首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex. Stimulus-response curves were constructed by recording the intensity of the reported phosphenes evoked in the contralateral visual field at range of TMS intensities. Phosphene measurements revealed that MD produced a rapid and robust decrease in cortical excitability relative to a control condition without MD. The cortical excitability returned to preinterventional baseline levels within 3 h after the end of MD. The results show that in contrast to the excitability increase in response to BD, MD acutely triggers a reversible decrease in visual cortical excitability. This shows that the pattern of visual deprivation has a substantial impact on experience-dependent plasticity of the human visual cortex.  相似文献   

2.
The posterior parietal cortex (PPC) has been proposed to play a critical role in exerting top-down influences on occipital visual areas. By inducing activity in the PPC (angular gyrus) using transcranial magnetic stimulation (TMS), and using the phosphene threshold as a measure of visual cortical excitability, we investigated the functional role of this region in modulating the activity of the visual cortex. When triple-pulses of TMS were applied over the PPC unilaterally, the intensity of stimulation required to elicit a phosphene from the visual cortex (area V1/V2) was reduced, indicating an increase in visual cortical excitability. The increased excitability that was observed with unilateral TMS was abolished when TMS was applied over the PPC bilaterally. Our results provide a demonstration of the top-down modulation exerted by the PPC on the visual cortex and show that these effects are subject to interhemispheric competition.  相似文献   

3.
Electrical stimulation of a point in the visual pathway can evoke a visual sensation which is called a phosphene. The phosphenes elicited by intracerebral stimulation were investigated in twenty-three subjects. One hundred and seven phosphenes were reported and all of them appeared in the visual field contralateral to the side of stimulation. The exception was a single case where a diffuse flashing sensation appeared in the whole visual field. Thirteen patients reported white phosphenes and nine patients reported coloured phosphenes. In the medial area (10-15 mm from the midline) of the occipital lobe, stimuli above the calcarine fissure resulted in phosphenes in the lower quadrant of the visual field. In the lateral area (16-32 mm from the midline), however, stimuli above the level of the calcarine fissure tended to produce phosphenes in the upper quadrant. These findings appear to conflict with traditional concept of the physiological anatomy of the visual pathway in man. The possible mechanism of this phenomenon produced by intracerebral stimulation is discussed in relation to the phosphenes produced by cortical stimulation.  相似文献   

4.
OBJECT: The lateral occipital cortex in humans is known as the "extrastriate visual cortex." It is, however, an unexplored field of research, and the anatomical nomenclature for its surface has still not been standardized. This study was designed to investigate whether the lateral occipital cortex in humans has retinotopic representation. METHODS: Four right-handed patients with a diagnosis of intractable epilepsy from space-occupying lesions in the occipital lobe or epilepsy originating in the occipital lobe received permanently implanted subdural electrodes. Electrical cortical stimulation was applied directly applied to the brain through metal electrodes by using a biphasic stimulator. The location of each electrode was measured on a lateral skull x-ray study. Each patient considered a whiteboard with vertical and horizontal median lines. The patient was asked to look at the midpoint on the whiteboard. If a visual hallucination or illusion occurred, the patient recorded its outline, shape, color, location, and motion on white paper one tenth the size of, and with vertical and horizontal median lines similar to those on, the whiteboard. Polar angles and eccentricities of the midpoints of the phosphenes from the coordinate origin were measured on the paper. On stimulation of the lateral occipital lobe, 44 phosphenes occurred. All phosphenes were circular or dotted, with a diameter of approximately 1 cm, except one that was like a curtain in the peripheral end of the upper and lower visual fields on stimulation of the parietooccipital region. All phosphenes appeared in the visual field contralateral to the cerebral hemisphere stimulated. On stimulation of the lateral occipital lobe, 22 phosphenes moved centrifugally or toward a horizontal line. From three-dimensional scatterplots and contour maps of the polar angles and eccentricities in relation to the x-ray coordinates of the electrodes, one can infer that the lateral occipital cortex in humans has retinotopic representation. CONCLUSIONS: The authors found that phosphenes induced by electrical cortical stimulation of the lateral occipital cortex represent retinotopy. From these results one can assert that visual field representation with retinotopic relation exists in the extrastriate visual cortex.  相似文献   

5.
Neural activity fluctuates dynamically with time, and these changes have been reported to be of behavioral significance, despite occurring spontaneously. Through electroencephalography (EEG), fluctuations in alpha-band (8-14 Hz) activity have been identified over posterior sites that covary on a trial-by-trial basis with whether an upcoming visual stimulus will be detected or not. These fluctuations are thought to index the momentary state of visual cortex excitability. Here, we tested this hypothesis by directly exciting human visual cortex via transcranial magnetic stimulation (TMS) to induce illusory visual percepts (phosphenes) in blindfolded participants, while simultaneously recording EEG. We found that identical TMS-stimuli evoked a percept (P-yes) or not (P-no) depending on prestimulus alpha-activity. Low prestimulus alpha-band power resulted in TMS reliably inducing phosphenes (P-yes trials), whereas high prestimulus alpha-values led the same TMS-stimuli failing to evoke a visual percept (P-no trials). Additional analyses indicated that the perceptually relevant fluctuations in alpha-activity/visual cortex excitability were spatially specific and occurred on a subsecond time scale in a recurrent pattern. Our data directly link momentary levels of posterior alpha-band activity to distinct states of visual cortex excitability, and suggest that their spontaneous fluctuation constitutes a visual operation mode that is activated automatically even without retinal input.  相似文献   

6.
Chai X  Zhang L  Li W  Shao F  Yang K  Ren Q 《Artificial organs》2008,32(2):110-115
Abstract:  In recent years, as stimulation electrodes have been implanted in the visual cortex, optic nerve, and retina to generate visual perceptions (phosphenes), the research on prosthetic vision has become a popular topic. After implantation, it is crucial to evaluate the characteristics of the stimulated phosphenes. Until now, several methods using tactile perception are proposed to describe the phosphene position, but no systematic study of the perceptional behavior has been performed. Here, an experimental study of tactile perception based on phosphene positioning was proposed using simulated prosthetic vision. Results show that the dispersion was smaller and the response time was less when phosphenes are generated in near visual field compared to the far visual field. The dispersion, the accuracy, and the response speed were better when using the visual guide. Moreover, the widely used method of using the left hand as reference and the right hand to point the phosphene may cause geographic error.  相似文献   

7.
Visual prosthesis can elicit phosphenes by stimulating the retina, optic nerve, or visual cortex along the visual pathway. Psychophysical studies have demonstrated that visual function can be partly recovered with phosphene‐based prosthetic vision. This study investigated the cognitive process of prosthetic vision through a face recognition task. Both behavioral response and the face‐specific N170 component of event‐related potential were analyzed in the presence of face and non‐face stimuli with natural and simulated prosthetic vision. Our results showed that: (i) the accuracy of phosphene face recognition was comparable with that of the normal one when phosphene grid increased to 25 × 21 or more; (ii) shorter response time was needed for phosphene face recognition; and (iii) the N170 component was delayed and enhanced under phosphene stimuli. It was suggested that recognition of phosphene patterns employ a configuration‐based holistic processing mechanism with a distinct substage unspecific to faces.  相似文献   

8.
Circadian rhythms exert powerful influence on various aspects of human physiology and behavior. Here, we tested changes of human cerebral cortex excitability over the course of the day with transcranial magnetic stimulation (TMS). At different times of the day, intracortical and corticospinal excitability of the primary motor cortex (M1) was evaluated in 15 healthy subjects by TMS of left M1. While motor thresholds, short-interval intracortical inhibition and facilitation and input/output curves remained unchanged, we found that a specific form of γ-aminobutyric acid (GABA)-mediated intracortical inhibition, revealed by long-interval intracortical inhibition and cortical silent periods, progressively decreased during the course of the day. Additional experiments demonstrated that morning inhibition persisted irrespective of previous sleep or sleep deprivation. Corticotropin-releasing hormone (CRH) infusions in the evening lead to morning cortisol levels but did not restore levels of morning inhibition, whereas suppression of endogenous CRH release by repeated oral dexamethasone intake over 24 h prevented morning inhibition. The findings suggest a specific modulation of GABAergic motor cortex inhibition within the circadian cycle, possibly linked to the CRH system, and may indicate a neurobiological basis for variable neuroplasticity over the course of the day.  相似文献   

9.
Repetitive transcranial magnetic stimulation (rTMS) was applied to test the role of selected cortical regions in remediating sleep-deprivation-induced deficits in visual working memory (WM) performance. Three rTMS targets were chosen using a functional magnetic resonance imaging (fMRI)-identified network associated with sleep-deprivation-induced WM performance impairment: 2 regions from the network (upper left middle occipital gyrus and midline parietal cortex) and 1 nonnetwork region (lower left middle occipital gyrus). Fifteen participants underwent total sleep deprivation for 48 h. rTMS was applied at 5 Hz during a WM task in a within-subject sham-controlled design. The rTMS to the upper-middle occipital site resulted in a reduction of the sleep-induced reaction time deficit without a corresponding decrease in accuracy, whereas stimulation at the other sites did not. Each subject had undergone fMRI scanning while performing the task both pre- and postsleep deprivation, and the degree to which each individual activated the fMRI network was measured. The degree of performance enhancement with upper-middle occipital rTMS correlated with the degree to which each individual failed to sustain network activation. No effects were found in a subset of participants who performed the same rTMS procedure after recovering from sleep deprivation, suggesting that the performance enhancements seen following sleep deprivation were state dependent.  相似文献   

10.
Psychophysical studies have verified the possibility of recovering the visual ability by the form of low‐resolution format of images, that is, phosphene‐based representations. Our previous study has found that early visual processing for phosphene patterns is configuration based. This study further investigated the configural processing mechanisms of prosthetic vision by analyzing the event‐related potential components (P1 and N170) in response to phosphene face and non‐face stimuli. The results reveal that the coarse processing of phosphenes involves phosphene‐specific holistic processing that recovers separated phosphenes into a gestalt; low‐level feature processing of phosphenes is also enhanced compared with that of normal stimuli due to increased contrast borders introduced by phosphenes; while fine processing of phosphene stimuli is impaired reflected by reduced N170 amplitude because of the degraded detailed features in the low‐resolution format representations. Therefore, we suggest that strategies that can facilitate the specific holistic processing stages of prosthetic vision should be considered in order to improve the performance when designing the visual prosthesis system.  相似文献   

11.
Lu Y  Chen P  Zhao Y  Shi J  Ren Q  Chai X 《Artificial organs》2012,36(1):115-120
Clinical trials have successfully shown that a visual prosthesis can elicit visual perception (phosphenes) in the visual field. Psychophysical studies based on simulated prosthetic vision offer an effective means to evaluate and refine prosthetic vision. We designed three experiments to examine the effect of phosphene luminance, flicker rate, and eccentricity on the ability to estimate simulated phosphene sizes using tactile perception. Thirty subjects participated in the three experiments. There was a linear increase in reported size as visual stimulus size increased. Judgment was significantly affected by stimulus luminance and eccentricity (P < 0.05) but not by flicker rates. Brighter stimuli were perceived as being larger, and the more eccentric the position, the larger the estimated size. These simulation studies, although idealized, suggested that tactile perception is a potential way to estimate phosphene sizes.  相似文献   

12.
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level-dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1-V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1-V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex.  相似文献   

13.
Recently we showed that the occipital cortex of congenitally blind humans is activated during verbal-memory tasks. Activation was found in regions corresponding to the retinotopic visual areas of sighted humans, including the calcarine sulcus (V1). No such occipital activation was found in sighted humans. One year later, the same blind subjects participated in a second fMRI scan, to study the contribution of semantic elements and episodic memory to the occipital activation. The subjects performed an episodic-memory task, requiring recognition of words that were originally presented in the first scan. We demonstrate here that the magnitude of V1 activation during the recognition task is correlated with memory performance, assessed during the scan. Across the blind, the better-remembered set of words elicited greater V1 activation than words from the poorly-remembered set, although the semantic components and the behavioral task were similar in the two sets. This indicates that on top of semantic processing (suggested previously), V1 activation in the blind is probably associated with long-term episodic memory. Indeed, within the blind, those who showed better recognition-memory performance had greater V1 activation compared with the poorer performers. We conclude that the posterior occipital cortex (including V1) of the congenitally blind is likely to be involved in episodic retrieval.  相似文献   

14.
Right parietal cortex plays a critical role in change blindness   总被引:2,自引:0,他引:2  
There is increasing evidence from functional magnetic resonance imaging (fMRI) that visual awareness is not only associated with activity in ventral visual cortex but also with activity in the parietal cortex. However, due to the correlational nature of neuroimaging, it remains unclear whether this parietal activity plays a causal role in awareness. In the experiment presented here we disrupted activity in right or left parietal cortex by applying repetitive transcranial magnetic stimulation (rTMS) over these areas while subjects attempted to detect changes between two images separated by a brief interval (i.e. 1-shot change detection task). We found that rTMS applied over right parietal cortex but not left parietal cortex resulted in longer latencies to detect changes and a greater rate of change blindness compared with no TMS. These results suggest that the right parietal cortex plays a critical role in conscious change detection.  相似文献   

15.
Multi-electrode devices are constantly evolving toward a state where complexity and reliability are adequate for providing a breakthrough in visual cortical stimulation allowing the blind to recover partial vision. Yet few research teams have focused on the development of the front-end subsystem that transforms an input image from a camera into stimulation commands. This article collects state-of-the-art knowledge about the appearance and organization of phosphenes, and previous work in image processing dedicated to visual cortical stimulation. Observations and hypothesis about important issues are highlighted, and six image processing strategies that could be used in such a subsystem are presented, from the most optimistic that use brightness modulation to emulate grayscale to the most conservative that use only on/off phosphene evocation.  相似文献   

16.
Migraine patients are characterized by altered cortical excitability and information processing between attacks. The relationship between these abnormalities is still poorly understood. In this study, visual evoked potentials (VEP) and proton magnetic resonance spectroscopy were recorded simultaneously in migraineurs and healthy subjects. In order to investigate the homeostatic-like plasticity in the visual cortex, cortical excitability was modified using transcranial direct current stimulation (tDCS). Before any stimulation, migraineurs showed significantly higher glutamate/creatine ratios (Glx/Cr) than healthy subjects. In healthy subjects, excitatory (anodal) tDCS caused an increase and inhibitory (cathodal) tDCS a decrease in the Glx/Cr ratio. Subsequent photic stimulation (PS) reversed the changes in Glx/Cr ratios, which returned back to baseline, demonstrating homeostatic-like metaplasticity in the control group. In migraine patients, both anodal and cathodal tDCS decreased the Glx/Cr ratio, which did not return to baseline after PS. While healthy subjects showed an increase in VEP amplitude under anodal and a reduction under cathodal tDCS, the modifiability of VEP under tDCS was reduced in migraineurs. The results demonstrate a reduced responsiveness of the occipital cortex to interventions that change cortical excitability in migraine. Moreover, altered glutamatergic neurotransmission seems to mediate the relation between abnormal cortical information processing and excitability in migraineurs.  相似文献   

17.
OBJECTIVE: This study was designed to describe regional changes in blood oxygenation level dependent signals in functional magnetic resonance images (fMRI) elicited by thermal pain in hypnotized subjects. These signals approximately identify the neural correlates of the applied stimulation to identify neuroanatomic structures involved in the putative effects of clinical hypnosis on pain perception. METHODS: After determination of the heat pain threshold of 12 healthy volunteers, fMRI scans were performed at 1.5 Tesla by using echoplanar imaging technique during repeated painful heat stimuli. Activation of brain regions in response to thermal pain during hypnosis (using a fixation and command technique of hypnosis) was compared with responses without hypnosis. RESULTS: With hypnosis, less activation in the primary sensory cortex, the middle cingulate gyrus, precuneus, and the visual cortex was found. An increased activation was seen in the anterior basal ganglia and the left anterior cingulate cortex. There was no difference in activation within the right anterior cingulate gyrus in our fMRI studies. No activation was seen within the brainstem and thalamus under either condition. CONCLUSION: Our observations indicate that clinical hypnosis may prevent nociceptive inputs from reaching the higher cortical structures responsible for pain perception. Whether the effects of hypnosis can be explained by increased activation of the left anterior cingulate cortex and the basal ganglia as part of a possible inhibitory pathway on pain perception remains speculative given the limitations of our study design.  相似文献   

18.
OBJECTIVE: To assess the accuracy of functional magnetic resonance imaging (fMRI) of the primary visual cortex in patients undergoing surgery for tumors in the occipital lobe. METHODS: Two patients with nondominant occipital lobe tumors were studied, one with a solitary lung metastasis and another with radiation necrosis after radiosurgery for a low-grade astrocytoma. At surgery, visual evoked potentials (VEPs) were stimulated using Light-emitting-diode goggles and recorded using cortical grids placed immediately after brain exposure. The location of the peak VEP was compared to that predicted by the registered functional scan. RESULTS: In each case, the epicenter of visual activation as represented on the registered fMRI corresponded to the site of peak VEP recording. Prediction error for the visual cortex, measured in patient 1, was 1.0 mm. Visual confirmation showed the registration in the second patient to be accurate as well. CONCLUSION: As previously demonstrated for sensorimotor fMRI, visual fMRI accurately predicts the location of the primary visual cortex. Additional confirmation is expected with more clinical experience.  相似文献   

19.
Priming of motion direction and area V5/MT: a test of perceptual memory   总被引:2,自引:2,他引:0  
Presentation of supraliminal or subliminal visual stimuli that can (or cannot) be detected or identified can improve the probability of the same stimulus being detected over a subsequent period of seconds, hours or longer. The locus and nature of this perceptual priming effect was examined, using suprathreshold stimuli, in subjects who received repetitive pulse transcranial magnetic stimulation over the posterior occipital cortex, the extrastriate motion area V5/MT or the right posterior parietal cortex during the intertrial interval of a visual motion direction discrimination task. Perceptual priming observed in a control condition was abolished when area V5/MT was stimulated but was not affected by magnetic stimulation over striate or parietal sites. The effect of transcranial magnetic stimulation (TMS) on priming was specific to site (V5/MT) and to task - colour priming was unaffected by TMS over V5/MT. The results parallel, in the motion domain, recent demonstrations of the importance of macaque areas V4 and TEO for priming in the colour and form domains.  相似文献   

20.
Summary This study attempts to find out whether the motor evoked potential (MEP) elicited by single pulse and slow-rate (1 Hz) repetitive transcranial magnetic stimulation (TMS) can disclose concealed subclinical impairments in the cerebral motor system of patients with minor head injury. The motor response to single pulse TMS (STMS) of the patient groups was characterized by significantly higher threshold compared with that of the control group. The central motor conduction time, as well as the peripheral conduction time were normal in all patients pointing to cortical impairment. Two main patterns of MEP changes in response to repetitive TMS (RTMS) were observed in the patient group. A. – progressive decrease of the MEP amplitude throughout the stimulation session to a near complete abolition. B. – irregularity of the amplitude and the waveform of the MEP in a chaotic form. The MEP latency remained stable during the whole stimulation session. The MEP abnormalities recovered gradually over the period of a few months. The higher threshold of the motor response to STMS and the abnormal patterns of the MEP to RTMS seem to reflect transient impairment of cortical excitability or “cortical fatigue” in patients who sustained minor head injures. Further study is needed to evaluated the extent and the pathophysiological mechanisms of the central nervous system fatigue phenomenon following head injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号