首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Antiangiogenic therapy is now considered to be one of promising approaches to treat various types of cancer. In this study, we examined the possibility of developing antiangiogenic cancer vaccine targeting vascular endothelial growth factor receptor 1 (VEGFR1) overexpressed on endothelial cells of newly formed vessels in the tumor. EXPERIMENTAL DESIGN: Epitope-candidate peptides were predicted from the amino acid sequence of VEGFR1 based on their theoretical binding affinities to the corresponding HLAs. The A2/Kb transgenic mice, which express the alpha1 and alpha2 domains of human HLA-A*0201, were immunized with the epitope candidates to examine their effects. We also examined whether these peptides could induce human CTLs specific to the target cells in vitro. RESULTS: The CTL responses in A2/Kb transgenic mice were induced with vaccination using identified epitope peptides restricted to HLA-A*0201. Peptide-specific CTL clones were also induced in vitro with these identified epitope peptides from peripheral blood mononuclear cells donated by healthy volunteers with HLA-A*0201. We established CTL clones in vitro from human peripheral blood mononuclear cells with HLA-A*2402 as well. These CTL clones were shown to have potent cytotoxicities in a HLA class I-restricted manner not only against peptide-pulsed target cells but also against target cells endogenously expressing VEGFR1. Furthermore, immunization of A2/Kb transgenic mice with identified epitope peptides restricted to HLA-A*0201 was associated with significant suppression of tumor-induced angiogenesis and tumor growth without showing apparent adverse effects. CONCLUSIONS: These results strongly suggest that VEGFR1 is a promising target for antiangiogenic cancer vaccine and warrants further clinical development of this strategy.  相似文献   

2.
Five MAGE-3-derived peptides carrying an HLA-A24-binding motif were synthesized. Binding capacity of these peptides was analyzed by an HLA-class-I stabilization assay. Two of the 5 peptides bound to HLA-A*2402 molecule with high affinity, and 3 peptides with low affinity. Peripheral-blood mononuclear cells (PBMC) depleted of CD4+T cells were stimulated with the peptides to determine whether these peptides would induce cytotoxic T lymphocytes (CTL) from PBMCs obtained from 7 healthy HLA-A*2402+ donors. Peptide M3-p97 (TFPDLESEF; corresponding to amino-acid residues 97-105 of MAGE-3), with high binding capacity to the HLA-A*2402 molecule, elicited the peptide-specific and HLA-A24-restricted CD8+CTL lines in 2 of the 7 donors, while none of the 4 other peptides induced CTL specific for the corresponding peptide in any of the donors. CTL lines induced by stimulation with peptide M3-p97 exhibited cytolytic activities against HLA-A*2402 transfectant cell lines (C1R-A*2402) in the presence of peptide M3-p97, but not in unloaded or irrelevant peptide-pulsed C1R-A*2402 cells. The CTL lines and a cloned CD8+CTL isolated from one of the bulk populations by limiting dilution could lyse MAGE-3+/HLA-A*2402+ squamous-cell-carcinoma(SCC) lines but neither MAGE-3-/HLA-A*2402+ nor MAGE-3+/HLA-A*2402- SCC lines, indicating that M3-p97 can be naturally processed and presented on the tumor-cell surface in association with HLA-A*2402 molecules. Combined with the 4 currently reported CTL epitopes derived from MAGE-3 and presented by HLA-A1, HLA-A2, HLA-A24 or HLA-B44, identification of this CTL epitope presented by the HLA-A*2402 molecule will extend the application of MAGE-3-derived peptides for immunotherapy for cancer patients.  相似文献   

3.
The present study attempted to identify a useful tumor-associated antigen (TAA) for lung cancer immunotherapy and potential immunogenic peptides derived from the TAA. We focused on cell division cycle 45-like (CDC45L), which has a critical role in the initiation and elongation steps of DNA replication, as a novel candidate TAA for immunotherapy based on a genome-wide cDNA microarray analysis of lung cancer. The CDC45L was overexpressed in the majority of lung cancer tissues, but not in the adjacent non-cancerous tissues or in many normal adult tissues. We examined the in vitro and in vivo anti-tumor effects of cytotoxic T-lymphocytes (CTL) specific to CDC45L-derived peptides induced from HLA-A24 (A*24:02)-positive donors. We identified three CDC45L-derived peptides that could reproducibly induce CDC45L-specific and HLA-A24-restricted CTL from both healthy donors and lung cancer patients. The CTL could effectively lyse lung cancer cells that endogenously expressed both CDC45L and HLA-A24. In addition, we found that CDC45L (556) KFLDALISL(564) was eminent in that it induced not only HLA-A24 but also HLA-A2 (A*02:01)-restricted antigen specific CTL. Furthermore, the adoptive transfer of the CDC45L-specific CTL inhibited the growth of human cancer cells engrafted into immunocompromised mice. These results suggest that these three CDC45L-derived peptides are highly immunogenic epitopes and CDC45L is a novel TAA that might be a useful target for lung cancer immunotherapy.  相似文献   

4.
To cast light on T cell-mediated specific immunity at the tumor site of colon cancer, we investigated whether interleukin-2 (IL-2)-activated tumor-infiltrating lymphocytes (TIL) from colon cancer show histocompatibility leukocyte antigen (HLA)-class I-restricted cytotoxicity against adenocarcinoma. IL 2-activated TIL from all four HLA-A24 patients examined lysed HLA-A2402+ adenocarcinomas, but not HLA-A2402 tumors. Those of two of the four cases also lysed HLA-A2402+ squamous cell carcinomas. CD8+ cytotoxic T lymphocyte (CTL) clones recognizing HLA-A2402+ adenocarcinomas were established from one CTL line. This CTL line produced IFN-γ upon recognition of an HLA-A2402- adenocarcinoma transfected with HLA-A2402 cDNA. These results suggest the presence of HLA-A2402-restricted CTL recognizing adenocarcinoma at the tumor site of colon cancer. Furthermore, HLA-A31-restricted CTL activity was found in IL-2-activated TIL from one of two HLA-A31+ patients, suggesting the existence of HLA-class I-restricted CTL involving an allele other than A24  相似文献   

5.
Despite the discovery of multiple TAAs, only a limited number is available for clinical application, particularly against epithelial malignancies. In this study we searched for novel TAAs using expression profiles of gastric cancer examined with cDNA microarray, and identified the SCRN1 gene as a candidate. SCRN1 was confirmed to be expressed in five out of seven gastric cancers with semiquantitative RT-PCR. With Northern blot analysis, it was detected abundantly in the testis and ovary, but it was barely detectable in 14 other normal human adult organs. Colony formation assay revealed that its augmented expression is associated with promoted cell growth. As these expression profiles and functional features of SCRN1 appeared to be compatible with the characteristics of the hypothesized ideal TAAs, we examined whether SCRN1 protein contains antigenic epitope peptides restricted to HLA-A*0201. We synthesized the candidate peptides derived from SCRN1, and tried to induce CTLs with each peptide. The CTL clones were successfully induced with a peptide SCRN1-196 (KMDAEHPEL), and they lyzed not only the peptide-pulsed targets but also the tumor cells expressing both SCRN1 and HLA-A*0201 endogenously. These results strongly suggest that SCRN1-196 is an epitope peptide restricted to HLA-A*0201. Furthermore, we synthesized an anchor-modified peptide SCRN1-9 V (KMDAEHPEV), in which leucine at position 9 was substituted for valine to increase the binding affinity to the HLA-A*0201 molecules. The CTL clones induced by SCRN1-9 V also recognized tumor cells expressing its natural SCRN1 protein endogenously. These results strongly suggest that SCRN1 is a novel TAA and these peptides, both native and modified, may be applicable for cancer vaccines to treat gastric cancer.  相似文献   

6.
A cDNA vaccine (pVax1/pet-neu) was designed to encode 12 different Her-2/ErbB-2-derived, HLA-A*0201-restricted dominant and high-affinity heteroclitic cryptic epitopes. Vaccination with pVax1/pet-neu triggered multiple and ErbB-2-specific CTL responses in HLA-A*0201 transgenic HHD mice and in HLA-A*0201 healthy donors in vitro. Human and murine CTL specific for each one of the 12 ErbB-2 peptides recognized in vitro both human and murine tumor cells overexpressing endogenous ErbB-2. Furthermore, vaccination of HHD mice with pVax1/pet-neu significantly delayed the in vivo growth of challenged ErbB-2-expressing tumor (EL4/HHD/neu murine thymoma) more actively when compared with vaccination with the empty vector (pVax1) or vehicle alone. These data indicate that the pVax1/pet-neu cDNA vaccine coding for a poly-ErbB-2 epitope is able to generate simultaneous ErbB-2-specific antitumor responses against dominant and cryptic multiple epitopes.  相似文献   

7.
PURPOSE: For identification of CTL epitopes useful for cancer vaccines, it is crucial to determine whether cognate epitopes are presented on the cell surface of target cancer cells through natural processing of endogenous proteins. For this purpose, we tried to use the cellular machinery of both mice and human to define naturally processed CTL epitopes derived from two "cancer germ line" genes, MAGE-A4 and SAGE. EXPERIMENTAL DESIGN: We vaccinated newly produced HLA-A2402 transgenic mice with DNA plasmids encoding target antigens. Following screening of synthesized peptides by splenic CD8(+) T cells of vaccinated mice, we selected candidate epitopes bound to HLA-A2402. We then examined whether human CD8(+) T cells sensitized with autologous CD4(+) PHA blasts transduced by mRNA for the cognate antigens could react with these selected peptides in an HLA-A2402-restricted manner. RESULTS: After DNA vaccination, murine CD8(+) T cells recognizing MAGE-A4(143-151) or SAGE(715-723) in an HLA-A2402-restricted manner became detectable. Human CTLs specific for these two peptides were generated after sensitization of HLA-A2402-positive CD8(+) T cells with autologous CD4(+) PHA blasts transduced with respective mRNA. CTL clones were cytotoxic toward tumor cell lines expressing HLA-A2402 and cognate genes. Taken together, these CTL epitopes defined in HLA-A24 transgenic mice are also processed and expressed with HLA-A2402 in human cells. The presence of SAGE(715-723)-specific precursors was observed in HLA-A2402-positive healthy individuals. CONCLUSIONS: Two novel HLA-A2402-restricted CTL epitopes, MAGE-A4(143-151) and SAGE(715-723), were identified. Our approach assisted by cellular machinery of both mice and human could be widely applicable to identify naturally processed CTL epitopes.  相似文献   

8.
Toward the development of a novel cancer immunotherapy, we have previously identified several tumor-associated antigens (TAAs) and the epitopes recognized by human histocompatibility leukocyte (HLA)-A2/A24-restricted cytotoxic T lymphocyte (CTL). In this study, we tried to identify a TAA of lung cancer (LC) and its HLA-A2 restricted CTL epitopes to provide a target antigen useful for cancer immunotherapy of LC. We identified a novel cancer testis antigen, cell division cycle associated gene 1 (CDCA1), overexpressed in nonsmall cell LC using a cDNA microarray analysis. The expression levels of CDCA1 were also increased in the majority of small cell LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers. We used HLA-A2.1 transgenic mice to identify the HLA-A2 (A*0201)-restricted CDCA1 epitopes recognized by mouse CTL, and we investigated whether these peptides could induce CDCA1-reactive CTLs from the peripheral blood mononuclear cells (PBMCs) of HLA-A2-positive donors and a NSCLC patient. Consequently, we found that the CDCA1(65-73) (YMMPVNSEV) peptide and CDCA1(351-359) (KLATAQFKI) peptide could induce peptide-reactive CTLs in HLA-A2.1 transgenic mice. In HLA-A2(+) donors, in vitro stimulation of PBMC with these peptides could induce peptide-reactive CTLs which killed tumor cell lines endogenously expressing both HLA-A2 and CDCA1. As a result, CDCA1 is a novel cancer-testis antigen overexpressed in LC, cholangiocellular cancer, urinary bladder cancer and renal cell cancers, and CDCA1 may therefore be an ideal TAA useful for the diagnosis and immunotherapy of these cancers.  相似文献   

9.
PURPOSE: To establish cancer immunotherapy, it is important to identify the tumor-associated antigens (TAA) that are strongly expressed in the tumor cells but not in the normal cells. In this study, to establish an effective anticancer immunotherapy, we tried to identify the useful TAA of pancreatic cancer. EXPERIMENTAL DESIGN: Based on a previous genome-wide cDNA microarray analysis of pancreatic cancer, we focused on cadherin 3 (CDH3)/P-cadherin as a novel candidate TAA for anticancer immunotherapy. To identify the HLA-A2 (A*0201)-restricted CTL epitopes of CDH3, we used HLA-A2.1 (HHD) transgenic mice (Tgm). Furthermore, we examined the cytotoxicity against the tumor cells in vitro and in vivo of CTLs specific to CDH3 induced from HLA-A2-positive healthy donors and cancer patients. RESULTS: CDH3 was overexpressed in the majority of pancreatic cancer and various other malignancies, including gastric and colorectal cancers, but not in their noncancerous counterparts or in many normal adult tissues. In the experiment using HLA-A2.1 Tgm, we found that the CDH3-4(655-663) (FILPVLGAV) and CDH3-7(757-765) (FIIENLKAA) peptides could induce HLA-A2-restricted CTLs in Tgm. In addition, peptides-reactive CTLs were successfully induced from peripheral blood mononuclear cells by in vitro stimulation with these two peptides in HLA-A2-positive healthy donors and cancer patients, and these CTLs exhibited cytotoxicity specific to cancer cells expressing both CDH3 and HLA-A2. Furthermore, the adoptive transfer of the CDH3-specific CTLs could inhibit the tumor growth of human cancer cells engrafted into nonobese diabetic/severe combined immunodeficiency mice. CONCLUSIONS: These results suggest that CDH3 is a novel TAA useful for immunotherapy against a broad spectrum of cancers, including pancreatic cancer.  相似文献   

10.
Lengsin is an eye lens protein with a glutamine synthetase domain. We previously identified this protein as a lung carcinoma antigen through cDNA microarray analysis. Lengsin protein is overexpressed irrespective of the histological type of lung carcinoma, but not in normal tissues other than the lens. Therefore, to significantly extend the use of Lengsin-based T-cell immunotherapies for the treatment of patients with lung carcinoma, we searched for HLA-A*0201-restricted epitopes from this protein by screening predicted Lengsin-derived candidate peptides for the induction of tumor-reactive CTLs. Four Lengsin-derived peptides were selected by computerized algorithm based on a permissive HLA-A*0201 binding motif, and were used to immunize HLA-A*0201 transgenic (HHD) mice. Two of the immunizing peptides, Lengsin(206-215)(FIYDFCIFGV) and Lengsin(270-279)(FLPEFGISSA), induced peptide-specific cytotoxic T lymphocytes (CTLs) in HHD mice, and thus were used to stimulate human peripheral blood lymphocytes in?vitro. Lengsin(206-215) and Lengsin (270-279) also induced human peptide-specific CTLs, and we were able to generate Lengsin(206-215)- and Lengsin(270-279)-specific CTL clones. The Lengsin(270-279)-specific CTL clone specifically recognized peptide-pulsed T2 cells, COS-7 cells expressing HLA-A*0201 and Lengsin, and HLA-A*0201+/Lengsin+ lung carcinoma cells in an HLA-A*0201-restricted manner. On the other hand, the Lengsin(206-215)-specific CTL clone failed to recognize HLA-A*0201+/Lengsin+ target cells in the absence of cognate peptide. These results suggest that Lengsin(270-279) is naturally processed and presented by HLA-A*0201 molecules on the surface of lung carcinoma cells and may be a new target for antigen-specific T-cell immunotherapy against lung cancer.  相似文献   

11.
For the development of cancer vaccine therapies, we have searched for possible epitope peptides that can elicit cytotoxic T lymphocytes (CTL) to the TTK protein kinase ( TTK ), lymphocyte antigen 6 complex locus K ( LY6K ) and insulin-like growth factor (IGF)-II mRNA binding protein 3 ( IMP-3 ), which were previously identified to be transactivated in the majority of lung and esophageal cancers. We screened 31, 17 and 17 candidate human leukocyte antigen (HLA)-A*2402-binding peptides to parts of TTK , LY6K and IMP-3 , respectively. As a result, we successfully established strong CTL clones stimulated by TTK-567 (SYRNEIAYL), LY6K-177 (RYCNLEGPPI) and IMP-3-508 (KTVNELQNL) that have specific cytotoxic activities against the HLA-A24-positive target cells pulsed with the candidate peptides. Subsequent analysis of the CTL clones also revealed their cytotoxic activities against lung and esophageal tumor cells that endogenously express TTK, LY6K or IMP-3. A cold target inhibition assay further confirmed that the CTL cell clones specifically recognized the MHC class I–peptide complex. Our results strongly imply that TTK, LY6K and IMP-3 are novel tumor-associated antigens recognized by CTL, and TTK-567 (SYRNEIAYL), LY6K-177 (RYCNLEGPPI) and IMP-3-508 (KTVNELQNL) are HLA-A24-restricted epitope peptides that can induce potent and specific immune responses against lung and esophageal cancer cells expressing TTK, LY6K and IMP-3. ( Cancer Sci 2007; 98: 1803–1808)  相似文献   

12.
We recently identified the SART3 antigen encoding shared tumor epitopes recognized by HLA-A2402-restricted and tumor-specific CTLs. Our study investigated whether the SART3 antigen encodes peptides recognized by the HLA-A2-restricted CTLs. The HLA-A2-restricted and tumor-specific CTL line recognized COS-7 cells co-transfected with the SART3 gene and either HLA-A0201, -A0206 or -A0207 cDNA but not those co-transfected with the SART3 gene and HLA-A2402 or -A2601 cDNA. The 2 SART3 peptides at positions 302 to 310 and 309 to 317 possessed the ability to induce HLA-A2-restricted and tumor-specific CTLs from peripheral blood mononuclear cells of cancer patients with various histological types and different HLA-A2 subtypes. Therefore, these 2 peptides could be useful for specific immunotherapy of a relatively large number of HLA-A2(+) cancer patients.  相似文献   

13.
MAGE-A antigens belong to cancer/testis (CT) antigens that are expressed in tumors but not in normal tissues with the exception of testis and placenta. Among MAGE-A antigens, MAGE-A10 is extensively expressed in various histological types of tumors, representing an attractive target for tumor immunotherapy. Cytotoxic T lymphocytes (CTLs) play a key role in anti-tumor immune responses, so the identification of CTL epitopes derived from MAGE-A10 would contribute a lot to the design of epitope-based vaccines for tumor patients. In this study, we predicted HLA-A*0201-restricted CTL epitope peptides of MAGE-A10, followed by peptide/HLA-A*0201 binding affinity and complex stability assays, and induced peptide-specific CTL immune responses. Of the selected three peptides (designated P1, P2 and P3), P1 (MAGE-A10310-318, SLLKFLAKV) could elicit peptide-specific CTLs both in vitro from HLA-A*0201-positive PBMCs and in HLA-A*0201/Kb transgenic mice. And, the induced CTLs could lyse MAGE-A10-expressing tumor cells in a HLA-A*0201-restricted fashion but not MAGE-A10-negative tumor cells. Our results demonstrate that the peptide MAGE-A10310-318 is a HLA-A*0201-restricted CTL epitope of MAGE-A10 and could serve as a target for therapeutic antitumoral vaccination.  相似文献   

14.
HLA-transgenic mice have been developed to facilitate studies of HLA-restricted cytotoxic responses, e.g., for the identification of immunodominant HLA-restricted CTL epitopes and the optimization of peptide or DNA vaccine constructs for human use. We have developed HLA-A2402/K(b)-transgenic mice expressing chimeric human (alpha1 and alpha2 domains of HLA-A2402) and mouse (alpha3, transmembrane and cytoplasmic domains of H-2K(b)) class I molecules. Immunization of these HLA-A2402/K(b)-transgenic mice with various known HLA-A24-restricted immunodominant cancer CTL epitope peptides derived from gp100, MAGE-1, MAGE-3, Her2/neu, CEA and TERT induced HLA-A24-restricted, peptide-specific CTLs. Using these transgenic mice, we identified a novel HLA-A24-restricted CTL epitope, PSA(152-160), encoded by human prostate-specific antigen. Staining with HLA tetramers showed that the cytotoxic activity induced by immunizing with PSA(152-160) in HLA-A2402/K(b) transgenic mice was HLA-A2402-restricted and CD8-dependent. Therefore, PSA(152-160) might be a candidate peptide for vaccination of HLA-A24(+) patients with prostate cancer. Our results suggest that HLA-A2402/K(b) transgenic mice might be useful in the search for HLA-A24-restricted CTL epitopes functioning as human cancer antigens and for the development of peptide-based cancer immunotherapy.  相似文献   

15.
Alpha-fetoprotein (AFP) has been proposed as a potential target forT-cell-based immunotherapy for hepatocellular carcinoma (HCC), but the number of its epitopes that have been identified is limited and the status of AFP-specific immunological responses in HCC patients has not been well-characterized. To address the issue, we examined the possibility of inducing AFP-specific cytotoxic T cells (CTLs) using novel HLA-A*2402-restricted T-cell epitopes (HLA, human leukocyte antigen) derived from AFP and then analyzed the relationship between its frequency of occurrence and clinical features associated with patients having HCC. Five AFP-derived peptides containing HLA-A*2402 binding motifs and showing high binding affinity to HLA-A*2402 induced CTLs to produce IFN-gamma and kill an AFP-producing hepatoma cell line. The frequency of AFP-specific CTLs was 30-190 per 1 x 10(6) peripheral blood mononuclear cells, which was the same as that of other immunogenic cancer associated antigen-derived epitopes. Analyses of the relationships between AFP-specific CTL responses and clinical features of patients with HCC revealed that AFP epitopes were more frequently recognized by CTLs in patients with advanced HCC correlating to tumor factors or the stage of TNM classification. The analyses of CTL responses before and after HCC treatments showed that the treatments changed the frequency of AFP-specific CTLs. In conclusion, we identified five HLA-A*2402-restricted T-cell epitopes derived from AFP. The newly identified AFP epitopes could be a valuable component of HCC immunotherapy and for analyzing host immune responses to HCC.  相似文献   

16.
PURPOSE: Cyclin D1, a key cell cycle regulator, is overexpressed in multiple types of cancer. Such tumor-associated genes may be useful targets for cancer immunotherapy. Nevertheless, it had previously been suggested that efficient T cells recognizing cyclin D1-derived epitopes are absent from the repertoire because of thymic deletion. We attempted to induce autologous CTL from healthy donors and patients with cyclin D1-overexpressing tumors using a highly efficient T-cell expansion system based on CD40-activated B cells as antigen-presenting cells. EXPERIMENTAL DESIGN: Cyclin D1-derived, HLA-A*0201-restricted epitopes were predicted by multiple computer algorithms, screened in HLA-A2-binding assays, and used for T-cell stimulation. The generated CTL lines and clones were analyzed by IFN-gamma enzyme-linked immunosorbent spot assay or cytolysis assay. RESULTS: After screening, at least two naturally processed and presented HLA-A*0201-binding cyclin D1 epitopes were identified. CTL specific for these epitopes could be successfully generated from HLA-A2(+) donors. T cells efficiently recognized target cells pulsed with the cognate peptide and cyclin D1-expressing tumor cell lines in an HLA-A*0201-restricted manner. More importantly, HLA-A*0201-matched, primary cyclin D1(+) tumor cells were efficiently recognized by cyclin D1-specific CTL. These CTL could be generated from patients with mantle cell lymphoma and cyclin D1(+) colon cancer. CONCLUSIONS: These results underscore that cyclin D1 needs to be considered as a target for broad-based antitumor immunotherapy.  相似文献   

17.
Cytochrome P450 1B1 (CYP1B1) was recently shown to be a candidate tumor antigen broadly expressed in solid and hematologic malignancies. Nevertheless, use of such self-antigens as targets for immune intervention can be limited because of loss of high-avidity T cells during negative selection in the thymus. Recent data suggest that targeting of cryptic epitopes may represent a way to circumvent such self-tolerance and induce efficient antitumor CTL responses. Here, we present the identification and characterization of a novel, cryptic HLA-A*0201-binding peptide from CYP1B1. The nanomer CYP246 was identified by epitope deduction using algorithms to predict HLA-A*0201-binding peptides. CYP246 is characterized by strong initial HLA-A*0201 binding but a short MHC/peptide binding half-life. Expansion of high-avidity CTL was readily possible using autologous CD40-activated B cells from normal donors and cancer patients as antigen-presenting cells, suggesting that an intact T-cell repertoire can be expanded for this epitope. Lysis of CYP1B1-expressing, HLA-A*0201+ tumor cell lines and primary tumor cells confirmed that sufficient levels of CYP246 are presented by tumor cells for effector CTL killing. These findings indicate that CYP246 is a candidate cryptic epitope for immune interventions in which tumor CYP1B1 is targeted.  相似文献   

18.
Cancer immunotherapy is a potential therapeutic strategy, in addition to surgical treatment, radiotherapy, and chemotherapy. Cancer-specific immunotherapy, such as the MAGE peptide vaccine, has been utilized clinically. How-ever, there are inherent limits to the effectiveness of vaccinotherapy using a single antigen because of the expression frequency of cancer-specific antigens on tumor cells. Thus, identification of a new cancer-specific antigen is needed. In this study, we examined the possibility of using cancer-specific immunotherapy based upon mitotic centromere-associated kinesin (MCAK) which was previously identified as a novel cancer/testis antigen. To evaluate the feasibility of developing cancer immunotherapy using MCAK peptides, we studied HLA-A*0201 and *2402 as targets for CTLs in the context of HLA class I molecules. By using a peptide with a sequence of AINPELLQL (amino acid positions 63-71 in MCAK, HLA-A*0201) and FFEIYNGKL (amino acid positions 401-409 in MCAK, HLA-A*2402), CTL responses could be induced from unseparated PBMCs by stimulation of freshly isolated, peptide-pulsed PBMCs as antigen-presenting cells (APCs) and also by using interleukin-7 and keyhole limpet hemocyanin in primary culture. The induced CTLs could lyse HLA-A-*0201/*2402 colon and gastric cancer cells expressing MCAK, as well as the peptide-pulsed target cells, in an HLA class l, and CD8 restricted manner. The identification of the MCAK/HLA-A*0201 and *2402 peptides suggests the possibility of designing peptide-based immunotherapeutic approaches that might prove effective in treating patients with MCAK-positive cancer.  相似文献   

19.
About 50% of cervical cancers are associated with human papillomavirus type 16 (HPV-16), and since the HPV-16 E6 and E7 oncoproteins are constitutively expressed in the tumor cells, they are attractive targets for cytotoxic T lymphocyte (CTL)-mediated immunotherapy. Nevertheless, only a limited number of HPV-16 E6 epitopes have been identified to date. Using reverse immunological methods, we have generated a CTL clone against the HPV-16 E6(49-57) epitope restricted by HLA-A*2402, which is the most common allele in Japan and relatively frequent worldwide, capable of lysing 293T cells transduced with HLA-A*2402 and HPV-16 E6. Although it was unable to recognize the SiHa cervical cancer cell line positive for HPV-16 and HLA-A*2402, the cells became susceptible to lysis when transduced with E6-E7 genes, which was unexpectedly offset by pretreatment with interferon (IFN)-gamma alone. Interestingly, however, combined pretreatment with a proteasome inhibitor, bortezomib and IFN-gamma fully restored CTL-mediated lysis of the original SiHa cells. Furthermore, such intervention of 2 of 4 other cervical cancer cell lines expressing HPV-16 E6 and HLA-A*2402 was found to induce IFN-gamma production by specific CTLs. Tetramer analysis further revealed that induction of E6(49-57)-specific T cells was possible in 5 of 7 patients with HPV-16-positive high grade cervical intraepithelial neoplasia or cervical cancer by in vitro stimulation with E6(49-57) peptide. Thus, these findings together indicate that E6(49-57) is a candidate epitope for immunotherapy and immunological monitoring of such patients.  相似文献   

20.
The design of a broad application tumor vaccine requires the identification of tumor antigens expressed in a majority of tumors of various origins. We questioned whether the major stress-inducible heat shock protein Hsp70 (also known as Hsp72), a protein frequently overexpressed in human tumors of various histological origins, but not in most physiological normal tissues, constitutes a tumor antigen. We selected the p391 and p393 peptides from the sequence of the human inducible Hsp70 that had a high affinity for HLA-A*0201. These peptides were able to trigger a CTL response in vivo in HLA-A*0201-transgenic HHD mice and in vitro in HLA-A*0201+ healthy donors. p391- and p393-specific human and murine CTL recognized human tumor cells overexpressing Hsp70 in a HLA-A*0201-restricted manner. Tetramer analysis of TILs showed that these Hsp70 epitopes are targets of an immune response in many HLA-A*0201+ breast cancer patients. Hsp70 is a tumor antigen and the Hsp70-derived peptides p391 and p393 could be used to raise a cytotoxic response against tumors of various origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号