1.89 to 0.68, p = 0.31). The LVivo software despite its limitations is capable of the accurate LVEF measurement when the acquired views are of at least good imaging quality.  相似文献   

16.
Precise segmentation of carotid artery (CA) structure is an important prerequisite for the medical assessment and detection of carotid plaques. For automatic segmentation of the media–adventitia boundary (MAB) and lumen–intima boundary (LIB) in 3-D ultrasound images of the CA, a U-shaped CSWin transformer (U-CSWT) is proposed. Both the encoder and decoder of the U-CSWT are composed of hierarchical CSWT modules, which can capture rich global context information in the 3-D image. Experiments were performed on a 3-D ultrasound image data set of the CA, and the results indicate that the U-CSWT performs better than other convolutional neural network (CNN)-based and CNN–transformer hybrid methods. The model yields Dice coefficients of 94.6 ± 3.0% and 90.8 ± 5.1% for the MAB and LIB in the common carotid artery (CCA) and 92.9 ± 4.9% and 89.6 ± 6.2% for MAB and LIB in the bifurcation, respectively. Our U-CSWT is expected to become an effective method for automatic segmentation of 3-D ultrasound images of CA.  相似文献   

17.
Three-dimensional ultrasound has been increasingly considered as a safe radiation-free alternative to radiation-based fluoroscopic imaging for surgical guidance during computer-assisted orthopedic interventions, but because ultrasound images contain significant artifacts, it is challenging to automatically extract bone surfaces from these images. We propose an effective way to extract 3-D bone surfaces using a surface growing approach that is seeded from 2-D bone contours. The initial 2-D bone contours are estimated from a combination of ultrasound strain images and envelope power images. Novel features of the proposed method include: (i) improvement of a previously reported 2-D strain imaging-based bone segmentation method by incorporation of a depth-dependent cumulative power of the envelope into the elastographic data; (ii) incorporation of an echo decorrelation measure-based weight to fuse the strain and envelope maps; (iii) use of local statistics of the bone surface candidate points to detect the presence of any bone discontinuity; and (iv) an extension of our 2-D bone contour into a 3-D bone surface by use of an effective surface growing approach. Our new method produced average improvements in the mean absolute error of 18% and 23%, respectively, on 2-D and 3-D experimental phantom data, compared with those of two state-of-the-art bone segmentation methods. Validation on 2-D and 3-D clinical in vivo data also reveals, respectively, an average improvement in the mean absolute fitting error of 55% and an 18-fold improvement in the computation time.  相似文献   

18.
The vena contracta and effective regurgitant orifice area (EROA) are currently used for the clinical assessment of mitral regurgitation (MR) from 2-D color Doppler imaging. In addition to being highly user dependent and having low repeatability, these methods do not represent accurately the anatomic regurgitant orifice (ARO), which affects the adequate assessment of MR patients. We propose a novel method for semi-automatic detection and quantitative assessment of the 3-D ARO shape from 3-D transesophageal echocardiographic images. The algorithm was tested on a set of 25 patients with MR, and compared with EROA for validation. Results indicate the robustness of the proposed approach, with low variability in relation to different settings of user-defined segmentation parameters. Although EROA and ARO exhibited a good correlation (r = 0.8), relatively large biases were measured, indicating that EROA probably underestimates the real shape and size of the regurgitant orifice. Along with the higher reproducibility of the proposed approach, this highlights the limitations of current clinical approaches and underlines the importance of accurate assessment of the ARO shape for diagnosis and treatment in MR patients.  相似文献   

19.
Joint arthropathies often require continuous monitoring of the joint condition, typically performed using magnetic resonance (MR) or ultrasound (US) imaging. US imaging is often the preferred screening or diagnostic tool as it is fast and inexpensive. However, conventional 2-D US has limited capability to compare imaging results between examinations because of its operator dependence and challenges related to repeat imaging in the same location and orientation. Comparison between several imaging sessions is crucial to assess the interval progression of joint conditions. We propose a novel 3-D US scanner for ankle joint assessment that can partially overcome these issues by enabling 3-D imaging. Here, we (i) present the design of the 3-D US ankle scanner system, (ii) validate the geometric reconstruction accuracy of the system, (iii) provide preliminary images of healthy volunteer ankles and (iv) compare 3-D US imaging results with MR imaging. The 3-D ankle scanner consists of a tub filled with water, a linear US probe attached to the wall of the tub and a motorized unit that rotates the US probe 360° around the center of the tub. As the probe rotates, a 3-D US image is formed of the ankle of the patient positioned in the middle of the tub. US probe height, angle and distance from the tub center can be adjusted. The reconstruction accuracy of the system was validated in each of the coordinate directions at different probe angles using two test phantoms. A phantom consisting of numerous Ø200-µm nylon threads with known spacing and a metal rod with machined grooves was used for validation in the horizontal and vertical directions, respectively. The volumetric reconstruction accuracy validation was performed by imaging an agar phantom with two embedded spheres of known volumes and comparing the segmented sphere volume and surface area with the expected. Three-dimensional US and MR images of both ankles of five healthy volunteers were acquired. Distal tibia and proximal talus were segmented in both imaging modalities and the surfaces of these segmentations were compared using the 95% Hausdorff and mean surface distances. The observed mean linear measurement error in all the coordinate directions and over several probe angles was 2.98%. The mean measured volumetric measurement error was 3.45%. The volunteer study revealed useful features for joint assessment present in the 3-D ankle scanner images, such as joint spacing, distal tibia and proximal talus. The mean 95% Hausdorff and mean surface distances between segmentations in 3-D US and MR images were 5.68 ± 0.83 and 2.01 ± 0.30 mm, respectively. In this proof-of-concept study, the 3-D US ankle scanner enabled visualization of the ankle joint features that are useful for joint assessment.  相似文献   

20.
A 3-D region-growing motion-tracking (RGMT) method for ultrasound elasticity imaging is described. This 3-D RGMT method first estimates the displacements at a sparse subset of points, called seeds; uses an objective measure to determine, among those seeds, which displacement estimates to trust; and then performs RGMT in three dimensions to estimate displacements for the remaining points in the field. During the growing process in three dimensions, the displacement estimate at one grid point is employed to guide the displacement estimation of its neighboring points using a 3-D small search region. To test this algorithm, volumetric ultrasound radiofrequency echo data were acquired from one phantom and five in vivo human breasts. Displacement estimates obtained with the 3-D RGMT method were compared with a published 2-D RGMT method via motion-compensated cross-correlation (MCCC) of pre- and post-deformation radiofrequency echo signals. For data from experiments with the phantom, the MCCC values in the entire tracking region of interest averaged approximately 0.95, and the contrast-to-noise ratios averaged 4.6 for both tracking methods. For all five patients, the average MCCC values within the region of interest obtained with the 3-D RGMT were consistently higher than those obtained with the 2-D RGMT method. These results indicate that the 3-D RGMT algorithm is able to track displacements with increased accuracy and generate higher-quality 3-D elasticity images than the 2-D RGMT method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号