首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer’s disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and β-amyloid exposure of rat primary hippocampal neurons induces a dose-dependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation.Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. Intracellular accumulation of neurofibrillary tangles (NFTs) and extracellular precipitation of senile plaques are the most prominent pathological hallmarks of AD (13). The clinical-to-pathological correlation studies have demonstrated that the number of NFTs consisting of hyperphosphorylated tau correlates with the degree of dementia in AD (46). Tau is the major microtubule-associated protein that normally contains 2–3 mol of phosphate per mole of tau protein. In AD brains, tau is abnormally hyperphosphorylated (namely AD-P-tau) and the phosphate level increases to 5–9 mol phosphate per mole tau (4). AD-P-tau does not bind to tubulin and become incompetent in promoting microtubule assembly and maintaining the stability of the microtubules. The AD-P-tau also sequesters normal tau from microtubules (7), and serves as a template for the conversion of normal tau into misfolded protein in a prion-like manner (8). In addition to hyperphosphorylation, tau is also contains other posttranslational modifications, such as ubiquitination and SUMOylation (5, 911). The abnormal modification of tau also decreases its solubility, and ∼40% of the hyperphosphorylated tau in AD brains has been isolated as sedimentable nonfibril cytosolic protein (1, 12). Although the mechanisms underlying the formation of the NFTs remain unclear, the altered tau modifications and impaired degradation are believed to play a role. Therefore, clarifying the mechanism that may cause tau accumulation is of great significance for understanding the pathogenesis of AD and for developing new therapeutics.Like other proteins, tau can be degraded by autophagy-lysosomal and ubiqutin-proteasomal systems under physiological conditions. In mouse cortical neurons, a C-terminal–truncated form of tau that mimics tau cleaved at Asp421 (tauΔC) is removed by macroautophagic and lysosomal mechanisms (13). Lysosomal perturbation inhibits the clearance of tau with accumulation and aggregation of tau in M1C cells (14). Cathepsin D released from lysosome can degrade tau in cultured hippocampal slices (15). Inhibition of the autophagic vacuole formation leads to a noticeable accumulation of tau (14). Studies also suggest that tau protein is degraded in an ubiquitin-, ATP-, and 26S proteasome-, but not a 20S proteasome-dependent manner under normal conditions (16). When the cells are exposed to the stresses, CHIP, a ubiquitin ligase that interacts directly with Hsp70/90, can induce tau ubiquitination and thus selectively reduce the level of detergent insoluble tau (17). The compensatory activation of autophagy-lysosomal or ubiqutin-proteasomal system can antagonize tau aggregation; therefore, tau accumulation does not show in the early stage of AD. During the evolution of AD, a gradual impairment of autophagy-lysosomal system and ubiqutin-proteasomal system has been detected at later stage of the disease (1820). Studies suggest that the ubiquitin-mediated degradation pathway seems ineffective in removing the tau-positive fibrillar structures in the AD brains (2123); however, the mechanisms underlying the impairment of the ubiqutin-proteasomal system are elusive.Ubiquitin is an important component of the cellular defense system that tags abnormal proteins for their degradation by ATP-dependent nonlysosomal proteases (24). Monoclonal antibodies 3-39 and 5-25 raised against paired helical filaments of NFTs have been shown to recognize ubiquitin (25). Meanwhile, tau can be sumoylated at K340 in vitro by SUMO-1 (small ubiquitin-like modifier protein-1) and to a lesser extent by SUMO2 and SUMO3 (911). Moreover, SUMO-1 immunoreactivity was colocalized with tau aggregates in neuritic plaques of APP transgenic mice (11). It is well known that SUMO share similarities with ubiquitin in both the structure and the biochemistry of their conjugation (26). Therefore, tau SUMOylation may compete against its ubiquitination and thus suppress tau degradation. In the present study, we found that tau SUMOylation reciprocally stimulates its phosphorylation and thus inhibits the ubiquitination and degradation of tau proteins.  相似文献   

4.
The staphylococcal multiresistance plasmids are key contributors to the alarming rise in bacterial multidrug resistance. A conserved replication initiator, RepA, encoded on these plasmids is essential for their propagation. RepA proteins consist of flexibly linked N-terminal (NTD) and C-terminal (CTD) domains. Despite their essential role in replication, the molecular basis for RepA function is unknown. Here we describe a complete structural and functional dissection of RepA proteins. Unexpectedly, both the RepA NTD and CTD show similarity to the corresponding domains of the bacterial primosome protein, DnaD. Although the RepA and DnaD NTD both contain winged helix-turn-helices, the DnaD NTD self-assembles into large scaffolds whereas the tetrameric RepA NTD binds DNA iterons using a newly described DNA binding mode. Strikingly, structural and atomic force microscopy data reveal that the NTD tetramer mediates DNA bridging, suggesting a molecular mechanism for origin handcuffing. Finally, data show that the RepA CTD interacts with the host DnaG primase, which binds the replicative helicase. Thus, these combined data reveal the molecular mechanism by which RepA mediates the specific replicon assembly of staphylococcal multiresistant plasmids.The emergence of multidrug-resistant bacteria is a mounting global health crisis. In particular, multidrug-resistant Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and is resistant to most antibiotics commonly used for patient treatment (1). Hospital intensive care units in many countries, including the United States, now report methicillin-resistant S. aureus infection rates exceeding 50% (2, 3). Antibiotic resistance in contemporary infectious S. aureus strains, such as in hospitals, is often encoded by plasmids that can be transmitted between strains via horizontal DNA transfer mechanisms. These plasmids are typically classified as small (<5 kb) multicopy plasmids, which usually encode only a single resistance gene; medium-sized (8–40 kb) multirestance plasmids that confer resistance to multiple antibiotics, disinfectants, and/or heavy metals; and large (>40 kb) conjugative multiresistance plasmids that additionally encode a conjugative DNA transfer mechanism (46). Importantly, sequence analyses have shown that most staphylococcal conjugative and nonconjugative multiresistance plasmids encode a highly conserved replication initiation protein, denoted RepA_N (515). RepA_N proteins are also encoded by plasmids from other Gram-positive bacteria as well as by some phage, underscoring their ubiquitous nature (10). These RepA proteins are essential for replication of multiresistance plasmids, and hence plasmid carriage and dissemination, yet the mechanisms by which these proteins function in replication are currently unknown.The DNA replication cycle can be divided into three stages: initiation, elongation, and termination. Replication initiation proteins (RepA) mediate the crucial first step of initiation. Bacterial chromosome replication is initiated by the chromosomal replication initiator protein, DnaA, which binds the origin and recruits the replication components known as the primosome (16). In Gram-negative bacteria the primosome includes DnaG primase, the replicative helicase (DnaB), and DnaC (17). Replication initiation in Gram-positive bacteria involves DnaG primase and helicase (DnaC) and the proteins DnaD, DnaI, and DnaB (1822). DnaD binds first to DnaA at the origin. This is followed by binding of DnaI/DnaB and DnaG, which together recruit the replicative helicase (23, 24). Instead of DnaA, plasmids encode and use their own specific replication initiator binding protein. Structures are only available for RepA proteins (F, R6K, and pPS10 Rep) harbored in Gram-negative bacteria. These proteins contain winged helix-turn-helix (winged HTH) domains and bind iteron DNA as monomers to, in some still unclear manner, drive replicon assembly (2527).Replication mechanisms used by plasmids harbored in Gram-positive bacteria are less well understood and are distinct from their Gram-negative counterparts. Indeed, most plasmid RepA proteins in Gram-negative and Gram-positive bacteria show no sequence homology and seem to be unrelated. The multiresistance RepA proteins are arguably among the most abundant of plasmid Rep proteins, yet how they function is not known. Data suggest that these proteins are composed of three main regions: an N-terminal domain (NTD) consisting of ∼120 aa, a long and variable linker region (∼30–50 residues), and a C-terminal domain (CTD) of ∼120 residues (2831). The NTD and CTD are both essential for replication. The NTD exhibits the highest level of sequence conservation, which has resulted in the designation of plasmids that encode these proteins as the RepA_N replicon family (10). Although not as well conserved as the NTD, RepA CTD regions show homology between plasmids found in genus-specific clusters, suggesting that this domain may perform a host-specific role (2832). Although the function of the RepA CTD remains enigmatic, recent studies have indicated that the NTD mediates DNA binding and interacts with iterons that reside within the plasmid origin (30). The essential roles played by RepA proteins in multiresistance plasmid retention marks them as attractive targets for the development of specific chemotherapeutics. However, the successful design of such compounds necessitates structural and mechanistic insight. Here, we describe a detailed dissection of the RepA proteins from the multiresistance plasmids pSK41 and pTZ2126. The combined data reveal the molecular underpinnings of a minimalist replication assembly mediated by multiresistance RepA proteins.  相似文献   

5.
6.
7.
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.Pathogen-containing vacuoles (PVs) provide a safe haven to many intracellular bacterial and protozoan pathogens (1). Within the vacuolar enclosure of PVs, these pathogens can accumulate nutrients required for microbial growth. Moreover, life within the vacuolar niche shields microbes from cytoplasmic immune sensors that, once activated, can trigger proinflammatory and cell-autonomous immune responses (1). Accordingly, many intracellular pathogens such as the bacterium Chlamydia trachomatis and the protozoan Toxoplasma gondii have successfully adapted to a vacuolar lifestyle.For the host to successfully combat infections with PV-resident microbes, the innate immune system must target PVs and its inhabitants for destruction. Critical mediators of host-directed attacks on PVs are two families of IFNγ-inducible GTPases: immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) (2). Members of both GTPase families play roles in host-mediated lysis of PVs, a process resulting in the release of microbes into the host cell cytoplasm, subsequent killing of PV-expelled microbes, and host cell death (38). Additionally, GBPs help deliver cytosolic subunits of the antimicrobial NADPH oxidase NOX2 for assembly on phagosomal membranes, orchestrate the capture of PV-resident microbes inside degradative autophagolysosomes, and promote the activation of canonical and noncanonical inflammasome pathways (5, 812). As a critical first step underlying most if not all of these known GBP-controlled cell-autonomous immune responses, GBPs must locate to their intracellular microbial targets.GBPs belong to the dynamin superfamily of large GTPases (13). Similar to other members of the dynamin superfamiliy, GBPs can assemble as oligomers in a nucleotide-dependent fashion (13). Binding of GTP results in dimer formation; subsequent GTP hydrolysis prompts conformational changes that enable GBPs to assemble as tetramers (14, 15). Mutations in the G domain that reduce nucleotide binding affinities and hydrolytic activity block GBP oligomerization, constrain the localization of GBPs to the cytoplasm, and prevent GBPs from binding to PV membranes (9, 1518). These observations support a model in which GBP monomers are diffusely distributed in the cytoplasm and GBP oligomers associate with membranes. However, these observations fail to account for the specificity with which oligomeric GBPs agglomerate on PV membranes.PVs formed by C. trachomatis and T. gondii recruit not only GBPs but also members of the IRG family of IFNγ-inducible GTPase (4, 19). The IRG protein family can be divided into two subgroups: IRGM and GKS proteins (20). Whereas GKS proteins feature the canonical glycine–lysine–serine (GKS) P-loop sequence, IRGM proteins have a substitution of a lysine for a methionine in their P-loop sequence (20). IRGM and GKS proteins also differ in their subcellular localization: IRGM proteins associate with endomembranes, whereas monomeric GDP-bound GKS proteins predominantly reside within the host cell cytoplasm (4, 17, 21, 22). Once GKS proteins transition into a GTP-bound active state, they can bind to PV membranes (21). IRGM proteins inhibit this activation step and thereby guard IRGM-decorated membranes against GKS protein targeting (17, 21). Because PV membranes surrounding either C. trachomatis or T. gondii are largely devoid of IRGM proteins, they are the preferred GKS binding substrate following a “missing-self” principle of immune targeting (17, 23). In IRGM-deficient cells, however, GKS proteins enter the active state prematurely, form protein aggregates, mislocalize, and thus fail to bind to PVs (17, 21). Although these previous observations help explain how IRGM proteins promote the delivery of GKS proteins to PVs, IRGM proteins also control the subcellular localization of GBPs through an uncharacterized mechanism (6, 17, 2426).Here, we report a previously unidentified host-directed ubiquitination pathway involved in innate immunity. We demonstrate that Chlamydia- and Toxoplasma-containing vacuoles become ubiquitin-decorated upon IFNγ priming of their host cells. IFNγ-dependent association of ubiquitin with PVs requires IFNγ-inducible IRG proteins and the E3 ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). Experimental removal of the IFNγ-inducible ubiquitination pathway dramatically diminishes the p62-dependent delivery of GBPs to PVs and thereby renders host cells more susceptible to infections. Thus, our observations imply that ubiquitin serves as a host-induced pattern that marks intracellular structures as immune targets for members of the GBP family of host defense proteins.  相似文献   

8.
9.
10.
11.
Increasing evidence suggests that nuclear migration is important for eukaryotic development. Although nuclear migration is conserved in plants, its importance for plant development has not yet been established. The most extraordinary plant nuclear migration events involve plant fertilization, which is starkly different from that of animals. Instead of evolving self-propelled sperm cells (SCs), plants use pollen tubes to deliver SCs, in which the pollen vegetative nucleus (VN) and the SCs migrate as a unit toward the ovules, a fundamental but barely understood process. Here, we report that WPP domain-interacting proteins (WIPs) and their binding partners the WPP domain-interacting tail-anchored proteins (WITs) are essential for pollen nuclear migration. Loss-of-function mutations in WIT and/or WIP gene families resulted in impaired VN movement, inefficient SC delivery, and defects in pollen tube reception. WIPs are Klarsicht/ANC-1/Syne-1 Homology (KASH) analogs in plants. KASH proteins are key players in animal nuclear migration. Thus, this study not only reveals an important nuclear migration mechanism in plant fertilization but also, suggests that similar nuclear migration machinery is conserved between plants and animals.Nuclear migration is essential for cell differentiation, polarization, and migration, which influence organism development (13). Examples range from Caenorhabditis elegans P-cell development to mammalian neural development (13). The key players in opisthokont nuclear migration are the inner nuclear membrane Sad1/UNC-84 (SUN) proteins and outer nuclear membrane Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins. SUN and KASH proteins form the linkers of the nucleoskeleton and the cytoskeleton complexes at the nuclear envelope (NE) and transfer cytoplasmic forces to the nucleus (13). In plants, nuclear migration is associated with a number of developmental events and environmental responses, including fertilization, root and leaf hair formation, and plant–microbe interactions (4, 5). So far, little is known about the mechanism of plant nuclear migration. Although SUN proteins are conserved in plants (6, 7), absence of animal KASH homologs in plants suggests that plants may have evolved different molecular solutions to achieve nuclear migration. Recently, WPP domain-interacting proteins (WIPs) were identified as KASH proteins in plants (8), and their outer nuclear membrane binding partners WPP domain-interacting tail anchored proteins (WITs) were shown to interact with myosin XI-I (9). The WIT–myosin XI-I complexes regulate nuclear movement in root and mesophyll cells, but no developmental events have been linked to these nuclear movements (9).Essential for plant fertility, pollen tube growth harbors the most dramatic nuclear movement in plants. Unlike animals, which have sperm cells (SCs) that travel through self-propelled flagellum, flowering plants use pollen tubes to deliver SCs to ovules (1013). In Arabidopsis, pollen tube growth is guided by chemical cues in carpel tissues and attracted by small peptides secreted by synergid cells in the vicinity of ovules (1418). Pollen tube reception is completed by pollen tube burst, SC release, and degeneration of synergid cells (12). If this process fails, a second pollen tube can be attracted to the same ovule for a second attempt, resulting in polytubey (19). The SCs [or their progenitor the generative cell (GC)] are enclosed by an endocytic membrane tethered to the pollen vegetative nucleus (VN) (20). During pollen tube elongation, the VN and the SCs/GC are usually closely associated and move as a male germ unit (MGU) (13, 21). For decades, the movement of the MGU has been analyzed using cytoskeleton-depolymerizing reagents or heterogeneous antimyosin antibodies (2227). However, no genes have been implicated in MGU movement, and the function of the joint migration of VN and GC/SC remains hypothetical.Here, we have identified the Arabidopsis WIT and WIP protein families as key players in VN movement. WIP1 and WIT1 are localized at the vegetative nuclear envelope (VNE). Loss of either WIT or WIP family proteins impaired VN movement, resulting in defective pollen tube reception and inefficient SC-to-ovule migration. This study has not only identified a molecular mechanism regulating the VN movement but also, revealed an important function of the VN in plant fertilization.  相似文献   

12.
13.
Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.Although forgetting commonly has a negative connotation, it is a functional process that shapes memory and cognition (14). Recent studies, including work in relatively simple invertebrate models, have started to reveal basic biological mechanisms underlying forgetting (515). In Drosophila, single-session Pavlovian conditioning by pairing an odor (conditioned stimulus, CS) with electric shock (unconditioned stimulus, US) induces aversive memories that are short-lasting (16). The memory performance of fruit flies is observed to drop to a negligible level within 24 h, decaying rapidly early after training and slowing down thereafter (17). Memory decay or forgetting requires the activation of the small G protein Rac, a signaling protein involved in actin remodeling, in the mushroom body (MB) intrinsic neurons (6). These so-called Kenyon cells (KCs) are the neurons that integrate CS–US information (18, 19) and support aversive memory formation and retrieval (2022). In addition to Rac, forgetting also requires the DAMB dopamine receptor (7), which has highly enriched expression in the MB (23). Evidence suggests that the dopamine-mediated forgetting signal is conveyed to the MB by dopamine neurons (DANs) in the protocerebral posterior lateral 1 (PPL1) cluster (7, 24). Therefore, forgetting of olfactory aversive memory in Drosophila depends on a particular set of intracellular molecular pathways within KCs, involving Rac, DAMB, and possibly others (25), and also receives modulation from extrinsic neurons. Although important cellular evidence supporting the hypothesis that memory traces are erased under these circumstances is still lacking, these findings lend support to the notion that forgetting is an active, biologically regulated process (17, 26).Although existing studies point to the MB circuit as essential for forgetting, several questions remain to be answered. First, whereas the molecular pathways for learning and forgetting of olfactory aversive memory are distinct and separable (6, 7), the neural circuits seem to overlap. Rac-mediated forgetting has been localized to a large population of KCs (6), including the γ-subset, which is also critical for initial memory formation (21, 27). The site of action of DAMB for forgetting has yet to be established; however, the subgroups of PPL1-DANs implicated in forgetting are the same as those that signal aversive reinforcement and are required for learning (2830). It leaves open the question of whether the brain circuitry underlying forgetting and learning is dissociable, or whether forgetting and learning share the same circuit but are driven by distinct activity patterns and molecular machinery (26). Second, shock reinforcement elicits multiple memory traces through at least three dopamine pathways to different subdomains in the MB lobes (28, 29). Functional imaging studies have also revealed Ca2+-based memory traces in different KC populations (31). It is poorly understood how forgetting of these memory traces differs, and it remains unknown whether there are multiple regulatory neural pathways. Notably, when PPL1-DANs are inactivated, forgetting still occurs, albeit at a lower rate (7). This incomplete block suggests the existence of an additional pathway(s) that conveys forgetting signals to the MB. Third, other than memory decay over time, forgetting is also observed through interference (32, 33), when new learning or reversal learning is introduced after training (6, 34, 35). Time-based and interference-based forgetting shares a similar dependence on Rac and DAMB (6, 7). However, it is not known whether distinct circuits underlie forgetting in these different contexts.In the current study, we focus on the diverse set of MB extrinsic neurons (MBENs) that interconnect the MB lobes with other brain regions, which include 34 MB output neurons (MBONs) of 21 types and ∼130 dopaminergic neurons of 20 types in the PPL1 and protocerebral anterior medial (PAM) clusters (36, 37). These neurons have been intensively studied in olfactory memory formation, consolidation, and retrieval in recent years (e.g., 24, 2830, 3848); however, their roles in forgetting have not been characterized except for the aforementioned PPL1-DANs. In a functional screen, we unexpectedly found that several Gal4 driver lines of MBENs showed significantly better 3-h memory retention when the Gal4-expressing cells were inactivated. The screen has thus led us to identify two types of MBENs that are not involved in initial learning but play important and additive roles in mediating memory decay. Furthermore, neither of these MBEN types is required for reversal learning, supporting the notion that there is a diversity of neural circuits that drive different forms of forgetting.  相似文献   

14.
15.
16.
Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.Memory of a momentous event persists for a long time. Whereas some forms of long-term memory (LTM) require repetitive training (13), a highly relevant stimulus such as food or poison is sufficient to induce LTM in a single training session (47). Recent studies have revealed aspects of the molecular and cellular mechanisms of LTM formation induced by repetitive training (811), but how a single training induces a stable LTM is poorly understood (12).Appetitive olfactory learning in fruit flies is suited to address the question, as a presentation of a sugar reward paired with odor induces robust short-term memory (STM) and LTM (6, 7). Odor is represented by a sparse ensemble of the 2,000 intrinsic neurons, the Kenyon cells (13). A current working model suggests that concomitant reward signals from sugar ingestion cause associative plasticity in Kenyon cells that might underlie memory formation (1420). A single activation session of a specific cluster of dopamine neurons (PAM neurons) by sugar ingestion can induce appetitive memory that is stable over 24 h (19), underscoring the importance of sugar reward to the fly.The mushroom body (MB) is composed of the three different cell types, α/β, α′/β′, and γ, which have distinct roles in different phases of appetitive memories (11, 2125). Similar to midbrain dopamine neurons in mammals (26, 27), the structure and function of PAM cluster neurons are heterogeneous, and distinct dopamine neurons intersect unique segments of the MB lobes (19, 2834). Further circuit dissection is thus crucial to identify candidate synapses that undergo associative modulation.By activating distinct subsets of PAM neurons for reward signaling, we found that short- and long-term memories are independently formed by two complementary subsets of PAM cluster dopamine neurons. Conditioning flies with nutritious and nonnutritious sugars revealed that the two subsets could represent different reinforcing properties: sweet taste and nutritional value of sugar. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct reward signals.  相似文献   

17.
A library of amphiphilic Janus dendrimers including two that are fluorescent and one glycodendrimer presenting lactose were used to construct giant dendrimersomes and glycodendrimersomes. Coassembly with the components of bacterial membrane vesicles by a dehydration–rehydration process generated giant cell-like hybrid vesicles, whereas the injection of their ethanol solution into PBS produced monodisperse nanometer size assemblies. These hybrid vesicles contain transmembrane proteins including a small membrane protein, MgrB, tagged with a red fluorescent protein, lipopolysaccharides, and glycoproteins from the bacterium Escherichia coli. Incorporation of two colored fluorescent probes in each of the components allowed fluorescence microscopy to visualize and demonstrate coassembly and the incorporation of functional membrane channels. Importantly, the hybrid vesicles bind a human galectin, consistent with the display of sugar moieties from lipopolysaccharides or possibly glycosylated membrane proteins. The present coassembly method is likely to create cell-like hybrids from any biological membrane including human cells and thus may enable practical application in nanomedicine.Naturally occurring (1), chemically modified (2, 3), and synthetic (4, 5) lipids, amphiphilic block copolymers (6, 7), polypeptides (8), Janus dendrimers (JDs) (9), and Janus glycodendrimers (JGDs) (10, 11) self-assemble into vesicles denoted as liposomes, polymersomes, dendrimersomes (DSs), and glycodendrimersomes (GDSs), respectively. These vesicles provide models for primitive (12) and contemporary (13, 14) cell membranes and drug-delivery devices (1517). Recently, hybrid vesicles coassembled from naturally occurring phospholipids and amphiphilic block copolymers (1820) have been described; these vesicles eliminated some of the deficiencies of liposomes, such as limited stability under oxidative conditions and general instability over time, and the deficiencies of polymersomes, which possess wide membrane thickness [8–50 nm (20)], exhibit toxicity, and can be tedious to synthesize. These hybrid vesicles combined the desirable feature of liposomes—specifically, their biologically suitable membrane thickness of 4 nm—with that of polymersomes, which are known for their stability. In addition, transmembrane proteins (2123) could be incorporated into the phospholipid fragments of planar membranes derived from these assemblies. However, the variability in the extent of miscibility between the hydrophobic fragments of the phospholipid and the block copolymer (20) generates a complex morphology of the hybrid membrane that requires further characterization to enable practical applications both as drug-delivery devices and cell membrane models. Here, we report the coassembly of the components of DSs and GDSs with those of the bacterial membrane vesicles (BMVs) to generate functional hybrid vesicles. DSs, GDSs, and liposomes have hydrophobic fragments with similar chemical structures and similar membrane thickness (4.5–4.9 nm) (24). Therefore, the bacterial membranes with their intact native components are expected to be transferred to the hybrid vesicles, providing a new and simple method for the generation of bioactive cell-like hybrids of interest as critical nanoscale design parameters (25).  相似文献   

18.
Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.Large bacterial populations are present in the oceans, playing important roles in primary production and the biogeochemical cycling of matter. These bacterial communities are highly diverse (14) yet form stable and reproducible bacterial assemblages under similar environmental conditions (57).These bacteria are present together with high abundances of viruses (phages) that have the potential to infect and kill them (811). Although studied only rarely in marine organisms (1216), this coexistence is likely to be the result of millions of years of coevolution between these antagonistic interacting partners, as has been well documented for other systems (1720). From the perspective of the bacteria, survival entails the selection of cells that are resistant to infection, preventing viral production and enabling the continuation of the cell lineage. Resistance mechanisms include passively acquired spontaneous mutations in cell surface molecules that prevent phage entry into the cell and other mechanisms that actively terminate phage infection intracellularly, such as restriction–modification systems and acquired resistance by CRISPR-Cas systems (21, 22). Mutations in the phage can also occur that circumvent these host defenses and enable the phage to infect the recently emerged resistant bacterium (23).Acquisition of resistance by bacteria is often associated with a fitness cost. This cost is frequently, but not always, manifested as a reduction in growth rate (2427). Recently, an additional type of cost of resistance was identified, that of enhanced infection whereby resistance to one phage leads to greater susceptibility to other phages (14, 15, 28).Over the years, a number of models have been developed to explain coexistence in terms of the above coevolutionary processes and their costs (16, 2932). In the arms race model, repeated cycles of host mutation and virus countermutation occur, leading to increasing breadths of host resistance and viral infectivity. However, experimental evidence generally indicates that such directional arms race dynamics do not continue indefinitely (25, 33, 34). Therefore, models of negative density-dependent fluctuations due to selective trade-offs, such as kill-the-winner, are often invoked (20, 33, 35, 36). In these models, fluctuations are generally considered to occur between rapidly growing competition specialists that are susceptible to infection and more slowly growing resistant strains that are considered defense specialists. Such negative density-dependent fluctuations are also likely to occur between strains that have differences in viral susceptibility ranges, such as those that would result from enhanced infection (30).The above coevolutionary processes are considered to be among the major mechanisms that have led to and maintain diversity within bacterial communities (32, 35, 3739). These processes also influence genetic microdiversity within populations of closely related bacteria. This is especially the case for cell surface-related genes that are often localized to genomic islands (14, 40, 41), regions of high gene content, and gene sequence variability among members of a population. As such, populations in nature display an enormous degree of microdiversity in phage susceptibility regions, potentially leading to an assortment of subpopulations with different ranges of susceptibility to coexisting phages (4, 14, 30, 40).Prochlorococcus is a unicellular cyanobacterium that is the numerically dominant photosynthetic organism in vast oligotrophic expanses of the open oceans, where it contributes significantly to primary production (42, 43). Prochlorococcus consists of a number of distinct ecotypes (4446) that form stable and reproducible population structures (7). These populations coexist in the oceans with tailed double-stranded DNA phage populations that infect them (4749).Previously, we found that resistance to phage infection occurs frequently in two high-light–adapted Prochlorococcus ecotypes through spontaneous mutations in cell surface-related genes (14). These genes are primarily localized to genomic island 4 (ISL4) that displays a high degree of genetic diversity in environmental populations (14, 40). Although about a third of Prochlorococcus-resistant strains had no detectable associated cost, the others came with a cost manifested as either a slower growth rate or enhanced infection by other phages (14). In nature, Prochlorococcus seems to be growing close to its intrinsic maximal growth rate (5052). This raises the question as to the fate of emergent resistant Prochlorococcus lineages in the environment, especially when resistance is accompanied with a high growth rate fitness cost.To begin addressing this question, we investigated the phenotype of Prochlorococcus strains with time after the acquisition of resistance. We found that resistant strains evolved toward an improved growth rate and a reduced resistance range. Whole-genome sequencing and PCR screening of many of these strains revealed that these phenotypic changes were largely due to additional, compensatory mutations, leading to increased genetic diversity. These findings suggest that the oceans are populated with rapidly growing Prochlorococcus cells with varying degrees of resistance and provide an explanation for how a multitude of presumably resistant Prochlorococcus cells are growing close to their maximal known growth rate in nature.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号