首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of the molecular basis of phenylketonuria (PKU) in Latvia has been accomplished through the analysis of 96 unrelated chromosomes from 50 Latvian PKU patients. Phenylalanine hydroxylase (PAH) gene mutations have been analyzed through a combined approach in which R158Q, R252W, R261Q, G272X, IVS10-11G>A and R408W mutations were first screened for by PCR or restriction generating PCR amplification of PAH gene exons 5, 7, 11 and 12 followed by digestion with the appropriate diagnostic enzyme. Subsequently 'broad range' denaturing gradient gel electrophoresis analysis of the 13 PAH gene exons has been used to study uncharacterized PKU chromosomes. A mutation detection rate of 98% was achieved. 12 different mutations were found, with the most frequent mutation, R408W, accounting for 76% of Latvian PKU alleles. Six mutations (R408W, E280K, R158Q, A104D, R261Q and P281L) represent 92% of PKU chromosomes. PAH VNTR and STR alleles have been also identified and minihaplotype associations with PKU mutations were also determined.  相似文献   

2.
In order to elucidate the molecular basis of phenylketonuria (PKU) in Portugal, a detailed study of the Portuguese mutant phenylalanine hydroxylase (PAH) genes was performed. A total of 222 mutant alleles from 111 PKU families were analysed for 26 mutations and restriction fragment length polymorphismlvariable number tandem repeat (RFLP/VNTR) haplotypes. It was possible to characterise 55% of the mutant alleles, in which 14 different mutations (R261Q, V388M, IVS10nt-11, I65T, P281L, R252W, R158Q, L348V, Y414C, L311P, Y198fsdel22bp, R408W, R270K, and R261X) and three polymorphisms (Q232Q, V245V, and L385L) were identified. A total of 14 different haplotypes were observed, with a high prevalence of haplotype 1 among mutant and normal alleles. The results reported in this study show considerable genetic heterogeneity in the Portuguese PKU population, as has also been described for other southern European populations.  相似文献   

3.
A subtype of phenylalanine hydroxylase (PAH) deficiency that responds to cofactor (tetrahydrobiopterin, BH4) supplementation has been associated with phenylketonuria (PKU) mutations. The underlying molecular mechanism of this responsiveness is as yet unknown and requires a detailed in vitro expression analysis of the associated mutations. With this aim, we optimized the analysis of the kinetic and cofactor binding properties in recombinant human PAH and in seven mild PKU mutations, i.e., c.194T>C (p.I65T), c.204A>T (p.R68S), c.731C>T (p.P244L), c.782G>A (p.R261Q), c.926C>T (p.A309V), c.1162G>A (p.V388M), and c.1162G>A (p.Y414C) expressed in E. coli. For p.I65T, p.R68S, and p.R261Q, we could in addition study the equilibrium binding of BH4 to the tetrameric forms by isothermal titration calorimetry (ITC). All the mutations resulted in catalytic defects, and p.I65T, p.R68S, p.P244L, and most probably p.A309V, showed reduced binding affinity for BH4. The possible stabilizing effect of the cofactor was explored using a cell-free in vitro synthesis assay combined with pulse-chase methodology. BH4 prevents the degradation of the proteins of folding variants p.A309V, p.V388M, and p.Y414C, acting as a chemical chaperone. In addition, for wild-type PAH and all mild PKU mutants analyzed in this study, BH4 increases the PAH activity of the synthesized protein and protects from the rapid inactivation observed in vitro. Catalase and superoxide dismutase partially mimic this protection. All together, our results indicate that the response to BH4 substitution therapy by PKU mutations may have a multifactorial basis. Both effects of BH4 on PAH, i.e., the chemical chaperone effect preventing protein misfolding and the protection from inactivation, may be relevant mechanisms of the responsive phenotype.  相似文献   

4.
Objective: To delineate the mutation spectrum of phenylalanine hydroxylase (PAH) gene among patients affected with phenylalanine hydroxylase deficiency (PAHD) in Henan Province of China, and to explore the correlation between the genotype and the phenotype. Methods: A total of 155 affected children were recruited. Potential mutation of the PAH gene were analyzed by direct sequencing. The genotype - phenotype correlation was analyzed by matching the expected and observed phenotypes. Results: Over 72 mutations and 108 genotypes have been identified. There were 7 homozygous mutations, including 1 case with EX6-96A>G/EX6-96A>G, 1 with R241C/R241C, 1 with R413P/R413P, and 4 with R243Q/R243Q. Among these, 6 patients have presented classic PKU phenotypes, except for a R241C/R241C genotype which has led to mild PKU. In 104 patients carrying compound PAH mutations, 52 were classic, 34 were mild and 39 had mild HPA. Patients who were heterozygous for EX6-96A>G/R241C, R243Q/A434D, EX6-96A>G/R413P and EX6-96A>G/ R241C were found with both the classic PKU and mild PKU phenotypes. Common mutations associated with mild HPA have included R53H, R243Q, V399V and H107R. The common mutations associated with mild PKU included R243Q, R241C, EX6-96A>G, and IVS4-1G>A. The prevalent mutations in classic PKU were R243Q, EX6-96A>G and V399V. The consistency between prediction of the biochemical genotype and observed phenotype was 77.78%, especially in classic PKU, the consistency was up to 82.14%. Significant correlations were disclosed between pretreatment levels of phenylalanine and AV sum (r= -0.6729, P<0.01). Conclusion: The mutation spectrum of PAH gene in Henan seems to differ from that of other regions. Independent assortment of mutant alleles may result in a complex genotype-phenotype correlation, but the genotypes of PAHD patients have correlated with the phenotype. © 2016, West China University of Medical Sciences. All rights reserved.  相似文献   

5.
127例PKU患者PAH基因第12外显子点突变及其频率研究   总被引:1,自引:0,他引:1  
目的 了解中国人苯丙酮尿症 ( phenylketonuria,PKU)患者的苯丙氨酸羟化酶( phenylalanine hydroxylase,PAH)基因第 12外显子点突变种类和频率。方法 应用单链构象多态性( single strand conformation polymorphism,SSCP)、变性梯度凝胶电泳 ( denaturing gradient gelelectrophoresis,DGGE)、DNA测序分析了 12 7例 PKU患者的 PAH基因第 12外显子点突变种类及频率。结果  DNA测序分析显示 10例患者存在 R4 13P、S4 11X、R4 0 8W、R4 0 8Q 4种杂合突变 ,其突变频率分别为 2 .76 %、0 .39%、0 .39%、0 .39% ,S4 11X突变为中国人中首次报道。 SSCP分析仅发现 2例 R4 13P杂合突变 ,DGGE分析显示 10例出现 3种类型的异常电泳带型。R4 13P突变在南北方人之间、在经典型 PKU和高苯丙氨酸血症之间的分布差异无显著性。结论  DGGE对 PAH基因第 12外显子点突变检出率明显高于 SSCP。 DGGE结合 DNA测序是明确 PAH基因第 12外显子点突变种类和频率较好的方法。 R4 13P突变在南北方人中分布无明显差异  相似文献   

6.
In order to elucidate the clinical homogeneity and severity of the hyperphenylalaninaemias in Poland, a total of 71 children with typical phenylketonuria (PKU) originating from western and northern Poland were screened for 13 mutations in the phenylalanine hydroxylase (PAH) gene. Eighty percent of all PKU alleles tested were found to carry an identified mutation. One mutation, namely the R408W mutation, accounted for more than 63% of mutant PAH alleles in Poland, the other 27% being accounted for by six mutations: IVS12nt1 (5%), IVSnt546 (5%), Y414C (4%), R252W (1.5%), R261Q (< 1%), and G272ter (< 1%). The predominance of the R408W mutation resulted in a high rate of homozygotes (35.2%) and compound heterozygotes for this mutation in children from western and northern Poland. The frequency and deleterious nature of this mutation probably accounts for the clinical homogeneity and severity of the hyperphenylalaninaemias in Poland. In addition, the high rate of the R408W mutation and its association with mutant haplotype 2 at the PAH locus in Poland give additional support to the Balto-Slavic origin of this mutant gene.  相似文献   

7.
目的 了解河南地区苯丙酮尿症(phenylketonuria,PKU)患者苯丙氨酸羟化酶(phenylalanine hydroxylase,PAH)基因突变情况,以便为苯丙酮尿症产前诊断和遗传咨询提供理论依据.方法 应用PCR产物直接测序对47例PKU患者及其父母PAH基因第1~13外显子及其两侧内含子进行序列分析.结果 在94条染色体中共检测到了83个PAH基因突变位点,检出率为88.3%(83/94),共发现了25种突变,其中突变E79fX13、H271R和D415Y国内外未见报道,突变VS10-14C>G为国内首次报道.河南地区PKU患者的PAH基因突变集中在第6、7和11外显子,常见的7种突变是p.R243Q(20.5%)、EX6-96A>G(12.0%)、p.Y356X(9.6%)、VS4-1G>A(9.6%)、p.R111X(8.4%)、p.V399V(8.4%)、p.R413P(7.2%).结论 河南地区PKU患者PAH基因突变与中国其他地区相似,通过PAH基因直接测序可对大部分的PKU家系进行产前诊断.
Abstract:
Objective To study the characteristics of the phenylalanine hydroxylase gene (PAH)mutations in patients with phenylketonuria (PKU) in Henan province, in order to provide basic information for genetic counseling and prenatal diagnosis. Methods Mutations of the PAH gene were detected in exons 1-13 with flanking introns of PAH gene by PCR and DNA sequencing in 47 families with PKU. Results A total of 25 different mutations were detected in 83 out of 94 PAH alleles (88. 3%). Among them,E79fX13, H271R and D415Y have not been reported previously. It was the first time that IVS10-14C>Gmutation was reported in Chinese PKU population. The mutations p. R243Q, EX6-96A>G, p. Y356X,IVS4-1G>A, p. R111X, p. V399V and p. R413P, were the prevalent mutations with relative frequencies of 20. 5 %, 12.0%, 9.6%, 9. 6%, 8. 4%, 8. 4% and 7.2% respectively. Conclusion The mutations of the PAH gene in patients with classical phenylketonuria in Henan province were similar to that in other areas of China. Prenatal gene diagnosis for PKU by PAH gene sequencing is efficient for most PKU families.  相似文献   

8.
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism in Caucasians. PKU is caused by mutations in the gene encoding phenylalanine hydroxylase (PAH) enzyme. Here, we report the spectrum and the frequency of mutations in the PAH gene and discuss genotype-phenotype correlation in 34 unrelated patients with PKU from Serbia and Montenegro. Using both polymerase chain reaction-restriction fragment length polymorphism and 'broad-range' denaturing-gradient gel electrophoresis/DNA sequencing analysis, 19 disease-causing mutations were identified, corresponding to mutation detection rate of 97%. The most frequent ones were L48S (21%), R408W (18%), P281L (9%), E390G (7%) and R261Q (6%), accounting for 60% of all mutant alleles. The genotype-phenotype correlation was studied in homozygous and functionally hemizygous patients. We found that the most frequent mutation, L48S, was exclusively associated with the classical (severe) PKU phenotype. The mutation E390G gave rise to mild PKU. For the mutation R261Q, patients had been recorded in two phenotype categories. Considering allele frequencies, PKU in Serbia and Montenegro is heterogeneous, reflecting numerous migrations over the Balkan Peninsula.  相似文献   

9.
经典型苯丙酮尿症苯丙氨酸羟化酶基因的新突变鉴定   总被引:2,自引:0,他引:2  
目的研究经典型苯丙酮尿症(phenylketonuria, PKU)基因突变.方法应用聚合酶链反应,单链构象多态分析和DNA直接测序等技术,对内蒙古地区32个PKU家系苯丙氨酸羟化酶(phenylalanine hydroxylase, PAH)基因第3~12外显子进行了鉴定分析. 结果检出14种PAH基因点突变R243Q (12/64)、Y356X(6/64)、Y204C(5/64)、R261Q(2/64)、Y161S(2/64)、R252Q(1/64)、R111X(2/64)、D282G(1/64)、S303P(1/64)、G239D(1/64)、R413P(1/64)、IVS7nt+2(2/64)、IVS4nt+3(1/64)、IVS9nt+34(2/64),经检索国际PAH基因突变数据统计库(截至到2004年7月),确认IVS4nt+3(G>C)、IVS9nt+34(G>A)为国际首次发现的新突变,S303P(T>C) 、D282G(A>G)为国内首次报道的新突变.结论内蒙古人群苯丙氨酸羟化酶基因存在突变的多样性,R243Q、Y356X、Y204C是PAH基因的突变热点.  相似文献   

10.
Identification of molecular basis of phenylketonuria (PKU) in Iran has been accomplished through the analysis of 248 unrelated chromosomes from 124 Iranian classic PKU subjects. Phenylalanine hydroxylase (PAH) gene mutations were analyzed through a combined approach in which p.S67P, p.R252W, p.R261Q, p.R261X, p.L333F, IVS10-11G>A, IVS11+1G>C, p.L364del, p.R408Q and p.R408W mutations were first screened by PCR of PAH gene exons 3, 7, 10, 11 and 12, followed by digestion with the appropriate digestion enzymes. Subsequently SSCP analysis for exons 2, 6, 7 and 11 of the PAH gene and finally, sequencing of 13 PAH gene exons have been used to study uncharacterized PKU chromosomes. 26 different mutations were found. The predominant mutation in this population sample was IVS10-11G>A, with a frequency of 24.6%. Nine mutations (IVS10-11G>A, p.R261Q, p.P281L, IVS11+1G>C, p.K363>NFS, p.R243X, IVS2+5G>C, p.R261X and p.R252W) represent almost 84% of all PKU chromosomes studied. IVS10-11G>A mutation is the major PKU-causing mutation throughout the Mediterranean region. The finding of the high prevalence of this mutation in Iranian population is consistent with the historical and geographical links between Iranian and Mediterranean populations.  相似文献   

11.
Mutational spectrum of the phenylalanine hydroxylase (PAH) deficiency was investigated in 107 families (90% of the Slovene PKU population). The entire coding region of the PAH gene was analyzed with dHPLC to select the samples where subsequently the automated sequencing analysis was performed. MLPA analysis was performed to identify large deletions, which were later confirmed with long-range PCR. Correlations with patients' phenotypes and genotype-based predictions of BH(4)-responsiveness were assessed. Altogether, disease-causing mutations were identified on 209 alleles (detection rate 97.7%). A spectrum of 36 different disease-causing mutations was identified: 20 missense mutations (80% of the alleles), eight splicing mutations (13% of the alleles), one nonsense mutation (0.5% of the alleles), four small deletions with frame shift (6% of the alleles), one small insertion with frame shift (0.5% of the alleles), and two large deletions (2% of the alleles). The most frequent mutation was p.R408W in exon 12, representing 29% of the alleles, which is in concordance with other neighboring and/or Slavic PKU populations. Other common mutations were: p.R158Q, p.A403V, p.P281L and p.E390G, accounting for 9%, 7%, 7% and 7% of the alleles respectively. Five novel mutations were detected: c.43_44insAG, c.56_59+1delACAGG, p.V45A, p.L62P and p.R157S. Large deletion of exon 5 (EX5del955) was found in three patients and a deletion of exon 3 (EX3del4765) in one patient. A spectrum of 64 different genotypes was found, seven of them accounting for over than a third of all families. Among thirteen families with homozygous mutation (13% of the PKU population), 10 had p.R408W, two had p.R158Q and one had p.E390G. Among 107 families, 58 were classified as classic PKU (54.2%), 28 as mild PKU (25.9%) and 21 as MHP (19.6%). Twenty-six different genotypes (40.6%) were predicted to be BH(4)-responsive, represented by 38 different families (35.5%).  相似文献   

12.
Mutation screening of phenylketonuria in the Far East of Russia   总被引:3,自引:0,他引:3  
We analyzed mutant genotypes at the human phenylalanine hydroxylase (PAH) locus among phenylketonuria (PKU) patients in the Far East of Russia. A total of 60 variant alleles from 30 PKU families were analyzed for prevalent Caucasian mutations and restriction fragment length polymorphism/variable number of tandem repeats (RFLP/VNTR) haplotypes. Seventy-eight percent of all variant alleles carried six mutations. The most prevalent mutation was R408W (63%), with a haplotype background of 2.3. It also showed a very high degree of homozygosity (43%). The other five mutations (R158Q, R261Q, R252W, R261X, and IVS12nt-1) accounted for 1.7%–6.7% of all PKU alleles, and a single haplotype was associated with each genotype, except for R261Q. The genetic structure of PKU patients in the Far East of Russia seems to be relatively homogeneous, compared with that in the other Slavic and Oriental populations of surrounding countries. Prediction of a clinical phenotype and carrier detection will be feasible using DNA tests. Received: June 30, 1999 / Accepted: August 10, 1999  相似文献   

13.
We present the results of a comprehensive analysis of mutations, polymorphisms and haplotypes in the phenylalanine hydroxylase (PAH) gene in 39 Croatian families with phenylketonuria (PKU). A total of 21 disease-causing mutations was identified on 78 out of 79 independent chromosomes. The commonest mutation, R408W on haplotype 2 was found with a relative frequency of 37 %. P281L accounted for 11 %, R261Q and E390G each for 9 % of mutant chromosomes. There were three novel mutations: L249P (c.746T>C) in exon 7, IVS8+2T>C (c.912T>C) in intron 8, and F402L (c.1206T>G) in exon 12 of the PAH gene. Two known PKU mutations were found in cis on the same chromosome in one family, highlighting the need to perform full mutation scanning in recessive disease genes for molecular diagnosis even if two known mutations have been identified in a patient. This is the first comprehensive report on PKU mutations in southeastern Europe, adding to the growing bulk of molecular data for population genetic investigations.  相似文献   

14.
目的 了解新疆地区苯丙氨酸羟化酶(phenylalanine hydroxylase,PAH)基因的突变规律及特点.方法 应用聚合酶链反应一单链构象多态性分析及基因测序列方法 ,检测46例苯丙酮尿症患者PAH基因第3、5、6、7、11和12外显子及其两侧内含子序列.结果 在92个PAH等位基因中共检出20种不同的突变基因,总检出率为73.9%(68/92).其中常见基因突变R243Q、EX6-96A>G、R111X、Y356X和V399V与我国北方地区基本类似.较常见基因突变F161S、L255S、P281L和R413P与国内其他地区相比差异较大.E280G和A434D为在国际上第2次检出;L255S、P281L、R261Q和165T为在国内第2次检出.新疆少数民族也发现了13种PAH基因突变,均系在本民族中首次报道,其突变基因的类型表现出鲜明的民族特色.结论 从对新疆地区PAH突变基因的研究结果 来看,该地的遗传基因不仅具有独立、保守的特性,而且还存在着相互交叉、相互融合的特征.  相似文献   

15.
The molecular basis of phenylketonuria in Koreans   总被引:13,自引:0,他引:13  
Phenylketonuria (PKU) is an inborn error of metabolism that results from a deficiency of phenylalanine hydroxylase (PAH). We characterized the PAH mutations of 79 independent Korean patients with PKU or hyperphenylalaninemia. PAH nucleotide sequence analysis revealed 39 different mutations, including ten novel mutations. The novel mutations consisted of nine missense mutations (P69S, G103S, N207D, T278S, P281A, L293M, G332V, S391I, and A447P) and a novel splice site variant (IVS10–3C>G). R243Q, IVS4–1G>A, and E6–96A>G were the most prevalent mutations, as they accounted for 32% of the total mutant alleles in this study. Although some common characteristics of allele frequency and distribution were identified among oriental populations, several distinctive characteristics were revealed in Korean patients. Although the R413P allele is the most prevalent form (30.5%) in Japanese, we detected it in only five chromosomes from 158 independent chromosomes (3.2%). The A259T allele, which has not yet been found in oriental populations, was frequently found in this study. We also observed that tetrahydrobiopterin (BH4) responsiveness was associated with specific genotypes (R53H, R241C, and R408Q), suggesting there are some correlations between phenotype and genotype.The first two authors contributed equally to this work.  相似文献   

16.
中国北方地区苯丙氨酸羟化酶基因的突变构成   总被引:2,自引:1,他引:2  
目的了解中国人苯丙氨酸羟化酶(phenylalanine hydroxylase,PAH)基因的突变构成。方法应用PCR单链构象多态结合序列分析检测230例苯丙酮尿症患儿PAH基因全部外显子及其两侧内含子。结果(1)在460个PAH等位基因中检测出75种不同的突变基因,总检测率达94.6%(435/460),其中3种突变基因(S251-R252〉SfsX89、Y387D和A389G)尚未见到报道。常见的突变基因为:R243Q(21.7%)、EX6-96A〉G(10.2%)、R111X(8.3%)、R413P(6.5%)和Y356X(6.1%)。较常见的突变基因为:V399V(4.1%)、IVS4-1G〉A(3.5%)、IVS7+2T〉A(2.2%)和R241C(2.2%)。大部分突变集中在第3、5、6、7、11和12外显子及其两侧内含子区域。(2)检测出10种多态性位点,突变率高的4个位点IVS3-22C〉T(56.7%)、IVS10+97G〉A(75.9%)、Q232Q(89.0%)和V245V(81.9%),提示PAH基因cDNA序列存在人种差异。结论中国人PAH基因的突变构成与欧洲人群完全不同,与亚洲其它人群有频率的差异。  相似文献   

17.
The spectrum of phenylalanine hydroxylase (PAH) gene mutations was determined in 25 families of hyperphenylalaninemia identified by a neonatal screening program in Taiwan. The coding sequence and exon-flanking intron sequences of PAH gene were amplified and sequenced. Mutations were identified in forty-five of the 50 chromosomes. R241C was the most common mutation (36% of the chromosomes), followed by R408Q (14% of the chromosomes). The remaining mutations were rare and seven mutations have not been reported before: p.F233L (c.697T>C), p.R252Q (c.756G>A), p.E286K (c.856G>A), p.G312V (c.935G>T), p.P314T (c.940C>A), p.I95del (c.284_286delTCA), and p.T81fsX6 (c.241_256del). Both p.R241C and p.R408Q are classified as mild phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) mutation, which may explain the fact that classical PKU is very rare in Taiwan (n=4, or one in 413,035). This strong founder effect for the p.R241C mutation has been described neither in the Caucasian populations, nor in other reports from Chinese. Since most of the populations in Taiwan are derived from Southeastern China, the spectrum of PAH gene mutations in Southeastern China should be different from other Chinese populations. This report not only disclose a specific spectrum of PAH gene mutation in Taiwan, but may also give clues to the movement of populations in Mainland China.  相似文献   

18.
We report the spectrum of phenylalanine hydroxylase (PAH) gene mutations in patients with phenylketonuria (PKU) residing in Lithuania. A total of 184 independent chromosomes was investigated. R408W mutation was first analysed through restriction enzyme digestion of exon 12. The remaining uncharacterised PKU chromosomes were analysed by scanning the whole coding sequence of PAH gene by multiplex 'broad range' denaturing gradient gel electrophoresis. Mutations were identified by fluorescent automated sequencing or by restriction enzyme digestion analysis if an abnormal DGGE pattern was recognised. 21 different mutations were identified for 175 PKU chromosomes, with a mutation detection rate of 95%. The most common ones were R408W (73.5% chromosomes) and R158Q (7.0% chromosomes) whereas the remaining mutations appeared to be rare (relative frequencies 0.5%-2%). The high mutation detection rate obtained is an evidence of the efficiency of PAH genetic testing achieved in Lithuania. Moreover, the definition of the PKU mutation profile in the Lithuanian population will allow to perform a genotype-phenotype correlation study thus making feasible genotyped-based prediction of the biochemical phenotype in newborns with hyperphenylalaninemia. This may be useful for refining diagnosis and anticipating dietary requirements.  相似文献   

19.
The mutation spectrum and polymorphic haplotype background in 22 Romanian families have been analysed in this study using the restriction digestion of phenylalanine hydroxylase (PAH) regions specifically amplified or the DGGE/direct sequencing methods. Eleven PAH mutations specifically associated with six mutant haplotypes were detected. In spite of the relative heterogeneity of the molecular defects in the PAH gene, three mutations covered almost 70% of all alleles: R408W, 47.72%, 21/44; K363fsdelG 13.63%, 6/44; and P225T 6.81%, 3/44. Among these, R408W, the most frequent mutation in our population, represented 50% of all the phenylketonuric (PKU) chromosomes. Splice mutation IVS12nt1g→a affected two PAH alleles (4.54%); the remaining seven mutations were rare, each having an effect on just one chromosome (1/44), resulting in a relative frequency of 2.27%. A high frequency was observed in our PKU samples for the relatively uncommon mutations, K363fsdelG and P225T mutation, suggesting a possible founder effect at origin. Within the investigated panel, these mutations, both very rare among other Caucasians were exclusively linked to haplotype 5.8 and 1.7, respectively. These results provide a basis for the development of a routine molecular analysis of Romanian PKU families. Hum Mutat 12:314–319, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

20.
Zschocke J 《Human mutation》2003,21(4):345-356
Phenylketonuria (PKU) is heterogeneous. More than 400 different mutations in the phenylalanine hydroxylase (PAH) gene have been identified. In a systematic review of the molecular genetics of PKU in Europe we identified 29 mutations that may be regarded as prevalent in European populations. Comprehensive regional data for these mutations were collated from all available studies. The spectrum of mutations found in individual regions results from a combination of factors including founder effect, range expansion and migration, genetic drift, and probably heterozygote advantage. Common mutations include R408W on a haplotype 2 background in Eastern Europe, IVS10-11G>A in the Mediterranean, IVS12+1G>A in Denmark and England, Y414C in Scandinavia, I65T in Western Europe, and R408W on haplotype 1 in the British Isles. Molecular data from mild hyperphenylalaninemia (MHP) patients are available from a number of countries, but it is currently not possible to calculate relative allele frequencies. The available data on PAH mutations are useful for the understanding of both the clinical features and the population genetics of PAH deficiency in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号