首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chemokines are a family of cytokines that mediate leukocyte trafficking and are involved in tumor cell migration, growth, and progression. Although there is emerging evidence that multiple chemokines are expressed in tumor tissues and that each chemokine induces receptor‐mediated signaling, their collaboration to regulate tumor invasion and lymph node metastasis has not been fully elucidated. In this study, we examined the effect of CXCL12 on the CCR7‐dependent signaling in MDA‐MB‐231 human breast cancer cells to determine the role of CXCL12 and CCR7 ligand chemokines in breast cancer metastasis to lymph nodes. CXCL12 enhanced the CCR7‐dependent in vitro chemotaxis and cell invasion into collagen gels at suboptimal concentrations of CCL21. CXCL12 promoted CCR7 homodimer formation, ligand binding, CCR7 accumulation into membrane ruffles, and cell response at lower concentrations of CCL19. Immunohistochemistry of MDA‐MB‐231–derived xenograft tumors revealed that CXCL12 is primarily located in the pericellular matrix surrounding tumor cells, whereas the CCR7 ligand, CCL21, mainly associates with LYVE‐1+ intratumoral and peritumoral lymphatic vessels. In the three‐dimensional tumor invasion model with lymph networks, CXCL12 stimulation facilitates breast cancer cell migration to CCL21‐reconstituted lymphatic networks. These results indicate that CXCL12/CXCR4 signaling promotes breast cancer cell migration and invasion toward CCR7 ligand–expressing intratumoral lymphatic vessels and supports CCR7 signaling associated with lymph node metastasis.  相似文献   

3.
The proinflammatory chemokine receptor CXCR7 that binds the ligands CXCL11 and CXCL12 (SDF-1a) is elevated in a variety of human cancers, but its functions are not understood as it does not elicit classical chemokine receptor signaling. Here we report that the procancerous cytokine IL-8 (interleukin-8) upregulates CXCR7 expression along with ligand-independent functions of CXCR7 that promote the growth and proliferation of human prostate cancer cells (CaP cells). In cell culture, ectopic expression or addition of IL-8 selectively increased expression of CXCR7 at the level of mRNA and protein production. Conversely, suppressing IL-8 signaling abolished the ability of IL-8 to upregulate CXCR7. RNAi-mediated knockdown of CXCR7 in CaP cells caused multiple antitumor effects, including decreased cell proliferation, cell-cycle arrest in G(1) phase, and decreased expression of proteins involved in G(1) to S phase progression. In contrast, addition of the CXCR7 ligand SDF-1a and CXCL11 to CaP cells did not affect cell proliferation. Over expression of CXCR7 in normal prostate cells increased their proliferation in a manner associated with increased levels of phospho-EGFR (epidermal growth factor receptor; pY1110) and phospho-ERK1/2. Notably, coimmunoprecipitation studies established a physical association of CXCR7 with EGFR, linking CXCR7-mediated cell proliferation to EGFR activation. Consistent with these findings, CXCR7-depleted CaP tumors grew more slowly than control tumors, expressing decreased tumor-associated expression of VEGF, cyclin D1, and p-EGFR. Together, these results reveal a novel mechanism of ligand-independent growth promotion by CXCR7 and its coregulation by the proinflammatory factor IL-8 in prostate cancer.  相似文献   

4.
Several in vitro and in vivo models have revealed the key role of CXCR4/CXCL12 axis in tumor-stroma interactions. Stromal cells present in the tumor microenvironment express high levels of CXCL12 protein, directly stimulating proliferation and migration of CXCR4-expressing cancer cells. This specific prosurvival influence of stromal cells on tumor cells is thought to protect them from cytotoxic chemotherapy and is postulated as a possible explanation for the minimal residual disease in hematological and solid cancers. Therefore, CXCR4/CXCL12 signaling is an attractive therapeutic target in cancer, as proven in preclinical leukemia mouse models, where CXCR4 inhibition sensitized cancer cells to conventional chemotherapy. This study investigates whether inhibition of CXCR4 with the specific inhibitor AMD3100 sensitizes human prostate cancer cells to docetaxel. We showed that both mouse and human stromal cell lines have a protective effect on PC3-luc cells by promoting their survival after chemotherapy. Furthermore, we demonstrated that AMD3100 sensitizes PC3-luc cells to docetaxel. In a subcutaneous xenograft mouse model of human prostate carcinoma, we showed that a combination of docetaxel and AMD3100 exerts increased antitumor effect compared with docetaxel alone. We concluded that CXCR4 inhibition chemosensitizes prostate cancer cells, both in vitro and in vivo. To explore the relevance of these findings, we analyzed CXCR4 expression levels in human prostate cancer samples. We found that cancer cells present in bone metastatic lesions express higher CXCR4 levels relative to the cells present in primary tumors and lymph node metastatic lesions. These findings underscore the potential of CXCR4 inhibitors as chemosensitizing agents.  相似文献   

5.
The chemokine receptor CXCR4 is functionally expressed on the cell surface of various cancer cells, and plays a role in cell proliferation and migration of these cells. Specifically, in breast cancer cells the CXCR4/CXCL12 axis has been implicated in cell migration in vitro and in metastasis in vivo, but the underlying signaling mechanisms are incompletely understood. The xenograft-derived MDA-MB-231 breast cancer cell line (231mfp), which was shown previously to grow more aggressively than the parent cells, showed increased CXCR4 expression at the mRNA, total protein and cell surface expression level. This correlated with an enhanced response to CXCL12, specifically in augmented and prolonged Akt activation in a G(i), Src family kinase and PI-3 kinase dependent fashion. 231mfp cells migrated towards CXCL12-in contrast to the parent cell line-and this chemotaxis was blocked by inhibition of G(i), Src family kinases, PI-3 kinase and interestingly, Akt itself, as could be shown with two pharmacological inhibitors, a dominant negative Akt construct and with Akt shRNA. Collectively, we have demonstrated that prolonged Akt activation is an important signaling pathway for breast cancer cells expressing CXCR4 and is necessary for CXCL12-dependent cell migration.  相似文献   

6.
7.
The chemokine CXCL12 is highly expressed in gynecologic tumors and is widely known to play a biologically relevant role in tumor growth and spread. Recent evidence suggests that CXCL16, a novel chemokine, is overexpressed in inflammation-associated tumors and mediates pro-tumorigenic effects of inflammation in prostate cancer. We therefore analyzed the expression of CXCL12 and CXCL16 and their respective receptors CXCR4 and CXCR6 in cervical intraepithelial neoplasia (CIN) and cervical cancer and further assessed their association with clinicopathologic features and outcomes. Tissue chip technology and immunohistochemistry were used to analyze the expression of CXCL12, CXCR4, CXCL16, and CXCR6 in healthy cervical tissue (21 cases), CIN (65 cases), and cervical carcinoma (60 cases). The association of protein expression with clinicopathologic features and overall survival was analyzed. These four proteins were clearly detected in membrane and cytoplasm of neoplastic epithelial cells, and their distribution and intensity of expression increased as neoplastic lesions progressed through CIN1, CIN2, and CIN3 to invasive cancer. Furthermore, the expression of CXCR4 was associated significantly with the histologic grade of cervical carcinoma, whereas the expression of CXCR6 was associated significantly with lymph node metastasis. In Kaplan-Meier analysis, patients with high CXCR6 expression had significantly shorter overall survival than did those with low CXCR6 expression. The elevated co-expression levels of CXCL12/CXCR4 and CXCL16/CXCR6 in CIN and cervical carcinoma suggest a durative process in cervical carcinoma development. Moreover, CXCR6 may be useful as a biomarker and a valuable prognostic factor for cervical cancer.  相似文献   

8.

Objective

To identify the roles of CXCL12 and CXCR4 and the associated mechanism involved in perineural invasion of prostate cancer.

Methods

The distribution and expression of CXCL12, CXCR4, MMP-2 and MMP-9 in human prostate cancer and in tumor cells invading nerve tissue were studied with immunohistochemical staining. The effects of exogenous CXCL12 and CXCR4 antagonist AMD3100 on PC3 prostate cancer cells invasiveness were assessed in vitro and in vivo.

Results

The expression of CXCL12, CXCR4, MMP-2, and MMP-9 in human prostate cancer were higher than those in hyperplastic prostate tissues (P < 0.05). In vitro CXCL12 could stimulate the PC3 cells invasiveness (P < 0.05) while AMD3100 could inhibit invasiveness. In vivo, the number of nerves around the tumor tissue in the group treated with CXCL12 was significantly higher than that found in the control group (P < 0.05). Both the control group and the CXCL12-treated group had more nerves number near the tumor tissue than it found in the AMD3100-treated group. The positive cell number of CXCL12, CXCR4, MMP-2, MMP-9, and NGF expression ranked from highest to lowest, were the CXCL12-treated, the control, and the AMD3100-treated group(P < 0.05).

Conclusion

CXCL12 and its receptor CXCR4 along with MMP-2 and MMP-9 are related with prostate cancer perineural invasion.  相似文献   

9.
Chemokines and their receptors regulate the trafficking of leukocytes in hematopoiesis and inflammation, and thus are fundamental to the immune integrity of the host. In parallel, members of the chemokine system exert a large variety of functions that dictate processes of cancer development and progression. Chemokines can act as pro-tumoral or anti-tumoral regulators of malignancy by affecting cells of the tumor microenvironment (leukocytes, endothelial cells, fibroblasts) and the tumor cells themselves (migration, invasion, proliferation, resistance to chemotherapy). Several of the chemokines are generally skewed towards the cancer-promoting direction, including primarily the CCR5–CCL5 (RANTES) and the CXCR4–CXCL12 (SDF-1) axes. This review provides a general view of chemokines and chemokine receptors as regulators of malignancy, describing their multi-faceted activities in cancer. The tumor-promoting activities of the CCR5–CCL5 and CXCR4–CXCL12 pathways are enlightened, emphasizing their potential use as targets for personalized therapy. Indeed, novel blockers of chemokines and their receptors are constantly emerging, and two chemokine receptor inhibitors were recently approved for clinical use: Maraviroc for CCR5 and Plerixafor for CXCR4. The review addresses ongoing pre-clinical and clinical trials using these modalities and others in cancer. Then, challenges and opportunities of personalized therapy directed against chemokines and their receptors in malignancy are discussed, demonstrating that such novel personalized cancer therapies hold many challenges, but also offer hope for cancer patients.  相似文献   

10.
Our previous studies demonstrate that CXCL6/CXCR6 chemokine axis induces prostate cancer progression by the AKT/mTOR signaling pathway; however, its role and mechanisms underlying invasiveness and metastasis of breast cancer are yet to be elucidated. In this investigation, CXCR6 protein expression was examined using high-density tissue microarrays and immunohistochemistry. Expression of CXCR6 shows a higher epithelial staining in breast cancer nest site and metastatic lymph node than the normal breast tissue, suggesting that CXCR6 may be involved in breast cancer (BC) development. In vitro and in vivo experiments indicate that overexpression of CXCR6 in BC cells has a marked effect on increasing cell migration, invasion and metastasis. In contrast, reduction of CXCR6 expression by shRNAs in these cells greatly reduce its invasion and metastasis ability. Mechanistic analyses show that CXCL16/CXCR6 chemokine axis is capable of modulating activation of RhoA through activating ERK1/2 signaling pathway, which then inhibits the activity of cofilin, thereby enhancing the stability of F-actin, responsible for invasiveness and metastasis of BC.Taken together, our data shows for the first time that the CXCR6 / ERK1/2/ RhoA / cofilin /F-actin pathway plays a central role in the development of BC. Targeting the signaling pathway may prove beneficial to prevent metastasis and provide a more effective therapeutic strategy for BC.  相似文献   

11.
Solid tumour and leukemic cells expressing chemokine receptors, metastasize to chemokine-secreting organs. Chemokines indirectly affect tumour development by attracting immunocompetent cells with pro- or anti-tumoral activities. Various membrane-associated and soluble proteases selectively cleave specific chemokines. Precursor plasma chemokines (CXCL7, CCL14) need to be proteolytically processed to obtain receptor affinity. Angiogenic CXC chemokines (CXCL1, CXCL8) have increased CXCR1/CXCR2 affinity after limited NH2-terminal processing, whereas truncated angiostatic chemokines (CXCL10) show lower CXCR3 affinity without loss of angiostatic potential. NH2-terminally cleaved monocyte chemotactic proteins (CCL2, CCL7, CCL8) have impaired capacity to attract tumour-associated macrophages and function as receptor antagonists for intact CC chemokines. Migration of Th1/CCR5+ and Th2/CCR4+ effector lymphocytes toward CCR5 (CCL5, CCL3L1) and CCR4 (CCL22) ligands is affected by cleavage. Although proteolytical processing of chemokines is well studied in vitro, the direct or indirect effects on tumour invasion and metastasis are only poorly evaluated.  相似文献   

12.
13.
The relationship has become clear between the expression of chemokine/chemokine receptors on cancer cells and the invasion, metastasis and peritoneal dissemination. Many cancer cells express chemokine receptors which are not expressed on the surface of normal tissues. Recently, it has been reported that overexpression of CXCR4/CXCL12 is related with metastasis to lung, liver, lymph nodes and bone marrow, while the overexpression of CCR7/CCL21 is mainly related with lymph node metastasis. We performed a comparative analysis of differential gene expressions related to chemokines/chemokine receptors, and cytokines in established gastric cancer cell lines by cDNA microarray. Upregulated chemokine genes were CCL21, CCL5, CXCL14, CCL2, CXCL1, CXCL8, CXCL7 and CXCL12, which the downregulated chemokines genes were MIP-1alpha and TECK. The upregulated gene of chemokine receptors was CCR-6. In the cancer microenvironment, cancer cells readily formed edematous and inflammatory conditions, easily metastasizing to other organs with the suppression of dendritic cells. The chemokines/chemokine receptors will hopefully become the new targets for cancer therapies for the regulation of metastasis.  相似文献   

14.
杨晨  姚阳 《陕西肿瘤医学》2009,17(8):1599-1601
研究发现趋化因子CXCL12(Stromal—derived factor-1,SDF-1)和受体CXCR4[chemokine(C—X—Cmotif)receptor4]广泛表达于组织和器官上,相关的研究发现其与前列腺癌细胞的黏附、侵袭、增殖和生存有关,并认为其在前列腺癌骨转移的发生中发挥重要作用。通过阐明CXCL12/CXCR4生物学轴和前列腺癌骨转移之间的关系,从而寻找有助于疾病治疗的新途径。  相似文献   

15.
研究发现趋化因子CXCL12(Stromal-derived factor-1,SDF-1)和受体CXCR4[chemokine (C-X-C motif) receptor 4]广泛表达于组织和器官上,相关的研究发现其与前列腺癌细胞的黏附、侵袭、增殖和生存有关,并认为其在前列腺癌骨转移的发生中发挥重要作用.通过阐明CXCL12/CXCR4生物学轴和前列腺癌骨转移之间的关系,从而寻找有助于疾病治疗的新途径.  相似文献   

16.
Esophageal squamous cell carcinoma (ESCC) is a very common malignant tumor with poor prognosis in China. Chemokines secreted by tumors are pivotal for the accumulation of CD8+ T lymphocytes within malignant lesions in several types of cancers, but the exact mechanism underlying CD8+ T lymphocyte homing is still unknown in ESCC. In this study, we revealed that, compared with marginal tissues, the expression of both chemokine (C-C motif) ligand 5 (CCL5) and (C-X-C motif) ligand 10 (CXCL10) was upregulated in ESCC tissues. CCL5 expression was positively associated with the overall survival of patients. Meanwhile, RT-PCR data showed that the expression of CCL5 and CXCL10 was positively correlated with the local expressions of the CD8+ T lymphocyte markers (CD8 and Granzyme B) in tumor tissues. Correspondingly, CD8+ T lymphocytes were more frequently CCR5- and CXCR3-positive in tumor than in peripheral blood. Transwell analysis showed both CCL5 and CXCL10 were important for the chemotactic movement of CD8+ T lymphocytes. Our data indicate that CCL5 and CXCL10 serve as the key chemokines to recruit CD8+ T lymphocytes into ESCC tissue and may play a role in patient survival.  相似文献   

17.
The CXCR4/CXCR7/CXCL12 chemokine axis plays important roles in the migration of tumor cells during cancer development by modulating site‐specific distant metastasis including to regional lymph nodes. We investigated the correlation of these chemokine expressions to prognosis in lymph‐node‐positive non‐small‐cell lung cancer (NSCLC) patients. A total of 140 surgically resected specimens of primary site (PS) and metastatic lymph nodes (MLN) of NSCLC involving hilar and/or mediastinal lymph nodes (N1‐2) were collected. CXCR4, CXCR7 and CXCL12 expressions were evaluated. Cox regression analysis was performed to determine whether these chemokines were independent prognostic factors in N1‐2 NSCLC. High expression of CXCR4 in PS and CXCL12 in MLN was associated with poor overall survival (OS) (P = .025 and .033, respectively). Significant correlations between CXCR4 expression in PS and CXCL12 expression in MLN were observed (P = .040). There was significant difference in OS between 2 groups according to expressions of CXCR4 in PS and CXCL12 in MLN (P = .0033). Expression of CXCL12 in MLN was identified as an independent prognostic factor (HR 1.79, 95% CI 1.08‐3.04, P = .023). CXCL12 in MLN was mainly expressed by tumor cells compared with stromal cells (56% vs 25%, respectively, P < .0001). CXCR4/CXCL12 may play roles in tumor progression in MLN and is associated with poor prognosis of lymph‐node‐positive NSCLC patients.  相似文献   

18.
Objective: CXCL12 exerts a wide variety of chemotactic effects on cells. Evidence indicates that CXCL12,in conjunction with its receptor, CXCR4, promotes invasion and metastasis of tumor cells. Our objective was toexplore whether the CXCL12-CXCR4 biological axis might influence biological behavior of pancreatic cancercells. Methods: Miapaca-2 human pancreatic cancer cells were cultured under three different conditions:normal medium (control), medium + recombinant CXCL12 (CXCL12 group), or medium + CXCR4-inhibitorAMD3100 (AMD3100 group). RT-PCR was applied to detect mRNA expression levels of CXCL12, CXCR4, matrixmetalloproteinase 2 (MMP-2), MMP-9, and human urokinase plasminogen activator (uPA). Additionally, cellproliferation and invasion were performed using CCK-8 colorimetry and transwell invasion assays, respectively.Results: CXCL12 was not expressed in Miapaca-2 cells, but CXCR4 was detected, indicating that these cells arecapable of receiving signals from CXCL12. Expression of extracellular matrix-degrading enzymes MMP-2, MMP-9, and uPA was upregulated in cells exposed to exogenous CXCL12 (P<0.05). Additionally, both proliferationand invasion of pancreatic cancer cells were enhanced in the presence of exogenous CXCL12, but AMD3100intervention effectively inhibited these processes (P<0.05). Conclusions: The CXCL12-CXCR4 biological axisplays an important role in promoting proliferation and invasion of pancreatic cancer cells.  相似文献   

19.
The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis   总被引:7,自引:0,他引:7  
Tumor cells are known to adapt to and utilize existing physiological mechanisms to promote survival and metastasis. The role of the microenvironment in the establishment of a metastatic lesion has become increasingly important as several factors secreted by stromal cells regulate metastatic pattern in a variety of tumor types. Tumor cells interact with osteoblasts, osteoclasts and bone matrix to form a vicious cycle that is essential for successful metastases. Here we review the current concepts regarding the role of an important chemokine/chemokine receptor (SDF-1 or CXCL12/CXCR4) pathway in tumor development and metastasis. CXCL12 secretion by stromal cells is known to attract cancer cells via stimulation of the CXCR4 receptor that is up regulated by tumor cells. CXCL12/CXCR4 activation regulates the pattern of metastatic spread with organs expressing high levels of CXCL12 developing secondary tumors (i.e., the bone marrow compartment). CXCL12 has a wide range of effects in regards to tumor development but the primary role of CXCL12 appears to be the mobilization of hematopoietic stem cells and the establishment of the cancer stem-like cell niche where high levels of CXCL12 recruit a highly tumorigenic population of tumor cells and promotes cell survival, proliferation, angiogenesis, and metastasis.  相似文献   

20.
Gliomas are very invasive brain tumors with poor prognosis and therefore any attempt to limit tumor cell dissemination in the brain is expected to improve glioma treatment. The recent deorphanization of CXCR7 as additional receptor for CXCL12 and CXCL11 has raised key issues on its interaction with the CXCL12/CXCR4 axis as a mechanism to modulate glioma cell migration. In this work we investigated protein and mRNA expression of the two chemokines CXCL12 and CXCL11, together with their receptors CXCR4 and CXCR7 in human glioma specimens and cell lines by immunohistochemistry, flow cytometry and quantitative real-time PCR. The main purpose of this study was to find out whether and at what extent CXCR4 and CXCR7 are differentially expressed in glioma cells. In human glioma specimens the levels of CXCL11 and CXCR4 mRNA were significantly higher in glioblastomas compared to non-tumor controls or low grade gliomas, whilst no difference was found for CXCL12 and CXCR7 mRNA expression. In cell lines, flow cytometry and immunocytochemical experiments showed CXCR4 was mainly expressed irrespective of its membrane or intracellular localization. In contrast, a predominant intracellular localization together with a negligible membrane expression of CXCR7 was found in all cells examined. In in vitro experiments CXCR4 and CXCR7 antagonists and the silencing of CXCR4 showed complete inhibition of glioma proliferation. Our findings, in agreement with previous data, suggest that in human glioma cells the prevalent intracellular localization of CXCR7 might modulate the functionality of CXCL11/12 either acting as a scavenger for these chemokines or interfering with the signaling pathways activated by the stimulation of CXCR4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号