首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
To investigate the role of somatostatin (SRIF) in regulating sexually dimorphic GH secretion, we used a reverse hemolytic plaque assay and acutely dispersed somatotropes from age-matched normal male, normal female, and androgen receptor-deficient, testicular feminized (Tfm) rats. Hemolytic plaques were developed after a 90-min incubation in the presence of GH antiserum, 10 nM GH-releasing hormone (GHRH), and the following concentrations of SRIF: 0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 nM. Additional studies were performed with 0 or 100 nM SRIF in the absence of GHRH. The absolute number of somatotropes (x10(6); mean +/- SEM) recovered from the pituitaries of Tfm rats (1.73 +/- 0.18) was significantly greater than that from the males (1.11 +/- 0.13; P = 0.01); the number from female rats (1.30 +/- 0.15) was not different from that of either male or Tfm animals. GHRH-stimulated GH secretion, as estimated by the mean GH plaque area (micron2 x 10(4); mean +/- SEM) in the absence of SRIF, was greater for somatotropes from male rats (3.36 +/- 0.41) than that for either Tfm (2.27 +/- 0.32; P = 0.02) or female (1.78 +/- 0.24; P = 0.001) rats; values for the latter two groups did not differ. However, mean GH plaque areas for each group during maximal SRIF inhibition in either the presence or absence of GHRH were indistinguishable from each other and from mean plaque areas obtained under basal conditions. As demonstrated by a lesser EC50 value (0.04 +/- 0.02 nM; mean +/- SEM), somatotropes from female rats were more sensitive to the inhibitory effect of SRIF than were those from either male (EC50 = 1.82 +/- 0.45; P = 0.0001) or Tfm (EC50 = 0.74 +/- 0.22, P = 0.0001) rats; values for the latter two groups were indistinguishable. These observed differences suggest that gender and/or the gonadal hormone environment may be important determinants of the inhibitory effects of SRIF on GH secretion by the somatotrope. While these gender-associated differences may represent effects of the gonadal hormones directly on the somatotrope, they could reflect modulation of the secretion of hypothalamic SRIF and/or GHRH by the prevailing gonadal hormone environment. Such gender-related differences may contribute to the overall sex-dependent patterns of GH secretion in the intact animal.  相似文献   

2.
To determine whether a normal complement of androgen receptors is required to permit full expression of sex-related differences in pituitary GH secretion, we compared the GHRH-stimulated GH secretory responses of continuously perifused anterior pituitary cells from normal male, normal female, and androgen-resistant testicular feminized (Tfm) rats. In each experimental replicate, acutely dispersed pituitary cells were exposed to GHRH (0.03-100 nM) administered as 2.5-min pulses in random order at 30-min intervals. The eluate was collected in 5-min fractions for GH determination by RIA. Basal unstimulated secretion of GH by cells from male rats was greater than that by cells from female (P = 0.007) and Tfm (P = 0.03) rats; basal secretion by the other two groups was similar (P = 0.55). Linear concentration-response relationships between GHRH and GH release were defined for cells from male (P = 0.0002), female (P = 0.0001), and Tfm (P = 0.0002) rats. Overall GHRH-stimulated GH secretion by cells from male rats was greater (P less than 0.0001) than that by cells from female rats. Overall secretion by cells from Tfm rats was less (P less than 0.001) than that by cells from male rats but greater (P less than 0.001) than that by cells from female rats. For all experimental groups, body weight was strongly correlated with both basal (r2 = 0.42; P = 0.001) and GHRH-stimulated (r2 = 0.53; P = 0.0001) GH secretion by the dispersed pituitary cells. These data suggest that a deficiency of androgen receptors results in a diminution of the in vitro GH secretory capability of anterior pituitary cells to a level below that by cells from normal males, but not to the level in normal females. The intermediate position of cells from the Tfm rat may represent a partial masculinization or defeminization within this generally female phenotype.  相似文献   

3.
J P Hoeffler  L S Frawley 《Endocrinology》1986,119(3):1037-1041
A reverse hemolytic plaque assay was used to investigate the mechanism(s) underlying sexual differences in GH release which evolve at puberty in rats. The percentages of GH-secreting cells in 24-h pituitary cultures from each sex were similar for pituitary donors up to 30 days of age (range = 38.9% to 41.7% of all cells in culture, n = 3 separate experiments) but decreased by day 50. The decrease was more striking for females (to 24.1 +/- 0.3% mean +/- SE) than for males (to 33.2 +/- 1.1%). However, owing to the greater increase in total pituitary cell number exhibited by female rats at this time, the absolute numbers of somatotropes recovered from male and female pituitaries were almost identical on 50 and 100 days of age. To assess the secretory capacities of individual somatotropes, we measured the sizes of plaques formed. In prepubertal rats (days 10-30), the plaque areas under basal conditions were comparable for males and females at each age studied, and treatment with GH-releasing factor increased plaque sizes to approximately the same degree (10-fold) for both sexes at each age. However, by day 100, plaques that formed under both basal and stimulated conditions were consistently larger (P less than 0.01) for male than for female donors. Taken together, our results demonstrate that sexual differences in GH release are attributable to the secretory capacities of individual somatotropes rather than to differences in the numbers of GH cells in pituitaries of male and female rats.  相似文献   

4.
The mechanism by which gonadal steroids modulate GH secretion is not known. We have used the reverse hemolytic plaque assay to examine whether gonadal steroid-induced modulation of GH secretion is effected by changes in the population of somatotrophs and/or alterations in their secretory properties. Two groups of Sprague-Dawley rats were studied: group 1 (n = 6) comprised male (M), castrate (Cx), and testosterone-replaced castrate male (Cx + T) rats and group 2 (n = 5) consisted of male (M), female (F), and 17 beta-estradiol-replaced castrate male (Cx + E) rats. The number of plaque-forming cells (expressed as both absolute number and a percentage of all cells) was determined, and secretory status was assessed by measuring plaque areas in response to 0, 0.01, 0.1, 1, 10, and 100 nM GHRH. While mean basal GH plaque areas were similar among the treatment groups of group 1, the maximal GH plaque area was significantly decreased in Cx [16.8 +/- 2.4 vs. 26.4 +/- 3.9 X 10(6) microns2 (mean +/- SEM); P less than 0.05], but not in Cx + T (27.5 +/- 4.1 microns2) rats. The GHRH EC50 was unaffected by castration or T replacement. The percentage and absolute population of somatotrophs were reduced in Cx, but not in Cx + T, rats, while the numbers of lactotrophs remained unchanged in these treatment groups. For group 2, the mean peak GH plaque area was reduced in Cx + E (16.5 +/- 2.9 microns2; P less than 0.001) compared to that in M rats (36.2 +/- 2.3 microns2), but was not significantly different from that in F (13.0 +/- 1.5 microns2) rats. The EC50 was significantly (P less than 0.025) greater in Cx + E (10.9 +/- 2.3 nM) and F (7.9 +/- 1.6 nM) compared to M rats (2.8 +/- 0.7 nM). The absolute somatotroph and lactotroph populations were increased in Cx + E compared to M and F rats, as were the populations of other pituitary cell types. Testosterone enhances GH secretion by increasing the secretory capacity, but not the sensitivity, of somatotrophs to GHRH and by recruiting the function of a subpopulation of somatotrophs. Estradiol reduces the secretory capacity and sensitivity of somatotrophs to GHRH, but increases the population of somatotrophs, lactotrophs, and non-GH- and non-PRL-secreting cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
There is a 2- to 3-fold increase in luteinizing hormone-beta (LHbeta) or follicle-stimulating hormone-beta (FSHbeta) antigen-bearing gonadotropes during diestrus in preparation for the peak LH or FSH secretory activity. This coincides with an increase in cells bearing LHbeta or FSHbeta mRNA. Similarly, there is a 3- to 4-fold increase in the percentage of cells that bind GnRH. In 1994, we reported that this augmentation in gonadotropes may come partially from subsets of somatotropes that transitionally express LHbeta or FSHbeta mRNA and GnRH-binding sites. The next phase of the study focused on questions relating to the somatotropes themselves. Do these putative somatogonadotropes retain a somatotrope phenotype? As a part of ongoing studies that address this question, a biotinylated analog of GHRH was produced, separated by HPLC and characterized for its ability to elicit the release of GH as well as bind to pituitary target cells. The biotinylated analog (Bio-GHRH) was detected cytochemically by the avidin-peroxidase complex technique. It could be displaced by competition with 100-1000 nM GHRH but not corticotropin-releasing hormone or GnRH. In cells from male rats exposed to 1 nM Bio-GHRH, 28+/-6% (mean+/-s.d) of pituitary cells exhibited label for Bio-GHRH (compared with 0.8+/-0.6% in the controls). There were no differences in percentages of GHRH target cells in populations from proestrous (28+/-5%) and estrous (25+/-5%) rats. Maximal percentages of labeled cells were seen following addition of 1 nM analog for 10 min. In dual-labeled fields, GHRH target cells contained all major pituitary hormones, but their expression of ACTH and TRH was very low (less than 3% of the pituitary cell population) and the expression of prolactin (PRL) and gonadotropins varied with the sex and stage of the animal. In all experimental groups, 78-80% of Bio-GHRH-reactive cells contained GH (80-91% of GH cells). In male rats, 33+/-6% of GHRH target cells contained PRL (37+/-9% of PRL cells) and less than 20% of these GHRH-receptive cells contained gonadotropins (23+/-1% of LH and 31+/-9% of FSH cells). In contrast, expression of PRL and gonadotropins was found in over half of the GHRH target cells from proestrous female rats (55+/-10% contained PRL; 56+/-8% contained FSHbeta; and 66+/-1% contained LHbeta). This reflected GHRH binding by 71+/-2% PRL cells, 85+/-5% of LH cells and 83+/-9% of FSH cells. In estrous female rats, the hormonal storage patterns in GHRH target cells were similar to those in the male rat. Because the overall percentages of cells with Bio-GHRH or GH label do not vary among the three groups, the differences seen in the proestrous group reflect internal changes within a single group of somatotropes that retain their GHRH receptor phenotype. Hence, these data correlate with earlier findings that showed that somatotropes may be converted to transitional gonadotropes just before proestrus secretory activity. The LH and FSH antigen content of the GHRH target cells from proestrous rats demonstrates that the LHbeta and FSHbeta mRNAs are indeed translated. Furthermore, the increased expression of PRL antigens by these cells signifies that these convertible somatotropes may also be somatomammotropes.  相似文献   

6.
A decline in dehydroepiandrosterone (DHEA) and GH levels with aging may be associated with frailty and morbidity. Little is known about the direct effects of DHEA on somatotropes. We recently reported that 17beta-estradiol (E2), a DHEA metabolite, stimulates the expression of GH in vitro in young female rats. To test the hypothesis that DHEA restores function in aging somatotropes, dispersed anterior pituitary (AP) cells from middle-aged (12-14 months) or young (3-4 months) female rats were cultured in vitro with or without DHEA or E2 and fixed for immunolabeling or in situ hybridization. E2 increased the percentage of AP cells with GH protein or mRNA in the aged rats to young levels. DHEA increased the percentages of somatotropes (detected by GH protein or mRNA) from 14-16 +/- 2% to 29-31 +/- 3% (P < or = 0.05) and of GH mRNA (detected by quantitative RT-PCR) only in aging rats. To test DHEA's in vivo effects, 18-month-old female rats were injected with DHEA or vehicle for 2.5 d, followed by a bolus of GHRH 1 h before death. DHEA treatment increased serum GH 1.8-fold (7 +/- 0.5 to 12 +/- 1.3 ng/ml; P = 0.02, by RIA) along with a similar increase (P = 0.02) in GH immunolabel. GHRH target cells also increased from 11 +/- 1% to 19 +/- 2% (P = 0.03). Neither GH nor GHRH receptor mRNAs levels were changed. To test the mechanisms behind DHEA's actions, AP cells from aging rats were treated with DHEA with or without inhibitors of DHEA metabolism. Trilostane, aminogluthemide, or ICI 182,780 completely blocked the stimulatory effects of DHEA, suggesting that DHEA metabolites may stimulate aging somatotropes via estrogen receptors.  相似文献   

7.
D Maiter  J I Koenig  L M Kaplan 《Endocrinology》1991,128(4):1709-1716
The sexual dimorphism characterizing GH secretion in the rat is thought to be related to differences in the hypothalamic synthesis and release of the GH-regulating peptides, GH-releasing hormone (GHRH), and somatostatin. Therefore, the influence of gender and sex steroid hormones on hypothalamic expression of the GHRH gene in adult rats were examined. GHRH messenger RNA (mRNA) levels were measured in individual rat hypothalami by Northern hybridization analysis using a 32P-labeled complementary DNA encoding rat GHRH. Destruction of hypothalamic GHRH neurons by neonatal treatment with monosodium glutamate caused similar 3-fold reductions in the levels of GHRH mRNA in adult male and female animals. In three separate experiments, hypothalamic GHRH mRNA concentrations in male rats were 2- to 3-fold greater than in randomly cycling females (four or five rats per group; P less than 0.01). In spite of the greater abundance of GHRH mRNA abundance in the male rat hypothalamus, circulating gonadal steroids lacked the ability to modulate GHRH gene expression in adult animals, since neither gonadectomy nor pharmacological sex steroid replacement changed GHRH mRNA levels in the hypothalamus of male and female adult rats. Furthermore, GHRH mRNA concentrations in female rats were similar during the proestrus, estrus, and diestrus phase of the estrous cycle. Also, GH inhibited hypothalamic GHRH gene expression in a sex-specific manner. Exposure to high levels of GH secreted by the MtTW15 tumor for 4 weeks reduced GHRH mRNA concentrations 7-fold in male rats (P less than 0.001) but only 2-fold in females (P less than 0.05). These studies demonstrate that GHRH gene expression in the rat hypothalamus is sexually dimorphic. Basal mRNA levels are greater in male rats, and expression in male hypothalami is more sensitive to feedback inhibition by GH than expression in females. There is no evidence for regulation of GHRH mRNA levels by either testosterone or estrogen in adult rats. These gender differences in GHRH gene expression likely contribute to the generation of a sex-specific pattern of GH secretion.  相似文献   

8.
Administration of monosodium glutamate (MSG) to neonatal rodents produces permanent lesions of hypothalamic arcuate neurons that secrete GH-releasing hormone (GHRH). The present study was intended to determine the consequences of GHRH deficiency on the pulsatile GH secretory pattern and growth in MSG-treated female rats and to compare these effects with those observed in male littermates. Male and female rats were injected with MSG [4 mg/g body wt (BW), sc] or saline (controls) on days 2, 4, 6, 8, and 10 after birth. Immunoreactive GHRH concentrations were decreased in the hypothalamus (by 60%) and in the median eminence (by 95%) of adult male and female MSG-treated rats. In contrast, somatostatin concentrations were unaffected. BW and linear growth were severely impaired in male MSG-treated rats, but in MSG-lesioned females BW was not different from controls, and the attenuation of longitudinal growth was less severe and the obesity more pronounced than in males. These sex differences occurred despite similar reductions (by 55%) in serum insulin-like growth factor I concentrations in male and female MSG-treated rats. MSG treatment also produced decreases in pituitary wt and GH content (by 60%), independent of sex. Pulsatile GH secretion was studied by serial blood sampling of chronically cannulated, freely moving rats. Plasma GH patterns were analyzed by the PULSAR program. Compared to controls, treatment with MSG led to a marked inhibition (by 90%) of GH secretion in both sexes. Significant reductions in GH pulse amplitude (-95%) and pulse duration (-62%) were observed in males, whereas pulse amplitude (-85%), pulse frequency (-67%), and baseline GH concentrations (-80%) were markedly reduced in females. The GH responses to an iv bolus injection of rat GHRH (1 microgram/rat) was severely blunted in both male and female MSG-treated rats. This study demonstrates that GHRH deficiency in female rats results in a marked inhibition of GH pulses, as in males, but also causes severe and sex-specific reductions in GH basal secretion and pulse frequency. These observations suggest that hypothalamic GHRH secretion in female rats is more continuous than in males and is a determinant of the elevated interpulse secretion of GH. Moreover, body wt and linear growth are less severely affected by arcuate lesions in female animals, compared to males. These sex-related differences in growth rates may result in part from the tendency of female MSG-lesioned rats to become more obese than males, and the development of obesity, in turn, may antagonize the factors that tend to slow linear growth.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
GH synthesis and release from pituitary somatotropes is controlled by the opposing actions of the hypothalamic neuropeptides, GH-releasing hormone (GHRH), and somatostatin (SS). There is a striking sex difference in the pattern of GH secretion in rats. Early reports indicate that gonadal steroids have important imprinting effects during the neonatal period. Recently, our laboratory and others have reported that the GH secretory pattern is altered by short-term gonadal steroid treatment in adult rat, suggesting that gonadal steroids are also important determinants of the pattern of GH secretion during adult life. However, the site of action of gonadal steroids in the adult rat hypothalamus is still unknown. In this study, we used in situ hybridization in the adult male rat brain to determine whether GHRH neurons and/or SS neurons coexpress estrogen receptor alpha (ERalpha) and ERss genes. In the medial basal hypothalamus of adult male rat, the ERalpha messenger RNA (mRNA) was located in medial preoptic area (MPA) and arcuate nucleus (ARC), whereas ERss mRNA was detected in MPA, supraoptic nucleus, and paraventricular nucleus. From studies using adjacent sections, the distribution of ERalpha mRNA-containing cells appeared to overlap in part with those of GHRH and SS expressing cells only in the ARC. On the other hand, the distribution of ERss mRNA-containing cells does not appear to overlap with GHRH cells or SS cells. The double label in situ hybridization studies showed that in the ARC, 70% of GHRH neurons contain ERalpha mRNA, whereas less than 5% of SS neurons expressed the ERalpha gene. These results indicated that GHRH neurons are direct target cells for estrogens, and estrogens may act directly on GHRH neurons through ERalpha during adult life to modify GH secretory patterns.  相似文献   

10.
The secretory pattern of GH secretion is markedly sexually dimorphic in the adult rat. The patterning of GH secretion is determined by the coordinated activity of somatostatin (SS)- and GH-releasing hormone (GHRH)-containing neurosecretory cells located in the hypothalamus. In this study we examined whether there is sexual dimorphism in the expression of the SS and GHRH genes and, if so, at what developmental stage this becomes evident. To address these questions, we measured SS messenger RNA (mRNA) levels in neurons of the periventricular nucleus and GHRH mRNA levels in the arcuate nucleus and ventromedial nucleus of the hypothalamus in male and female rats at 10, 25, 35, and 75 days of age. Using in situ hybridization and a computerized image analysis system, we measured SS mRNA and GHRH mRNA signal levels in individual neurons and compared these levels among the different age groups. We found that male animals had significantly higher levels of SS mRNA than females at every age. Similarly, males had higher GHRH mRNA levels than females; however, this difference was statistically significant only at 10 and 75 days of age. Developmental changes in GHRH mRNA levels were similar for both sexes, with GHRH message levels increasing gradually over the course of maturation. SS mRNA signal levels also changed over the course of development in both male and female animals. In the male rat, SS mRNA levels increased significantly between 10 and 25 days of age and declined significantly between 35 and 75 days of age. In the female rat, SS mRNA levels increased gradually between 10 and 35 days of age, then, as in the male, declined significantly between days 35 and 75. We conclude that sex differences and age-dependent changes in the expression of the SS and GHRH genes may subserve the sexual dimorphism and developmental alterations in the pattern of GH secretion in the rat.  相似文献   

11.
Low basal GH secretion and reduced GH responsiveness to different GH secretagogues, including GHRF, have been reported in aged animals and humans. Parallel to the in vivo findings, an impaired GH responsiveness to GHRF is evident in somatotropes from old rats of either sex. We report here that in anterior pituitaries (APs) from aged male and female rats GHRF-induced stimulation of adenylate cyclase (AC) activity was strikingly reduced (male rats, change from baseline 700% in young and 100% in old rats) or lacking (female rats, change from baseline 430% in young and 13% in old rats) when compared to that evoked by GHRF in the APs from young counterparts. Pretreatment with GHRH (5 micrograms/rat iv for 3 days) decreased the high basal AC activity of old male rats [from 33.38 +/- 3.60 to 15.99 +/- 5.75 (SEM) pmol cAMP/min.mg protein], did not alter the GHRF-stimulated rise in AC activity in old male rats, and induced a small but unequivocal rise in AC activity in old female rats (change from baseline 35% vs. 13%, respectively). Pretreatment with GHRF markedly reduced the acute effect of GHRF in the APs from young rats of both sexes (male rats, change from baseline 360% and 700%; female rats, change from baseline 230% and 430% in GHRF-pretreated and control rats, respectively). In parallel studies performed in female rats, it was shown that in vivo pretreatment with GHRF at the same schedule markedly reduced the effect of acute GHRF stimulation on GH secretion from cultured pituitary cells of young rats but left unchanged GHRF-induced stimulation of GH secretion from pituitary cells of old rats. In all, these data suggest that deficiency of endogenous GHRF synthesis and/or release may underlie defective GH secretion in old rats and that a GHRF replacement regimen that reduces the sensitivity of the young somatotrope cells does not alter the sensitivity of (male rats) or exerts a priming effect (female rats) on the old somatotrope cell.  相似文献   

12.
To elucidate further the manner in which gonadal steroids influence the secretion of LH, we examined the effects of gonadectomy and the absence of functional androgen receptors on GnRH-induced LH release from dispersed rat anterior pituitary cells. Intact and gonadectomized (GNX) normal rats and androgen-resistant, testicular feminized (Tfm) animals from the King x Holtzman strain (a mutant strain that possesses defective androgen receptors) were used. Dispersed pituitary cells were perifused with Medium 199 during a 4-h equilibration period and then subjected to eight 2.5-min pulses of GnRH introduced at 30-min intervals at concentrations ranging from 0.03-100 nM. Basal LH secretion by cells from intact male and female rats was indistinguishable (P = 0.79) and was substantially lower (P less than 0.0001) than that by cells from GNX male and female animals. Basal LH secretion by cells from Tfm rats was significantly higher (P less than 0.01) than that by cells from intact animals, but lower (P less than 0.005) than that by cells from GNX animals. In response to GnRH, perifused pituitary cells from animals representing all experimental groups demonstrated concentration-dependent LH release. Pituitary cells from intact female rats showed an overall greater (P less than 0.05) response to GnRH than cells from intact male rats. Pituitary cells from Tfm rats demonstrated a greater GnRH-stimulated LH mean response than cells from intact male (P less than 0.0001) or intact female (P less than 0.0001) rats. Gonadectomy of male rats resulted in an overall GnRH-stimulated LH release similar to that exhibited by cells from gonadectomized female rats (P = 0.61). Cells from Tfm animals released more LH in response to GnRH than those from gonadectomized male and female rats (P less than 0.001). These data demonstrate that the release of LH in response to GnRH by pituitary cells from intact male rats (i.e. in the presence of androgen and functional androgen receptors) is less than that seen by cells from intact females rats. Since circulating levels of testosterone and estradiol are known to be elevated in the testicular feminized rat, the heightened GnRH-stimulated LH release by cells from such animals may reflect either the long term lack of androgenic influence and/or the combined effects of androgen resistance and elevated levels of circulating estrogens.  相似文献   

13.
After a meal, somatotropes are temporarily refractory to growth hormone-releasing hormone (GHRH), the principal hormone that stimulates secretion of growth hormone (GH). Refractoriness is particularly evident when free access to feed is restricted to a 2-h period each day. GH-releasing peptide-6 (GHRP-6), a synthetic peptide, also stimulates secretion of GH from somatotropes. Because GHRH and GHRP-6 act via different receptors, we hypothesized that GHRP-6 would increase GHRH-induced secretion of GH after feeding. Initially, we determined that intravenous injection of GHRP-6 at 1, 3 and 10 microg/kg body weight (BW) stimulated secretion of GH in a dose-dependent manner. Next, we determined that GHRP-6- and GHRH-induced secretion of GH was lower 1 h after feeding (22.5 and 20 ng/ml respectively) than 1 h before feeding (53.5 and 64.5 ng/ml respectively; pooleds.e.m.=8.5). However, a combination of GHRP-6 at 3 microg/kg BW and GHRH at 0.2 microg/kg BW synergistically induced an equal and massive release of GH before and after feeding that was fivefold greater than GHRH-induced release of GH after feeding. Furthermore, the combination of GHRP-6 and GHRH synergistically increased release of GH from somatotropes cultured in vitro. However, it was not clear if GHRP-6 acted only on somatotropes or also acted at the hypothalamus. Therefore, we wanted to determine if GHRP-6 stimulated secretion of GHRH or inhibited secretion of somatostatin, or both. GHRP-6 stimulated secretion of GHRH from bovine hypothalamic slices, but did not alter secretion of somatostatin. We conclude that GHRP-6 acts at the hypothalamus to stimulate secretion of GHRH, and at somatotropes to restore and enhance the responsiveness of somatotropes to GHRH.  相似文献   

14.
Female gender appears to protect against adverse outcome from prolonged critical illness, a condition characterized by blunted and disorderly GH secretion and impaired anabolism. As a sexual dimorphism in the GH secretory pattern of healthy humans and rodents determines gender differences in metabolism, we here compared GH secretion and responsiveness to GH secretagogues in male and female protracted critically ill patients. GH secretion was quantified by deconvolution analysis and approximate entropy estimates of 9-h nocturnal time series in 9 male and 9 female patients matched for age (mean +/- SD, 67+/-11 and 67+/-15 yr), body mass index, severity and duration of illness, feeding, and medication. Serum concentrations of PRL, TSH, cortisol, and sex steroids were measured concomitantly. Serum levels of GH-binding protein, insulin-like growth factor I (IGF-I), IGF-binding proteins (IGFBPs), and PRL were compared with those of 50 male and 50 female community-living control subjects matched for age and body mass index. In a second study, GH responses to GHRH (1 microg/kg), GH-releasing peptide-2 (GHRP-2; 1 microg/ kg) and GHRH plus GHRP-2 (1 and 1 microg/kg) were examined in comparable, carefully matched male (n = 15) and female (n = 15) patients. Despite identical mean serum GH concentrations, total GH output, GH half-life, and number of GH pulses, critically ill men paradoxically presented with less pulsatile (mean +/- SD pulsatile GH fraction, 39+/-14% vs. 67+/-20%; P = 0.002) and more disorderly (approximate entropy, 0.946+/-0.113 vs. 0.805+/-0.147; P = 0.02) GH secretion than women. Serum IGF-I, IGFBP-3, and acid-labile subunit (ALS) levels were low in patients compared with controls, with male patients revealing lower IGF-I (P = 0.01) and ALS (P = 0.005) concentrations than female patients. Correspondingly, circulating IGF-I and ALS levels correlated positively with pulsatile (but not with nonpulsatile) GH secretion. Circulating levels of GH-binding protein and IGFBP-1, -2, and -6 were higher in patients than controls, without a detectable gender difference. In female patients, PRL levels were 3-fold higher, and TSH and cortisol tended to be higher than levels in males. In both genders, estrogen levels were more than 3-fold higher than normal, and testosterone (2.25+/-1.94 vs. 0.97+/-0.39 nmol/L; P = 0.03) and dehydroepiandrosterone sulfate concentrations were low. In male patients, low testosterone levels were related to reduced GH pulse amplitude (r = 0.91; P = 0.0008). GH responses to GHRH were relatively low and equal in critically ill men and women (7.3+/-9.4 vs. 7.8+/-4.1 microg/L; P = 0.99). GH responses to GHRP-2 in women (93+/-38 microg/L) were supranormal and higher (P<0.0001) than those in men (28+/-16 microg/L). Combining GHRH with GHRP-2 nullified this gender difference (77+/-58 in men vs. 120+/-69 microg/L in women; P = 0.4). In conclusion, a paradoxical gender dissociation within the GH/ IGF-I axis is evident in protracted critical illness, with men showing greater loss of pulsatility and regularity within the GH secretory pattern than women (despite indistinguishable total GH output) and concomitantly lower IGF-I and ALS levels. Less endogenous GHRH action in severely ill men compared with women, possibly due to profound hypoandrogenism, accompanying loss of the putative endogenous GHRP-like ligand action with prolonged stress in both genders may explain these novel findings.  相似文献   

15.
A striking sexual dimorphism exists in the pattern of GH secretion and rate of somatic growth; however, the mechanism(s) mediating this sex difference is unknown. To elucidate the physiological roles of the hypothalamic neuropeptides, somatostatin (SRIF) and GRF, and their interrelation, in generating the sexually dimorphic GH secretory pattern we examined: 1) GH responsiveness to exogenous GRF and 2) the effects of immunoneutralization of endogenous SRIF and GRF on GH secretory dynamics, in free-moving male and female rats. In males, the GH response to 1 microgram rat(r)GRF(1-29)NH2 iv was significantly greater at peak compared to trough times of GH secretion (925.2 +/- 250.8 vs. 95.6 +/- 27.8 ng/ml; P less than 0.02), the latter known to be due to antagonization by the cyclic increased release of endogenous SRIF. In contrast, females failed to exhibit a time-dependent difference in GH responsiveness to GRF. Passive immunization with a specific antiserum to SRIF in males resulted in significant elevation of GH nadir levels but had no effect on GH peak amplitude. In contrast, immunoneutralization of endogenous SRIF in females caused a marked augmentation of plasma GH levels at all time points; there was a significant increase in GH peak amplitude (171.3 +/- 39.9 vs. 67.5 +/- 11.3 ng/ml; P less than 0.05), GH nadir (18.3 +/- 2.7 vs. 5.8 +/- 1.1 ng/ml; P less than 0.01) and mean 6-h plasma GH level (78.7 +/- 4.1 vs. 33.1 +/- 5.8 ng/ml; P less than 0.001), compared to normal sheep serum-treated controls. These results indicate that the pattern of hypothalamic SRIF secretion in females does not follow the male-like ultradian rhythm. Passive immunization with a specific antiserum to GRF obliterated spontaneous GH pulses in both sexes. Moreover, in females, anti-GRF serum attenuated GH nadir levels (4.3 +/- 1.7 vs. 21.4 +/- 3.5 ng/ml; P less than 0.01) indicating a physiological role for GRF in maintaining the elevated basal GH level of females, in addition to its important role in generating the episodic GH pulses. Taken together, these findings provide support for the hypothesis that, in female rats, the pattern of hypothalamic SRIF secretion into hypophyseal portal blood is continuous, rather than cyclical, as in the male; whereas in the case of GRF secretion, in addition to steady-state release which occurs at a higher level in females than males, there is also episodic GRF bursting which does not follow a specific rhythm, as in the male.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In this study we evaluated the quantitative influence of GRF and TRH on the rate of hormone secretion from single cells in cultures of male pituitaries. To accomplish this, we dispersed pituitaries from male rats with trypsin and cultured them for 24 or 48 h. Reverse hemolytic plaque assays for GH and prolactin were then performed on retrypsinized cultures to identify individual cells that secreted these hormones. Mammotropes and somatotropes were found to comprise 31.4 +/- 1.8 and 32.2 +/- 0.9% (mean +/- SE, n = 3 experiments), respectively, of all cells in 24-hour cultures. Immunocytochemical staining of different batches of cells from the same dispersions corroborated the proportions of these two cell types. Differences in the rate of basal hormone secretion were observed within each of these cell populations as evidenced by the gradual appearance of prolactin and GH plaques over a 4-hour period when incubations were conducted in the absence of stimulatory secretagogues. Addition of increasing concentrations of GRF (1 X 10(-10) -1 X 10(-7) M) or TRH (1 X 10(-9) -1 X 10(-6) M) to these incubations resulted in dose-related increases in the rate of GH and prolactin plaque formation, respectively. Maximal plaque development by somatotropes could be induced within 30 min of administering large doses of GRF, indicating that most, if not all somatotropes are responsive to this secretagogue. In contrast, approximately one third of all mammotropes could not be stimulated to form plaques acutely when subjected to similar treatment with TRH. This observation suggests that mammotropes are heterogeneous with respect to TRH responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Somatostatin antagonizes the stimulatory actions of GHRH and GH-releasing peptides (GHRPs). However, precisely how the inhibitory susceptibilities of the two secretagogues differ is not clear. One interpretative difficulty is that native somatostatin activates six different receptor subtypes. The present study adopts the complementary strategy of enforcing feedback inhibition via the preferential somatostatin receptor subtype 2 and 5 (SSTR-2/-5) agonist, octreotide. We postulated that putative SSTR-2/-5 agonism would unmask secretagogue-selective interactions in the control of GH secretory burst mass, frequency, and/or regularity. To this end, 10 healthy men each underwent eight randomly ordered, separate-day, fasting morning infusion sessions. Interventions comprised sc administration of octreotide (1 microg/kg), followed by bolus iv injection of saline, GHRH (1 microg/kg), GHRP-2 (1 microg/kg), or both peptides. Compared with placebo, the SSTR-2/-5 agonist reduced fasting GH concentrations from 0.27 +/- 0.07 to 0.12 +/- 0.02 microg/liter (P = 0.020), GH secretory burst mass from 2.7 +/- 0.65 to 0.55 +/- 0.11 microg/liter (P = 0.013), and basal GH secretion from 0.24 +/- 0.043 to 0.11 +/- 0.015 microg/liter.100 min (P = 0.0063). The foregoing outcomes were selective, because octreotide did not alter GH secretory burst frequency (3.1 +/- 0.5 vs. 3.3 +/- 0.21 events/3 h) or the regularity of the GH release process (approximate entropy, 0.58 +/- 0.048 vs. 0.68 +/- 0.064). In the GHRP-2-stimulated setting, presumptive SSTR-2/-5 agonism suppressed all three GH secretory burst masses, from 28 +/- 3.2 to 18 +/- 2.0 (P = 0.045); GH pulse frequency, from 3.3 +/- 0.30 to 2.0 +/- 0.18 (P = 0.0025); and the irregularity (approximate entropy) of GH release, from 0.648 +/- 0.049 to 0.433 +/- 0.047 (P < 0.01). In contrast, in the GHRH and combined GHRH/GHRP-2-stimulated contexts, octreotide decreased only GH secretory burst mass (P = 0.047). In summary, the present data indicate that GH secretory burst mass, frequency, and orderliness are subject to interactive control by at least SSTR-2/-5-dependent feedback and GHRP-dependent feedforward signals.  相似文献   

18.
The purpose of this study was to compare GH secretion after the administration of GH-releasing hexapeptide (GHRP-6) in conscious male and female rats. Plasma GH was significantly elevated in female rats (six of six) compared to male rats (three of six) 15 min after administration of a single sc injection of GHRP-6 (0.5 mg/kg). In male rats, GHRP-6 administration was associated with suppression of episodic GH secretion and desensitization to a second injection administered 6 h later, whereas in female rats, GH secretion occurred after both GHRP-6 injections. After 14 consecutive days of administering GHRP-6 twice per day, mean plasma GH concentrations in males decreased from 110 +/- 91 to 2.8 +/- 0.6 ng/ml (P less than 0.05) and in females increased from 170 +/- 53 ng/ml to 361 +/- 81 ng/ml (P less than 0.05). Desensitization to GHRP-6 in conscious male rats was not observed in pentobarbital-anesthetized male rats, suggesting that GHRP-6 administration enhanced somatostatin release in the conscious state. After 14 consecutive days of GHRP-6 administration, the mean pituitary GH concentration in female rats was significantly lower than that in male rats (5.1 +/- 0.2 vs. 12.9 +/- 1.2 micrograms/mg, respectively). Lower pituitary GH concentrations in females correlated with higher GH secretion after GHRP-6 administration. Desensitization to GHRP-6 in male rats is attributed to neurohumoral factors producing their unusual pattern of episodic GH secretion, and the response is probably not typical of other species.  相似文献   

19.
R J Krieg  M O Thorner  W S Evans 《Endocrinology》1986,119(3):1339-1342
In previous in vitro studies we have shown that the amounts of GH released by pituitary cells in response to human GH-releasing factor -40 (hGRF-40) are significantly related to the sex and gonadal hormone environment of the donor animals. The present studies were designed to determine whether the beta-adrenergic stimulation of GH release is sex related and to compare the response to that observed after hGRF-40. Dispersed pituitary cells from male or female rats were exposed to sequential pulses of isoproterenol (ISO) and epinephrine (EPI), followed by a single pulse of 10 nM hGRF-40. In a second series of experiments, the cells were exposed to sequential pulses of norepinephrine (NE), followed by a single pulse of 10 nM hGRF-40. ISO and EPI stimulated GH secretion at concentrations as low as 10(-8) M, but NE required a concentration of 10(-6) M to cause significant GH release. GH release after ISO, EPI, and NE was concentration dependent, and the order of potency was ISO greater than EPI greater than NE. The amounts of GH secreted by pituitary cells from male rats were significantly greater than those from female rats, and the magnitude of the difference was directly comparable to that observed in response to hGRF-40. These results confirm the beta-adrenergic stimulation of GH release, and the order of potency is consistent with mediation by a beta 2-adrenergic receptor. The significantly greater capacity for pituitary cells from male rats to secrete GH supports the possibility that individual somatotropes in the pituitaries of male rats might have a greater responsiveness and/or sensitivity to beta-adrenergic and hGRF-40 stimulation.  相似文献   

20.
Human GH-releasing hormone [hGHRH-40 (GHRH)] stimulates GH release in a dose-dependent fashion when administered as single iv bolus doses or as continuous 90-min infusions. However, there has been variability in the GH responses, and it appears that there are waxing and waning effects of GHRH. To address whether these are a result of the dose of GHRH, time, or intermittent changes in sensitivity of the somatotrophs, we administered 6-h infusions of vehicle and different doses of GHRH to six normal men. In addition, an iv bolus injection of GHRH was given after 5.5 h of infusion to evaluate residual GH secretory capacity. The subjects were given infusions of either vehicle or GHRH (1, 3.3, and 10 ng/kg X min), followed by an iv bolus injection of 3.3 micrograms/kg on four separate occasions. GHRH infusions stimulated GH secretion compared to basal secretion. The changes from basal GH secretion (mean +/- SEM) were 2.0 +/- 1.6, 4.6 +/- 1.5, 12.7 +/- 5.1, and 8.2 +/- 1.8 ng/ml X h during the vehicle and GHRH (1, 3.3, and 10 ng/kg X min) infusions, respectively. The changes from basal GH secretion for 2 h after the iv bolus dose (after 5.5 h of infusion) were 33.3 +/- 8.7, 22.4 +/- 3.8, 14.0 +/- 3.6, and 10.5 +/- 2.0 ng/ml X h on the vehicle and GHRH (1, 3.3, and 10 ng/kg X min) infusion days, respectively. The magnitude of the GH response was inversely related to the GHRH infusion dose. The total amount of GH released during the 7.5-h study periods was not different among the vehicle and 3 GHRH infusion days. Thus, it appears that a finite amount of GH is released by GHRH. There was variability in the degree of responsiveness to the continuous infusions of GHRH. Surges of GH release occurred during the GHRH infusions, which may be attributed to intermittent secretion of a GH inhibitor, such a somatostatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号