首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spray-drying represents a viable alternative to freeze-drying for preparing dry powder dispersions for delivering macromolecules to the lung. The dispersibility of spray-dried powders is limited however, and needs to be enhanced to improve lung deposition and subsequent biological activity. In this study, we investigate the utility of leucine as a dry powder dispersibility enhancer when added prior to spray-drying a model non-viral gene therapy formulation (lipid:polycation:pDNA, LPD). Freeze-dried lactose–LPD, spray-dried lactose–LPD and spray-dried leucine–lactose–LPD powders were prepared. Scanning electron microscopy showed that leucine increased the surface roughness of spray-dried lactose particles. Particle size analysis revealed that leucine-containing spray-dried powders were unimodally dispersed with a mean particle diameter of 3.12 μm. Both gel electrophoresis and in vitro cell (A549) transfection showed that leucine may compromise the integrity and biological functionality of the gene therapy vector. The deposition of the leucine containing powder was however significantly enhanced as evidenced by an increase in gene expression mediated by dry powder collected at lower stages of a multistage liquid impinger (MSLI). Further studies are required to determine the potential of leucine as a ubiquitous dispersibility enhancer for a variety of pulmonary formulations.  相似文献   

2.
Purpose Spray-drying is an effective process for preparing micron-dimensioned particles for pulmonary delivery. Previously, we have demonstrated enhanced dispersibility and fine particle fraction of spray-dried nonviral gene delivery formulations using amino acids or absorption enhancers as dispersibility-enhancing excipients. In this study, we investigate the use of the cationic polymer chitosan as a readily available and biocompatible dispersibility enhancer. Methods Lactose-lipid:polycation:pDNA (LPD) powders were prepared by spray-drying and post-mixed with chitosan or spray-dried chitosan. In addition, the water-soluble chitosan derivative, trimethyl chitosan, was added to the lactose-LPD formulation before spray-drying. Results Spray-dried chitosan particles, displaying an irregular surface morphology and diameter of less than 2 μm, readily adsorbed to lactose-LPD particles following mixing. In contrast with the smooth spherical surface of lactose-LPD particles, spray-dried trimethyl chitosan-lactose-LPD particles demonstrated increased surface roughness and a unimodal particle size distribution (mean diameter 3.4 μm), compared with the multimodal distribution for unmodified lactose-LPD powders (mean diameter 23.7 μm). The emitted dose and in vitro deposition of chitosan-modified powders was significantly greater than that of unmodified powders. Moreover, the inclusion of chitosan mediated an enhanced level of reporter gene expression. Conclusions In summary, chitosan enhances the dispersibility and in vitro pulmonary deposition performance of spray-dried powders.  相似文献   

3.
Thymopentin (TP5), a synthetic pentapeptide, has been used in clinic as a modulator for immunodeficiences through intramuscular administration. The purpose of this study was to design and evaluate dry powder inhalations (DPIs) for pulmonary delivery of TP5. Dry powder inhalations containing leucine (a dispersibility enhancer), mannitol, and lactose (bulking agents) were prepared by spray-drying from aqueous formulations. The formulation components on the aerosolisation characteristics of spray-dried powders were investigated through the use of various amount of leucine, lactose and mannitol. Following spray-drying, resultant powders were characterized using scanning electron microscopy, laser diffraction and tapped density measurements, and the aerosolisation performance was determined using Twin Stage Impinger. The immunosuppression Wistar rats model was constructed to evaluate the immunomodulating effects of TP5 DPIs in vivo. The results of T-lymphocyte subsets (CD3+, CD4+, CD8+, CD4+/CD8+ ratio) analyses suggest that TP5 DPIs have modulating effects. On an overall evaluation, TP5 pulmonary delivery DPIs may be feasible for the future clinical application.  相似文献   

4.
The dry powder inhalation of antibiotics for the treatment of lung infections has attracted drastically increasing attention as it offers rapid local therapy at lower doses and minimal side effects. In this study, aztreonam (AZT) was used as the model antibiotic and spray-dried to prepare powders for inhalation. Amino acids of glycine (GLY), histidine (HIS) and leucine (LEU) were used as excipients to modify the spray-dried particles. It was demonstrated that the GLY-AZT spray-dried powders formed huge agglomerates with the size of 144.51 µm, which made it very difficult to be delivered to the lungs (FPF: 0.29% w/w only). In comparison with the AZT spray-dried powders, HIS-modified spray-dried powders showed increased compressibility, indicating larger distance and less cohesion between particles; while the LEU-modified spray-dried particles showed a hollow structure with significantly decreased densities. The fine particle fraction for HIS- and LEU-modified powders was 51.4% w/w and 61.7% w/w, respectively, and both were significantly increased (one-way ANOVA, Duncan's test, P <0.05) compared to that of AZT spray-dried powders (45.4% w/w), showing a great potential to be applied in clinic.  相似文献   

5.
The aim of the study was to produce easily dispersible and porous agglomerates of tobramycin nanoparticles surrounded by a matrix composed of amorphous clarithromycin. Nanoparticles of tobramycin with a median particle size of about 400 nm were produced by high-pressure homogenisation. The results from the spray-dried powders showed that the presence of these nanoparticles enhanced powder dispersion during inhalation. Moreover, local drug deposition profiles were similar for the two antibiotics, allowing them to reach the target simultaneously. The dissolution-release profiles showed that tobramycin and clarithromycin might dissolve without any difficulties in the lung. The fine particle fraction increased from 35% and 31% for the physical blend for tobramycin and clarithromycin, respectively, to 63% and 62% for the spray-dried formulation containing nanoparticles. These new formulations, showing high lung deposition properties, even at sub-optimal inspiratory flow rates, represent a great possibility for advancing pulmonary drug administration and local therapy of lung infections.  相似文献   

6.
The present study investigates the feasibility of using two types of carbomer (971 and 974) to prepare inhalable dry powders that exhibit modified drug release properties. Powders were prepared by spray-drying formulations containing salbutamol sulphate, 20-50% w/w carbomer as a drug release modifier and leucine as an aerosolization enhancer. Following physical characterization of the powders, the aerosolization and dissolution properties of the powders were investigated using a Multi-Stage Liquid Impinger and a modified USP II dissolution apparatus, respectively. All carbomer 974-modified powders and the 20% carbomer 971 powder demonstrated high dispersibility, with emitted doses of at least 80% and fine particle fractions of approximately 40%. The release data indicated that all carbomer-modified powders displayed a sustained release profile, with carbomer 971-modified powders obeying first order kinetics, whereas carbomer 974-modified powders obeyed the Higuchi root time kinetic model; increasing the amount of carbomer 971 in the formulation did not extend the duration of drug release, whereas this was observed for the carbomer 974-modified powders. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance.  相似文献   

7.
The pulmonary route has recently attracted attention as a noninvasive administration route for peptide and protein drugs, and an insulin powder for inhalation was approved by authorities in Europe and the USA. The present study examined usefulness of insulin and gene powders for systemic and local inhalation therapy. We prepared several dry insulin powders by spray drying to examine the effect of additives on insulin absorption. Citric acid appears to be a safe and potent absorption enhancer for insulin in dry powder. However, in the powder with citric acid (MIC0.2 SD) insulin was unstable compared with the other powders examined. To improve insulin stability, a combination of insulin powder and citric acid powder was prepared (MIC Mix). MIC Mix showed hypoglycemic activity comparable to MIC0.2 SD while the insulin stability was much better than that of MIC SD. Next, dry insulin powders with mannitol were prepared with supercritical carbon dioxide (SCF); the powder thus prepared reduced blood glucose level rapidly and was more effective than that prepared by spray drying. Chitosan-pDNA complex powders as a pulmonary gene delivery system were also prepared with SCF and their in vivo activity was evaluated. The addition of chitosan suppressed the degradation of pCMV-Luc during preparation and increased the storage stability. The luciferase activity in mouse lung was evaluated after pulmonary administration of the powders. The chitosan-pDNA powder with an N/P ratio=5 increased the luciferase activity to 27 times that of the pCMV-Luc solution. These results suggest that gene powder with chitosan is a useful pulmonary gene delivery system.  相似文献   

8.
Abstract

The present study investigates the feasibility of using two types of carbomer (971 and 974) to prepare inhalable dry powders that exhibit modified drug release properties. Powders were prepared by spray-drying formulations containing salbutamol sulphate, 20–50% w/w carbomer as a drug release modifier and leucine as an aerosolization enhancer. Following physical characterization of the powders, the aerosolization and dissolution properties of the powders were investigated using a Multi-Stage Liquid Impinger and a modified USP II dissolution apparatus, respectively. All carbomer 974-modified powders and the 20% carbomer 971 powder demonstrated high dispersibility, with emitted doses of at least 80% and fine particle fractions of ~40%. The release data indicated that all carbomer-modified powders displayed a sustained release profile, with carbomer 971-modified powders obeying first order kinetics, whereas carbomer 974-modified powders obeyed the Higuchi root time kinetic model; increasing the amount of carbomer 971 in the formulation did not extend the duration of drug release, whereas this was observed for the carbomer 974-modified powders. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance.  相似文献   

9.
Pulmonary inflammation is an important therapeutic target in cystic fibrosis (CF) patients, aiming to limit and delay the lung damage. The purpose of the present research was to produce respirable engineered particles of ketoprofen lysinate, a non-steroidal anti-inflammatory drug able to fight lung inflammatory status by direct administration to the site of action. Micronized drug powders containing leucine as dispersibility enhancer were prepared by co-spray drying the active compound and the excipient from water or hydro-alcoholic feeds. Microparticles were fully characterized in terms of process yield, particle size distribution, morphology and drug content. The ability of the drug to reach the deepest airways after aerosolization of spray-dried formulations was evaluated by Andersen cascade impactor, using the monodose DPI as device. In order to investigate the behaviour of the drug once in contact with lung fluid, an artificial CF mucus was prepared. Drug permeation properties were evaluated interposing the mucus layer between the drug and a synthetic membrane mounted in Franz-type diffusion cells. Finally, the effect of the engineered particles on vitality of human airway epithelial cells of patients homozygous for ΔF 508 CF (CuFi1) was studied and compared to that of raw active compound. Results indicated that powders engineering changed the diameter and shape of the particles, making them suitable for inhalation. The mucus layer in the donor compartment of vertical diffusion cells slowed down drug dissolution and permeation, leucine having no influence. Cell proliferation studies evidenced that the spray drying process together with the addition of leucine reduced the cytotoxic effect of ketoprofen lysine salt as raw material, making the ketoprofen lysinate DPI a very promising product for the inflammation control in CF patients.  相似文献   

10.
Salmon calcitonin (sCT) powders suitable for inhalation, containing chitosan and mannitol as absorption enhancer and protection agent, respectively, were prepared using a spray-drying process. The effect of chitosan on physicochemical stability of sCT in the dry powder was investigated by different analytical techniques. High-performance liquid chromatography (HPLC) analysis indicated that sCT was chemically stable upon spray-drying. With the proportion of chitosan in spray-drying formulation being increased, dissolution of sCT from the dry powders was decreased both in phosphate buffer and acetate buffer. The thioflavine T fluorescence assay showed that no fibrils were present in the spray-dried powder. However, sCT partly fibrillated in the phosphate buffer, but not in acetate buffer. Fourier transform infrared (FTIR) spectra showed that the secondary structure of sCT was slightly changed in the dry powder, yet no aggregate signal was observed. Circular dichroism analysis indicated that the structure of sCT in an aqueous formulation was slightly altered by addition of chitosan. Nevertheless, recovery of sCT was not influenced by chitosan in the aqueous formulation as indicated by HPLC analysis. This study suggested that sCT, in absence of any additives, was stable during the spray-drying process under certain conditions. Addition of chitosan affects recovery of sCT from spray-dried powders, which may be due to formation of a partially irreversible complex between the protein and chitosan during the spray-drying process.  相似文献   

11.
Spray-drying is a common practice of powder preparation for a wide range of drugs. Spray-dried powders can be used to deliver particles to the lungs via a dry powder inhaler (DPI). The present study investigated the feasibility of developing a platform for aerosol delivery of nanoparticles. Lactose was used as the excipient and spray-dried with two different types of nanoparticles: gelatin and polybutylcyanoacrylate nanoparticles. Results showed that some carrier particles were hollow while others had a continuous matrix. Gelatin nanoparticles were incorporated throughout the matrix and sometimes accumulated at one end of the lactose. Polycyanoacrylate nanoparticles mostly clustered in different spots within the lactose carriers. The mean sizes of both nanoparticle types were characterized at two different times: before they were spray-dried and after they were redissolved from the spray-dried powders. Both nanoparticle types remained in the nano-range size after spray-drying. The mean nanoparticle sizes were increased by approximately 30% after spray-drying, though this increase was statistically significant only for the gelatin nanoparticles. Dispersion of the powder with an in-house passive dry powder inhaler and subsequent cascade impaction measurements showed that incorporation of the nanoparticles did not affect the fine particle fraction (FPF) or mass median aerodynamic diameter (MMAD) of the powders. FPF was approximately 40% while MMAD was 3.0+/-0.2 microm, indicating the present formulations yield aerosols of a suitable particle size for efficient lung delivery of nanoparticles.The present work demonstrates that nanoparticles can be delivered to the lungs via carrier particles that dissolve after coming in contact with the aqueous environment of the lung epithelium. This opens the way for new drug-targeting strategies using nanoparticles for pulmonary delivery of drugs and diagnostics.  相似文献   

12.
《Drug discovery today》2021,26(10):2384-2396
Leucine is a promising excipient with several applications in the development of inhalable spray-dried powder of high- and low-dose drugs. The addition of leucine has exhibited significant enhancing effects on the aerosolization and physical stability of the produced particles. Here, we focus not only on the applications of leucine in inhalable spray-drying powders, but also on the underlying mechanisms by which the formulation and processing parameters dictate the behavior of leucine during the drying process and, therefore, its functionalities within the dried powder. Additionally, we highlight the current regulatory status of leucine. Such insights are important for more efficient utilization of leucine in the future, both for dry powder inhaler formulations and other pharmaceutical applications.  相似文献   

13.
Dry powders containing a live-attenuated Newcastle disease vaccine (LZ58 strain) and intended for mass vaccination of poultry were prepared by spray drying using mannitol in combination with trehalose or inositol, polyvinylpyrrolidone (PVP) and/or bovine serum albumin (BSA) as stabilizers. These powders were evaluated for vaccine stabilizing capacity during production and storage (at 6 °C and 25 °C), moisture content, hygroscopicity and dry powder dispersibility. A mixture design, varying the ratio of mannitol, inositol and BSA, was used to select the stabilizer combination which resulted in the desired powder properties (i.e. good vaccine stability during production and storage, low moisture content and hygroscopicity and good dry dispersibility). Inositol-containing powders had the same vaccine stabilizing capacity as trehalose powders, but were less hygroscopic. Incorporation of BSA enhanced the vaccine stability in the powders compared to PVP-containing formulations. However, increasing the BSA concentration increased the hygroscopicity and reduced the dry dispersibility of the powder. No valid mathematical model could be calculated for vaccine stability during production or storage, but the individual experiments indicated that a formulation combining mannitol, inositol and BSA in a ratio of 73.3:13.3:13.3 (wt/wt) resulted in the lowest vaccine titre loss during production (1.6-2.0 log(10) 50% egg infectious dose (EID(50)) and storage at 6 °C (max. 0.8 log(10) EID(50) after 6 months) in combination with a low moisture content (1.1-1.4%), low hygroscopicity (1.9-2.1% water uptake at 60% relative humidity) and good dry dispersibility properties.  相似文献   

14.
The lungs have attracted increasing attention as a site for administration of drugs, including macromolecules that are poorly absorbed from the intestine. There have been a number of basic studies in which peptide solutions were administered to experimental animals via the lungs. Although there have been several studies of pulmonary peptide absorption from dry powder formulations, a simpler and more inexpensive apparatus for administration of dry powders would enhance rapid screening of the formulations. In this study, we developed a simple apparatus to disperse dry powders. The apparatus has two 3-way stopcocks; one allows dispersal of powders at a constant pressure and airflow, and the other allows rats to breathe before and after administration. Dry powders of fluorescein (FL) and FITC-dextran (FD4) were manufactured by the spray-drying technique. The effects of operating conditions on the absorption of these model drugs were examined in rats. The C(max) for FL from dry powder was lower than that from solution and mean residence time was extended, suggesting that dissolution was the rate-determining step for FL absorption from dry powder. For FD4, the rate of absorption may not be regulated by dissolution but by epithelial transport. Absorption of insulin from spray-dried powder via the rat trachea was investigated using this apparatus. Intratracheally administered spray-dried insulin powder decreased plasma glucose level to a greater extent than spray-dried insulin solution administered via the same route. Thus, the apparatus is simple, inexpensive, and useful for rapid screening of dry powder formulations.  相似文献   

15.
Using high-pressure homogenization and spray-drying techniques, novel formulations were developed for manufacturing dry powder for inhalation, composed of a mixture of micro- and nanoparticles in order to enhance lung deposition. Particle size analysis was performed by laser diffraction. Spray-drying was applied in order to retrieve nanoparticles in dried-powder state from tobramycin nanosuspensions. The aerolization properties of the different formulations were evaluated by a multi-stage liquid impinger. Suspensions of nanoparticles of tobramycin containing Na glycocholate at 2% (w/w) relative to tobramycin content and presenting a mean particle size about 200 nm were produced. The results from the spray-dried powders showed that the presence of nanoparticles in the formulations improved particle dispersion properties during inhalation. The fine particle fraction (percentage of particles below 5 microm) increased from 36% for the raw micronized tobramycin material to about 61% for the most effective formulation. These new nanoparticle-containing tobramycin DPI formulations, based on the use of very low level of excipient and presenting high lung deposition properties, offer very important perspectives for improving the delivery of drugs to the pulmonary tract.  相似文献   

16.
Combining an amino acid and a sugar is a known strategy in the formulation of spray or freeze dried biomolecule powder formulations. The effect of the amino acid leucine in enhancing performance of spray-dried powders has been previously demonstrated, but interaction effects of several constituents which may provide multiple benefits, are less well-understood. A 3 factor 2 level (23) factorial design was used to study the effects of leucine, glycine and alanine in a mannitol-based dry powder formulation on particle size, aerosolisation, emitted dose and cohesion. Other qualitative tests including scanning electronic microscopy and X-ray powder diffraction were also conducted on the design of experiment (DoE) trials. The results show that the use of glycine and/or alanine, though structurally related to leucine, did not achieve similar aerosol performance enhancing effects, rather the particle formation was hindered. However, when used in appropriate concentrations with leucine, the combination of amino acids produced an enhanced performance regardless of the presence of glycine and/or alanine, yielding significantly modified particle properties. The results from the DoE analyses also revealed the lack of linearity of effects for certain responses with a significant curvature in the model which would otherwise not be discovered using a trial-and-error approach.  相似文献   

17.
The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period.  相似文献   

18.
The purpose of this study was to improve insulin absorption from dry powder after administration in lung without an absorption enhancer. The dry powders, with mannitol as a carrier, were prepared with or without an absorption enhancer (citric acid) by supercritical carbon dioxide (SCF) and spray drying (SD) processes. Insulin powder was precipitated from dimethyl sulfoxide and aqueous solutions by dispersing the insulin solutions from parallel and V-type nozzles, respectively, into supercritical carbon dioxide, which is an antisolvent for insulin. In vitro aerosol performance was evaluated with a cascade impactor. Insulin powder containing citric acid prepared by the SCF method (MIC SCF) showed improved inhalation performance compared with insulin powder prepared by the SD process, although the particle size of the former powder was larger than that in powders prepared by SD. Insulin absorption was estimated from the change in plasma glucose level. The blood glucose level after administration of the insulin powder without citric acid prepared by the SCF process (MI SCF) decreased rapidly, and a significant difference was observed for areas under the curve of change in plasma glucose concentration versus time (AUCs) between MI SCF and the insulin powder without citric acid prepared by the SD process (MI SD). These results suggest that the SCF technique would be useful to prepare dry powders suitable for inhalation.  相似文献   

19.
A novel active and multi-dose dry powder inhaler (DPI) was developed and evaluated to deliver a small quantity (100-500 μg) of pure drug without any excipient. This dry powder inhaler utilized two compressed air flows to dispense and deliver drug powder: the primary flow aerosolizes the drug powder from its pocket and the secondary flow further disperses the aerosol. In vitro tests by Anderson Cascade Impactor (ACI) indicated that the fine particle fraction (FPF) (<4.7 μm) of drug delivery could reach over a range of 50-70% (w/w). Emitted dose tests showed that delivery efficiency was above 85% and its relative standard deviation (RSD) was under 10%. Confocal microscopy was used to confirm the deposition of fluorescently labeled spray-dried powder in rabbit lungs. Also, a chromatographic method was used to quantify drug deposition. The results of animal tests showed that 57% of aerosol deposited in the rabbit lung and 24% deposited in its trachea. All the results implied that this novel active dry powder inhaler could efficiently deliver a small quantity of fine drug particles into the lung with quite high fine particle fraction.  相似文献   

20.
The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号