首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim: To determine whether chronic physical training increases atrial and ventricular refractoriness in isolated rabbit heart. Methods: Trained rabbits were submitted to a protocol of treadmill running. The electrophysiological parameters of refractoriness investigated in an isolated heart preparation were: (1) atrial effective refractory period (AERP) and atrial functional refractory period and ventricular effective and functional refractory periods (VERP and VFRP) using the extrastimulus technique at four different pacing cycle lengths; (2) the dominant frequency (DF) of ventricular fibrillation (VF). A multi‐electrode plaque containing 256 electrodes and a spectral method were used to obtain the mean, maximum and minimum DF of VF. Sinus cycle length of the isolated hearts was determined as an electrophysiological parameter of training. In vivo heart rate, myocardial heat shock proteins (HSP60) and inducible nitric oxide synthase were also determined in some animals as electrophysiological and biochemical markers of training respectively. Results: VERP and VFRP were longer in the trained group than in the control group. The mean DF of VF was lower in the trained group than in the control group. Despite the fact that training did not significantly modify the AERP, it tended to be longer in the trained group (P = 0.09). Conclusion: Training seems to increase the electrical stability of ventricular myocardium. As the electrophysiological modifications were exhibited in hearts not submitted to extrinsic nervous system or humoral influences, they are, at least in part, intrinsic modifications. These electrophysiological data also suggest that training could protect against reentrant ventricular arrhythmias.  相似文献   

2.
This study applied zero-delay wave number spectral estimation as a means of quantifying the changes in activation and recovery sequences of propagating plane waves on the epicardial surface of in situ porcine hearts during regional hyperkalemia and ischemia. Unipolar electrograms (104) were recorded from the left ventricular surface of nine hearts using a plaque electrode array with 1 mm spatial sampling intervals. The objectives were (1) to define a set of parameters capable of quantifying the spatial and temporal changes in measured extracellular potentials associated with localized ischemia prior to the onset of conduction block; (2) to elevate regional levels of extracellular potassium ion concentration and quantify potential changes due to this known physiologic manipulation; and (3) to use quantitative parameters to make statistical comparisons in order to distinguish wave fronts during normal, ischemic and hyperkalemic conditions. Results showed that the parameters of wave number and average temporal frequency and the associated power, as determined from the wave number spectrum, provided statistically significant (p < 0.05) quantification of changes in wave front features during normal and ischemic or hyperkalemic conditions. The results were consistent with results obtained from conventional time–space domain methods like isochronal mapping and electrograms, with the advantage of a quantitative result enabling simple comparisons and trend analysis for large numbers of heart beats. © 1998 Biomedical Engineering Society. PAC98: 8759Wc, 8722Fy, 8780+s  相似文献   

3.
Traumatic brain injury (TBI) is a common injury modality affecting a diverse patient population. Axonal injury occurs when the brain experiences excessive deformation as a result of head impact. Previous studies have shown that the arachnoid trabeculae (AT) in the subarachnoid space significantly influence the magnitude and distribution of brain deformation during impact. However, the quantity and spatial distribution of cranial AT in humans is unknown. Quantification of these microstructural features will improve understanding of force transfer during TBI, and may be a valuable dataset for microneurosurgical procedures. In this study, we quantify the spatial distribution of cranial AT in seven post-mortem human subjects. Optical coherence tomography (OCT) was used to conduct in situ imaging of AT microstructure across the surface of the human brain. OCT images were segmented to quantify the relative amounts of trabecular structures through a volume fraction (VF) measurement. The average VF for each brain ranged from 22.0% to 29.2%. Across all brains, there was a positive spatial correlation, with VF significantly greater by 12% near the superior aspect of the brain (p < .005), and significantly greater by 5%−10% in the frontal lobes (p < .005). These findings suggest that the distribution of AT between the brain and skull is heterogeneous, region-dependent, and likely contributes to brain deformation patterns. This study is the first to image and quantify human AT across the cerebrum and identify region-dependencies. Incorporation of this spatial heterogeneity may improve the accuracy of computational models of human TBI and enhance understanding of brain dynamics.  相似文献   

4.
心室颤动的时-频分析和胺碘酮的作用   总被引:1,自引:0,他引:1  
研究心室颤动时主导频率的动态性空间时间变化。在19只犬中建立正交心电图和心脏电除颤系统;诱发心室颤动持续10~30 s;使用时-频分析法分析心室颤动时频率的时频变化。另有4只犬在诱发心室颤动后静注胺碘酮100 mg以观察主导频率的改变。结果显示:在427个10 s VF和335个30 s VF的试验中,主导频率的变化与平均频率相差12%~18%;79个使用胺碘酮的试验中,主导频率的均值和变异性均降低。表明:在10~30 s心室颤动时心电图主导频率有明显和持续性的变异,胺碘酮可减小心室颤动时的频率和变异。  相似文献   

5.
The purpose of this study is to test the role that parasympathetic postganglionic neurons could play on the adaptive electrophysiological changes produced by physical training on intrinsic myocardial automatism, conduction and refractoriness. Trained rabbits were submitted to a physical training protocol on treadmill during 6 weeks. The electrophysiological study was performed in an isolated heart preparation. The investigated myocardial properties were: (a) sinus automatism, (b) atrioventricular and ventriculoatrial conduction, (c) atrial, conduction system and ventricular refractoriness. The parameters to study the refractoriness were obtained by means of extrastimulus test at four different pacing cycle lengths (10% shorter than spontaneous sinus cycle length, 250, 200 and 150 ms) and (d) mean dominant frequency (DF) of the induced ventricular fibrillation (VF), using a spectral method. The electrophysiological protocol was performed before and during continuous atropine administration (1 μM), in order to block cholinergic receptors. Cholinergic receptor blockade did not modify either the increase in sinus cycle length, atrioventricular conduction and refractoriness (left ventricular and atrioventricular conduction system functional refractory periods) or the decrease of DF of VF. These findings reveal that the myocardial electrophysiological modifications produced by physical training are not mediated by intrinsic cardiac parasympathetic activity.  相似文献   

6.
To further understand the role of NS1-specific antibodies (Abs) in disease pathogenesis, we compared neutralizing antibody levels (Nabs), NS1-Ab levels, IgG antibody subclass profiles and NS1-specific memory B-cell responses (Bmems) in individuals, with varying severity of past dengue. Nabs (Neut50 titres) were assessed using the Foci Reduction Neutralization Test (FRNT) and in-house ELISAs were used to assess NS1-Abs and NS1-Ab subclasses for all four DENV serotypes in individuals with past DF (n = 22), those with past DHF (n = 14) and seronegative (SN) individuals (n = 7). B-cell ELISpot assays were used to assess NS1-specific Bmem responses. 15/22 (68.18%) individuals with past DF and 9/14 (64.29%) individuals with past DHF had heterotypic infections. Neut50 titres were found to be significantly higher for DENV1 than DENV2 (p = 0.0006) and DENV4 (p = 0.0127), in those with past DHF, whereas there was no significant difference seen in titres for different DENV serotypes in those with past DF. Overall NS1-Ab to all serotypes and NS1-specific IgG1 responses for DENV1, 2 and 4 serotypes were significantly higher in those with past DHF than individuals with past DF. Those with past DHF also had higher IgG1 than IgG3 for DENV1 and DENV3, whereas no differences were seen in those with past DF. Over 50% of those with past DF or DHF had NS1-specific Bmem responses to >2 DENV serotypes. There was no difference in the frequency of Bmem responses to any of the DENV serotypes between individuals with past DF and DHF. Although the frequency of Bmem responses to DENV1 correlated with DENV1-specific NS1-Abs levels (Spearman r = 0.35, p = 0.02), there was no correlation with other DENV serotypes. We found that those with past DF had broadly cross-reactive Nabs, while those with past DHF had higher NS1-Ab responses possibly with a different functionality profile than those with past DF. Therefore, it would be important to further evaluate the functionality of NS1-specific antibody and Bmem responses to find out the type of antibody repertoire that is associated with protection against severe disease.  相似文献   

7.

Background

Measurements of both the dominant frequency (DF) and the time series morphology of complex fractionated atrial electrograms (CFAE) are useful to distinguish persistent from paroxysmal atrial fibrillation (AF). In this study, an algorithm was devised to extract morphologic components according to frequency, and its usefulness for distinguishing CFAE was shown.

Method

CFAE of length 16 s were obtained at two sites each from the four pulmonary vein ostia (PV), and from anterior and posterior left atrial free wall (FW), in nine paroxysmal and 10 longstanding persistent AF patients. The DF was computed for each of two 8 s CFAE segments in each 16 s recording. Each CFAE segment was then transformed into a set of basis vectors, which represent electrogram morphology at each frequency. The dominant morphology (DM) is defined as the ensemble average of sequential signal segments, with the segment length equal to the period at the DF. The DMs of the two 8 s pairs were correlated. Normalized correlation coefficients were tabulated for all data, and separately for PV and FW. The means and coefficients of variation of the DM correlation coefficients were then plotted, and a linear discriminant function was used to classify persistent versus paroxysmal AF data. For comparison with DM results, CFE-mean and interval confidence level (ICL) were also calculated for persistent versus paroxysmal AF data.

Results

Mean correlation of the DM, 1st 8 s versus 2nd 8 s data, was 0.62+0.22 for persistent versus 0.50+0.19 for paroxysmal CFAE for all recording sites (p<0.001). At single anatomical locations, correlation was greater in persistents than paroxysmals at all sites, but achieved significance only at the left superior (p<0.001) and right superior (p<0.05) PV. Spatial variation in correlation coefficient was greater in paroxysmal than persistent AF (not significant). Using the means of DF correlation coefficients, 17/19 patients were classified correctly. The CFE-mean parameter averaged 89.01±20.99 ms in persistents versus 93.96±33.81 ms in paroxysmals (p<0.05), while ICL averaged 94.54±18.52 deflections/8 s for persistents versus 90.70±19.28 deflections/8 s for paroxysmals (p<0.05).

Conclusions

In CFAE recordings, the DM parameter was found to have greater temporal morphologic variation in paroxysmal as compared with persistent AF data (p<0.001). In contrast, only moderate significance between paroxysmal versus persistent AF data was found when using the of CFE-mean and ICL parameters (p<0.05). The DM parameter may thus be useful as a new measure to discern both temporal and spatial variations in CFAE in paroxysmal versus persistent AF recordings.  相似文献   

8.
ApoE/LDLR–/– mice represent a reliable model of atherosclerosis. However, it is not clear whether cardiac performance is impaired in this murine model of atherosclerosis. Here, we used MRI to characterize cardiac performance in vivo in apoE/LDLR–/– mice with advanced atherosclerosis. Six‐month‐old apoE/LDLR–/– mice and age‐matched C57BL/6J mice (control) were examined using highly time‐resolved cine‐MRI [whole‐chamber left ventricle (LV) imaging] and MR tagging (three slices: basal, mid‐cavity and apical). Global and regional measures of cardiac function included LV volumes, kinetics, time‐dependent parameters, strains and rotations. Histological analysis was performed using OMSB (orceine with Martius, Scarlet and Blue) and ORO (oil red‐O) staining to demonstrate the presence of advanced coronary atherosclerosis. MR‐tagging‐based strain analysis in apoE/LDLR–/– mice revealed an increased frequency of radial and circumferential systolic stretch (25% and 50% of segments, respectively, p ≤ 0.012), increased radial post‐systolic strain index (45% of segments, p = 0.009) and decreased LV untwisting rate (?30.3° (11.6°)/cycle, p = 0.004) when compared with control mice. Maximal strains and LV twist were unchanged. Most of the cine‐MRI‐based LV functional and anatomical parameters also remained unchanged in apoE/LDLR–/–mice, with only a lower filling rate, longer filling time, shorter isovolumetric contraction time and slower heart rate observed in comparison with control mice. The coronary arteries displayed severe atherosclerosis, as evidenced by histological analysis. Using comprehensive MRI methods, we have demonstrated that, despite severe coronary atherosclerosis in six‐month‐old apoE/LDLR–/– mice, cardiac performance including global parameters, twist and strains, was well preserved. Only subtle diastolic alterations, possibly of ischemic background, were uncovered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Dermatofibroma (DF) and dermatofibrosarcoma protuberans (DFSP) are dermal tumors whose histogenesis has not been well defined to date. The differential diagnosis in most cases is established in routine H/E sections and may be confirmed by immunohistochemistry, but there are atypical variants of DF with less clear histological differences and non-conclusive immunohistochemical results. In those cases, electron microscopy studies may be useful in establishing the diagnosis. The authors describe in detail the ultrastructural characteristics of 38 cases of DFSP and 10 cases of DF. The objective was to establish the ultrastructural features for differential diagnosis, and to identify the possible histogenesis of both neoplasms. DFSP is formed by stellate or spindled cells with long, slender, ramified cell processes joined by primitive junctions. Subplasmalemmal densities were frequently seen in the processes. Another common finding was the presence of multivesicular buds (MVB), peculiar structures that contain microvesicles abutting from the cell membrane. In contrast, DF is characterized by a proliferation of multiple capillary vessels with prominent endothelium and a perivascular population of ovoid or spindled cells devoid of cell processes. These latter cells featured intracytoplasmic lipid material (p < .001), infrequent subplasmalemmal densities (p < .001), and absence of MVB (p < .001). With the ultrastructural characteristics and the constant expression of CD34 in DFSP, a probable origin in dermal dendrocytes is postulated for this tumor. The histogenesis of DF is less clear, but an origin from FXIIIa modified perivascular dermal dendrocytes is proposed.  相似文献   

10.
Background: Improved microcirculatory reperfusion in patients with ventricular fibrillation (VF) enhances the electrical activity of the fibrillation process and increases the likelihood of successful defibrillation.

Methods: Changes in amplitude spectrum area (AMSA) and mean fibrillation (MF) in patients with sustained VF were analysed after administration of rt-PA variant tenecteplase in out-of-hospital cardiac arrest (OHCA) during cardiopulmonary resuscitation (CPR).

Results: A total of 69 ECG sequences from nine patients were evaluated. Patients who received tenecteplase showed significantly longer duration of VF (p?=?0.016). While AMSA declined significantly during CPR (p?=?0.001), MF did not differ between groups. There were two survivors in the treatment group and one in the control group.

Conclusion: When tenecteplase was administered during CPR, VF lasted significantly longer than in controls. Changes in MF and AMSA did not indicate improved myocardial perfusion in patients who received tenecteplase during CPR.  相似文献   

11.
Histamine has inotropic, chronotropic, arrhythmogenic, and vasoactive effects, and is released from the heart in ischaemia-reperfusion injury. The effect of ventricular fibrillation (VF) and defibrillation (DEF) on histamine release was investigated in 9 anaesthetized patients undergoing transvenous implantation of ICD. Concomitant arterial and coronary sinus (CS) blood samples were drawn before induction of VF (duration 20 seconds), immediately after, and 2 and 5min after DEF (18–24 Joules). Basal arterial histamine was 2.5±6nmol/1, and did not increase after VF. The histamine level in CS was 1.1±0.2nmol/1 before VF (p < 0.008 compared to arterial), and increased to 2.5 ± 0.6 nmol/1 immediately after (p < 0.045 compared to basal), to 3 ± 1.1 nmol/1 2 min after (p < 0.45), and to 2.4 ± 0.8 nmol/1 5min after VF. In the basal state there was an uptake of histamine across the coronary circulation. After VF/DEF the level of histamine increased in coronary venous blood, suggesting cardiac release of histamine.  相似文献   

12.
Allergens from Dermatophagoides mites with chymotryptic activity   总被引:2,自引:0,他引:2  
A new set of allergens from Dermatophagoides pteronyssinus and D. farinae (provisionally named DPS and DF5, respectively) was isolated from the whole culture of mites. The apparent molecular weights of both allergens were shown to be 25000 on SDS-PAGE under a reducing condition and 27000 on Sephadex G-75 gel nitration chromatography. Both DP5 and DF5, as well as Der f III, possessed proteolytic activity. The results of substrate specificity and susceptibility to various protease inhibitors of DP5 and DF5 strongly suggested that they belonged to the chymotrypsin-like serine protease family. In sera from 88 mite-allergic patients, specific IgE antibodies to DP5 and/or DF5 were detected in only 41% of the sera by radio-allergosorbent test, while 90% and 93% had specific IgE antibodies to Der p I and/or Der f I and Der p II and/or Der f II, respecti vely.  相似文献   

13.
Different mechanisms involved in adaptation to stable and unstable dynamics   总被引:7,自引:0,他引:7  
Recently, we demonstrated that humans can learn to make accurate movements in an unstable environment by controlling magnitude, shape, and orientation of the endpoint impedance. Although previous studies of human motor learning suggest that the brain acquires an inverse dynamics model of the novel environment, it is not known whether this control mechanism is operative in unstable environments. We compared learning of multijoint arm movements in a "velocity-dependent force field" (VF), which interacted with the arm in a stable manner, and learning in a "divergent force field" (DF), where the interaction was unstable. The characteristics of error evolution were markedly different in the 2 fields. The direction of trajectory error in the DF alternated to the left and right during the early stage of learning; that is, signed error was inconsistent from movement to movement and could not have guided learning of an inverse dynamics model. This contrasted sharply with trajectory error in the VF, which was initially biased and decayed in a manner that was consistent with rapid feedback error learning. EMG recorded before and after learning in the DF and VF are also consistent with different learning and control mechanisms for adapting to stable and unstable dynamics, that is, inverse dynamics model formation and impedance control. We also investigated adaptation to a rotated DF to examine the interplay between inverse dynamics model formation and impedance control. Our results suggest that an inverse dynamics model can function in parallel with an impedance controller to compensate for consistent perturbing force in unstable environments.  相似文献   

14.

Introduction

The roles of pacing interval (PI) and pacing strength (PS) in ventricular fibrillation (VF) induced by rapid pacing with 1 : 1 capture remain unclear.

Material and methods

Epicardial unipolar electrograms (UEs) were simultaneously recorded using contact mapping in 11 swine. Activation-recovery interval (ARI) restitution was constructed at 4 sites, i.e. the apex and base of the left and right ventricles, respectively. A steady state pacing (SSP) protocol was performed to induce VF. The longest PI and the lowest PS for inducing VF were recorded. Statistical correlation analysis was performed to determine the relationship between local ARI restitution properties and PI and PS for VF induction.

Results

Forty restitution curves were constructed from 11 SSP procedures. The maximal slope (Smax) of the ARI restitution curve of the right ventricular apex was positively correlated with the PI for VF induction (r = 0.761, p < 0.05). Spatial dispersions of ARI and Smax were negatively correlated with the PS for VF induction (r = –0.626 and r = –0.722, respectively, both p < 0.05).

Conclusions

Ventricular fibrillation can be induced by rapid ventricular pacing with 1 : 1 capture. The PI for VF induction was related to the Smax of the ARI restitution curve of the right ventricular apex, while PS for VF induction was associated with the spatial dispersions of ARI and its restitution property.  相似文献   

15.
This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.  相似文献   

16.
Identification and classification of ventricular arrhythmias such as rhythmic ventricular tachycardia (VT) and disorganized ventricular fibrillation (VF) are vital tasks in guiding implantable devices to deliver appropriate therapy in preventing sudden cardiac deaths. Recent studies have shown VF can exhibit strong regional organizations, which makes the overlap zone between the fast paced rhythmic VT and VF even more ambiguous. Considering that implantable cardioverter-defibrillator (ICD) are primarily rate dependent detectors of arrhythmias and that there may be patients who suffer from arrhythmias that fall in the overlap zone, it is essential to identify the degree of affinity of the arrhythmia toward VT or organized/disorganized VF. The method proposed in this work better categorizes the overlap zone using Wavelet analysis of surface ECGs. Sixty-three surface ECG signal segments from the MIT-BIH database were used to classify between VT, organized VF (OVF), and disorganized VF (DVF). A two-level binary classifier was used to first extract VT with an overall accuracy of 93.7 % and then the separation between OVF and DVF with an accuracy of 80.0 %. The proposed approach could assist clinicians to provide optimal therapeutic solutions for patients in the overlap zone of VT and VF.  相似文献   

17.
The study objective was to integrate noncontact mapping and intracardiac echocardiography (ICE) in a single catheter system that enables both electrical and anatomical imaging of the endocardium. We developed a catheter system on the basis of a 9-F sheath that carried a coaxial 64-electrode lumen-probe on the outside and a central ICE catheter (9 F, 9 MHz) on the inside. The sheath was placed in the right atrium (RA) of 3 dogs, and in the left ventricle (LV) of 3 other dogs. To construct cardiac anatomy, the ICE catheter was pulled back over several beats inside the sheath starting from the tip and two-dimensional tomographic images were continuously acquired. To recover endocardial electrograms, the probe was advanced over the sheath and single-beat noncontact electrograms were simultaneously recorded. Endocardial contact electrodes were placed at select sites for validation as well as for pacing. Three-dimensional electrical-anatomical images reconstructed during sinus and paced rhythms correctly associated RA and LV activation sequences with underlying endocardial anatomy (overall activation error = 3.4 +/- 3.2 ms; overall spatial error = 8.0 +/- 3.5 mm). Therefore, accurate fusion of electrical imaging with anatomical imaging during catheterization is feasible. Integrating single-beat noncontact mapping with ICE provides detailed, three-dimensional electrical-anatomical images of the endocardium, which may facilitate management of arrhythmias.  相似文献   

18.
Summary The object of this study was to investigate the possible concentric increase in the left ventricular (LV) wall thickness by intensive strength training and to differentiate between the specific effect of the strength training itself and the influence of anabolic drugs. In this study 21 top-level bodybuilders [users of anabolic steroids (A): n=14; non-users (N): n=7] underwent one-dimensional and two-dimensional echocardiography as well as a cycle ergometer test. In both groups blood pressure at rest and during ergometric exercise was within the normal range. In spite of the same amount of time being spent on training, A showed significantly better power results than N. Total heart volume (A=11.3±0.9 ml · kg–1; N=11.9±0.9 ml · kg–1) and LV muscle mass were almost identical in A and N and correlated significantly with body weight and lean body mass respectively. The body dimension-related diastolic LV diameter was significantly lower in A (0.567±0.062 mm · kg–1) than in N (0.639±0.040 mm · kg–1). An increase in the LV posterior wall (p<0.01) and septum thickness (ns) resulted in increased LV wall thickness:diameter (p<0.01) and LV muscle mass:volume (p<0.05) ratios in A (0.458±0.590; 1.38± 0.25 g · ml–1) in comparison to N (0.356±0.077; 1.16±0.17 g · ml–1). The septal:posterior wall thickness ratio was similar for both groups. Systolic LV function did not differ between A and N, while the isovolumetric relaxation time was prolonged in A (A=43.2±19.8 ms; N=28.6±9.9 ms; p<0.05), without correlating to wall thickness. Clearly thickened LV walls (>13 mm) were observed only in bodybuilders regularly using anabolic steroids (n=11). The study suggests that the intake of anabolic steroids combined with intense bodybuilding may induce a minor concentric increase in the ventricular wall thickness along with a minor impairment of diastolic function.  相似文献   

19.
The purpose of this study was to develop techniques to quantify the propagation pattern of the electrical activation during atrial fibrillation (AF) along a one-dimensional catheter. Taking intra-atrial signal organization aspects into account, the atrial activations are detected and combined into wavefronts. Parameters describing wavefront consistency and activation order along the catheter are defined, and the relationship of wavefront consistency to body surface parameters, namely AF frequency and exponential decay, is investigated. The database consisted of 26 10-s recordings from patients during drug-refractory AF, in which five adjacent bipolar electrograms from a catheter in the right atrium were recorded. The 12-lead ECG was recorded simultaneously. The degree of wavefront consistency provided insights into the temporal variability of the activation order, an aspect which was not reflected by the body surface parameters. However, AF frequency was able to distinguish between recordings with different degrees of intra-atrial signal organization (p = 0.008).  相似文献   

20.
Stress echocardiography is an important screening test for coronary artery disease. Currently, cardiologists rely on visual analysis of left ventricular (LV) wall motion abnormalities, which is subjective and qualitative. We previously used finite-element models of the regionally ischemic left ventricle to develop a wall motion measure, 3DFS, for predicting ischemic region size and location from real-time 3D echocardiography (RT3DE). The purpose of this study was to validate these methods against regional blood flow measurements during regional ischemia and to compare the accuracy of our methods to the current state of the art, visual scoring by trained cardiologists. We acquired RT3DE images during 20 brief (<2 min) coronary occlusions in dogs and determined ischemic region size and location by microsphere-based measurement of regional perfusion. We identified regions of abnormal wall motion using 3DFS and by blinded visual scoring. 3DFS predicted ischemic region size well (correlation r 2 = 0.64 against microspheres, p < 0.0001), reducing error by more than half compared to visual scoring (8 ± 9% vs. 19 ± 14%, p < 0.05), while localizing the ischemic region with equal accuracy. We conclude that 3DFS is an objective, quantitative measure of wall motion that localizes acutely ischemic regions as accurately as wall motion scoring while providing superior quantification of ischemic region size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号