首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的 观察神经干细胞与许旺细胞共移植于大鼠半横断脊髓损伤处神经干细胞的迁移、存活、分化及对损伤脊髓的修复作用.方法 绿色荧光蛋白(GFP)标记脊髓神经下细胞后与许旺细胞共移植于大鼠半横断脊髓损伤处,免疫荧光染色和电镜技术分别观察神经下细胞的迁移、存活、分化及新生的髓鞘.皮层运动诱发电位(CMEPs)及BBB评分分别检测大鼠运动功能的恢复.结果 在神经干细胞与许旺细胞共移植组,损伤脊髓的头端、尾端及对侧町见明显的GFP阳性细胞及GaLC/GFP、GFAP/GFP、NSE/GFP、SYN/GFP舣阳性细胞,电镜下新生的髓鞘最多,CMEPs恢复百分率和振幅明显高于其他两组,但BBB评分与神经干细胞单移植组差异无统计学意义.结论 神经干细胞和许旺细胞体内共移植可促进神经干细胞的辽移、存活、分化及脊髓运动功能的恢复.  相似文献   

2.
BACKGROUND:Because bone marrow mesenchymal stem cells (BMSCs) do not secrete sufficient brain-derived neurotrophic factor (BDNF), the use of exogenous BDNF could improve microenvironments in injured regions for BMSCs differentiation. OBJECTIVE:To analyze recovery of the injured spinal cord following BMSCs venous transplantation in combination with consecutive injections of BDNF. DESIGN, TIME AND SETTING:A randomized, controlled animal experiment was performed at the Central Laboratory of First Hospital and Anatomical Laboratory, Fujian Medical University from October 2004 to May 2006.MATERIALS:Human BDNF was purchased from Sigma, USA. METHODS:A total of 44 New Zealand rabbits were randomly assigned to model (n = 8), BDNF (n = 12), BMSC (n = 12), and BMSC+BDNF (n = 12) groups. Spinal cord (L2) injury was established with the dropping method. The model group rabbits were injected with 1 mL normal saline via the ear margin vein; the BDNF group was subdurally injected with 100 μg/d human BDNF for 1 week; the BMSC group was injected with 1 mL BMSCs suspension (2 × 106/mL) via the ear margin vein; and the BMSC+BDNF group rabbits were subdurally injected with 100 μg/d BDNF for 1 week, in addition to BMSCs suspension via the ear margin vein. MAIN OUTCOME MEASURES:BMSCs surface markers were detected by flow cytometry. BMSCs differentiation in the injured spinal cord was detected by immunofluorescence histochemistry. Functional and structural recovery, as well as morphological changes, in the injured spinal cord were respectively detected by Tarlov score, horseradish peroxidase retrograde tracing, and hematoxylin & eosin staining methods at 1, 3, and 5 weeks following transplantation. RESULTS:Transplanted BMSCs differentiated into neuronal-like cells in the injured spinal cord at 3 and 5 weeks following transplantation. Neurological function and pathological damage improved following BMSC + BDNF treatment compared with BDNF or BMSC alone (P < 0.01 or P < 0.05). CONCLUSION:BMSCs venous transplantation in combination with BDNF subdural injection benefits neuronal-like cell differentiation and significantly improves structural and function of injured spinal cord compared with BMSCs or BDNF alone.  相似文献   

3.
大鼠骨髓间充质干细胞静脉移植对脊髓损伤的修复作用   总被引:9,自引:1,他引:8  
目的初步探讨骨髓间充质干细胞(BMSCs)静脉移植对脊髓损伤后神经功能恢复和神经修复的影响。方法体外培养BMSCs,改良Allen法制备大鼠脊髓损伤模型,经尾静脉移植Brdu标记的BMSCs,损伤后24h、移植后1、3、5周评价实验动物的神经功能状况,并检测BMSCs在体内迁移、存活以及分化情况,电子显微镜观察组织形态学变化。结果移植的BMSCs在宿主损伤脊髓中聚集并存活,3~5周后有部分移植细胞表达神经元特异性烯醇化酶(NSE)、神经丝蛋白(NF)、微管相关蛋白(MAP2);BMSCs静脉移植组大鼠运动功能改善,BBB评分高于对照组(P〈0.05);5周后组织学观察,与对照组相比移植组损伤区脊髓结构较完整。结论BMSCs经静脉移植后可向脊髓损伤处聚集并存活分化,促进神经修复及神经功能的恢复。  相似文献   

4.
Previous research has demonstrated that cotransplantation of umbilical cord mesenchymal stem cells (UCMSCs) and Schwann cells (SCs) can repair spinal nerve injury, but few studies have investigated their use in peripheral nerve regeneration. In the present study, we cotransplanted UCMSCs and SCs to repair 5-mm left sciatic nerve defects in rats, and compared the effects of UCMSCs + SCs transplantation with UCMSCs or SCs transplantation alone. After UCMSCs + SCs transplantation, nerve conduction velocity of the left sciatic nerve and gait were both improved. Retrograde tracing analysis demonstrated that the mean count of fluorogold-labeled neurons, as well as the mean axon count and axon density, were significantly greater in the left sciatic nerve after UCMSCs + SCs transplantation, compared with UCMSCs or SCs transplantation alone. Improvements in conduction velocity and increased sheath thickness in the left sciatic nerve were similar after UCMSCs transplantation and UCMSCs + SCs transplantation. These findings suggest that UCMSCs transplantation can promote the repair of sciatic nerve defects to some extent, but that combined UCMSCs + SCs transplantation has a significantly greater regenerative effect.  相似文献   

5.
It has been demonstrated that transplantation of bone marrow mesenchymal stem cells (BMSCs) improves recovery of injured spinal cord in animal models. However, the mechanism of how BMSCs promote repair of injured spinal cord remains under investigation. The present study investigated the neural differentiation of BMSCs, the lesion volume and axonal regrowth of injured spinal cord after transplantation. Seven days after spinal cord injury, 3 × 105 BMSCs or PBS (control) was delivered into the injury epicenter of the spinal cord. At 8 weeks after spinal cord injury, transplantation of BMSCs reduced the volume of cavity and increased spared white matter as compared to the control. BMSCs did not express the cell marker of neurons, astrocytes and oligodendrocytes in injured spinal cord. Transmission electron microscopic examination displayed an increase in the number of axons in BMSC rats. The effect of BMSCs on growth of neuronal process was further investigated by using a coculture system. The length and the number of neurites from spinal neurons significantly increased when they cocultured with BMSCs. PCR and immunochemical analysis showed that BMSCs expressed brain‐derived neurotrophic factor (BDNF) and glia cell line‐derived neurotrophic factor (GDNF). These findings demonstrate that transplantation of BMSCs reduces lesion volume and promotes axonal regrowth of injured spinal cord.  相似文献   

6.
目的 观察神经干细胞(NSC)、许旺细胞(SCs)和组织工程材料乙交酯-丙交酯共聚物(PLGA)大鼠髓内共移植后的病理形态学改变.方法 36只Wistar大鼠,随机分为PLGA移植组、NSC/PLGA组和NSC+SCs/PLGA组.体外培养、鉴定胚胎脊髓源NSC和SCs,制备和构建PLGA支架细胞复合体并移植到大鼠脊髓Tq半横断损伤部位,应用HE染色、电镜和免疫组织化学染色方法在形态结构上观察材料的组织相容性、轴突髓鞘再生及NSC在脊髓内的存活、迁移和分化情况.结果 HE染色观察损伤12周时移植材料内可见细胞生长及新生的毛细血管;扫描电镜观察随着时间的延长,PLGA逐渐降解;材料正中横断面透射电镜观察可见新牛的无髓及有髓神经纤维;脊髓标本免疫组织化学染色可见移植的NSC可以在宿主脊髓内存活、迁移并分化成类神经元样细胞和少枝胶质细胞,未分化成星形胶质细胞.结论 NSC、SCs和PLGA共移植可以在形态学上促进大鼠脊髓半横断损伤的修复.  相似文献   

7.
Lankford KL  Sasaki M  Radtke C  Kocsis JD 《Glia》2008,56(15):1664-1678
Although several studies have shown that Schwann cells (SCs) and olfactory ensheathing cells (OECs) interact differently with central nervous system (CNS) cells in vitro, all classes of adult myelin-forming cells show poor survival and migration after transplantation into normal CNS. X-irradiation of the spinal cord, however, selectively facilitates migration of oligodendrocyte progenitor cells (OPCs), but not SCs, revealing differences in in vivo migratory capabilities that are not apparent in intact tissue. To compare the in vivo migratory properties of OECs and SCs and evaluate the potential of migrating cells to participate in subsequent repair, we first transplanted freshly isolated GFP-expressing adult rat olfactory bulb-derived OECs and SCs into normal and X-irradiated spinal cords. Both OECs and SCs showed limited survival and migration in normal spinal cord at 3 weeks. However, OECs, unlike SCs, migrated extensively in both grey and white matter of the X-irradiated spinal cord, and exhibited a phagocytic phenotype with OX-42 staining on their processes. If a X-irradiated and OEC transplanted spinal cord was then subjected to a focal demyelinating lesion 3 weeks after transplantation, OECs moved into the delayed demyelinated lesion and remyelinated host axons with a peripheral-like pattern of myelin. These results revealed a clear difference between the migratory properties of OECs and SCs in the X-irradiated spinal cord and demonstrated that engrafted OECs can participate in repair of subsequent lesions.  相似文献   

8.
We compared the neurological and electrophysiological outcome, glial reactivity, and spared spinal cord connectivity promoted by acute transplantation of olfactory ensheathing cells (group OEC) or Schwann cells (group SC) after a mild injury to the rat spinal cord. Animals were subjected to a photochemical injury of 2.5 min irradiation at the T8 spinal cord segment. After lesion, a suspension containing 180,000 OECs or SCs was injected. A control group (group DM) received the vehicle alone. During 3 months postsurgery, behavioral skills were assessed with open field-BBB scale, inclined plane, and thermal algesimetry tests. Motor (MEPs) and somatosensory evoked potentials (SSEPs) were performed to evaluate the integrity of spinal cord pathways, whereas lumbar spinal reflexes were evaluated by the H reflex responses. Glial fibrillary acidic protein and proteoglycan expressions were quantified immunohistochemically at the injured spinal segments, and the preservation of corticospinal and raphespinal tracts caudal to the lesion was evaluated. Both OEC- and SC-transplanted groups showed significantly better results in all the behavioral tests than the DM group. Furthermore, the OEC group had higher MEP amplitudes and lower H responses than the other two groups. At the injury site, the area of spared parenchyma was greater in transplanted than in control injured rats. OEC-transplanted animals had reduced astrocytic reactivity and proteoglycan expression in comparison with SC-transplanted and DM rats. Taken together, these results indicate that transplantation of both OEC and SC has potential for restoration of injured spinal cords. OEC grafts showed superior ability to reduce glial reactivity and to improve functional recovery.  相似文献   

9.
Stem cell transplantation, especially treatment with bone marrow mesenchymal stem cells (BMSCs), has been considered a promising therapy for the locomotor and neurological recovery of spinal cord injury (SCI) patients. However, the clinical benefits of BMSCs transplantation remain limited because of the considerably low viability and inhibitory microenvironment. In our research, low‐intensity pulsed ultrasound (LIPUS), which has been widely applied to clinical applications and fundamental research, was employed to improve the properties of BMSCs. The most suitable intensity of LIPUS stimulation was determined. Furthermore, the optimized BMSCs were transplanted into the epicenter of injured spinal cord in rats, which were randomized into four groups: (a) Sham group (n = 10), rats received laminectomy only and the spinal cord remained intact. (b) Injury group (n = 10), rats with contused spinal cord subjected to the microinjection of PBS solution. (c) BMSCs transplantation group (n = 10), rats with contused spinal cord were injected with BMSCs without any priming. (d) LIPUS‐BMSCs transplantation group (n = 10), BMSCs stimulated with LIPUS were injected at the injured epicenter after contusion. Rats were then subjected to behavioral tests, immunohistochemistry, and histological observation. It was found that BMSCs stimulated with LIPUS obtained higher cell viability, migration, and neurotrophic factors expression in vitro. The rate of apoptosis remained constant. After transplantation of BMSCs and LIPUS‐BMSCs postinjury, locomotor function was significantly improved in LIPUS‐BMSCs transplantation group with higher level of brain‐derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the epicenter, and the expression of neurotrophic receptor was also enhanced. Histological observation demonstrated reduced cavity formation in LIPUS‐BMSCs transplantation group when comparing with other groups. The results suggested LIPUS can improve BMSCs viability and neurotrophic factors expression in vitro, and transplantation of LIPUS‐BMSCs could promote better functional recovery, indicating possible clinical application for the treatment of SCI.  相似文献   

10.
《中国神经再生研究》2016,(9):1385-1388
Transplantation of bone marrow stromal cells(BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury(SCI).BMSCs did not survive long-term,disappearing from the spinal cord within 2–3 weeks after transplantation.Astrocyte-devoid areas,in which no astrocytes or oligodendrocytes were found,formed at the epicenter of the lesion.It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas.Regenerating axons were associated with Schwann cells embedded in extracellular matrices.Transplantation of choroid plexus epithelial cells(CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI.Although CPECs disappeared from the spinal cord shortly after transplantation,an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas,as in the case of BMSC transplantation.These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord,including axonal regeneration and reduced cavity formation.This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate.The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI.It should be emphasized that the generally anticipated long-term survival,proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.  相似文献   

11.
目的 探讨SCI后体外移植PKH67标记的BMSCs迁移至脊髓损伤处并进行增值和分化的动员情况。方法 用梯度离心法分离和培养出SD 大鼠第3代BMSCs,用绿色荧光染料PKH67标记; 采用钳夹法制备脊髓损伤(SCI)模型,分为实验组(n=15)、对照组(n=16)、假手术组(n=16); SCI术后对脊髓损伤组织进行HE染色,实验组和假手术组于术后尾静脉移植含有1×107个BMSCs的0.5 mL生理盐水,对照组注射等量生理盐水; 分别于术后1、7、14、21 d观察大鼠后肢运动功能恢复情况,并做BBB分; 术后21 d后取脊髓组织,行免疫荧光染色,观察BMSCs的迁移,增值和分化情况。结果(1)镜下可见损伤脊髓形成的空洞、坏死及炎性细胞的增多;(2)共聚焦荧光显微镜观察显示术后21 d实验组脊髓损伤部位可见移植的BMSCs, 部分BMSCs呈GFAP和Nestin阳性表达; 假手术组无 PKH67标记的BMSCs; 实验组GFAP和Nestin阳性细胞数较对照组和假手术组明显增加(P<0.05),对照组较假手术组增加不明显(P>0.05);(3)实验组和对照组BBB评分均有增加,但实验组BBB评分显著高于对照组(P<0.05)。结论 PKH67示踪的BMSCs可迁移至损伤脊髓部位,进行增值并分化为神经元样细胞,促进损伤脊髓的神经功能恢复。  相似文献   

12.
Hill CE  Moon LD  Wood PM  Bunge MB 《Glia》2006,53(3):338-343
Although transplanted Schwann cells (SCs) can promote axon regeneration and remyelination and improve recovery in models of spinal cord injury, little is known about their survival and how they interact with host tissue. Using labeled SCs from transgenic rats expressing human placental alkaline phosphatase (PLAP), SC survival in a spinal cord contusion lesion was assessed. Few PLAP SCs survived at 2 weeks after acute transplantation. They died early due to necrosis and apoptosis. Delaying transplantation until 7 days after injury improved survival. A second wave of cell death occurred after surviving cells had integrated into the spinal cord. Survival of PLAP SCs was enhanced by immunosuppression with cyclosporin; delayed transplantation in conjunction with immunosuppression resulted in the best survival. In all cases, transplantation of SCs resulted in extensive infiltration of endogenous p75+ cells into the injury site, suggesting that endogenous SCs may play an important role in the repair observed after SC transplantation.  相似文献   

13.
Transplantation of activated transgenic Schwann cells or a fetal spinal cord cell suspension has been widely used to treat spinal cord injury. However, little is known regarding the effects of co-transplantation. In the present study, autologous Schwann cells in combination with a fetal spinal cord cell suspension were transplanted into adult Wistar rats with spinal cord injury, and newly generated axonal connections were observed ultrastructurally. Transmission electron microscopic observations showed that...  相似文献   

14.
Luo J  Bo X  Wu D  Yeh J  Richardson PM  Zhang Y 《Glia》2011,59(3):424-434
The poor survival and migration of transplanted Schwann cells (SCs) are major drawbacks for their clinical application in cell therapy for neurotrauma. To overcome such drawbacks we genetically modified SCs to over-express polysialic acid (PSA) by lentiviral delivery of polysialyltransferase (PST) to study whether over-expression of PSA could enhance their survival, migration, and integration when transplanted into the spinal cord. It was found that more PSA-expressing SCs (PST/SCs) survived than GFP-expressing SCs (GFP/SCs) after transplantation, although cell loss was still quite significant. PSA expression did not enhance the motility of transplanted SCs in uninjured spinal cord. However, in a spinal cord crush injury model PST/SCs transplanted caudal to the lesion showed that increased number of PST/SCs migrated to the injury site compared with that of GFP/SCs. Induced expression of PSA in spinal cord can further facilitate the infiltration of PST/SCs into the lesion site. PST/SCs were also shown to intermingle well with host spinal cells while GFP/SCs formed boundaries with host tissue. This was confirmed by an in vitro confrontation assay showing that more PST/SCs crossed over to astrocyte territory than GFP/SCs. Furthermore, PST/SCs induced much less expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycan in the surrounding tissues than GFP/SCs, indicating that expression of PSA on SCs do not cause significant stress response of astrocytes. These results demonstrate that expression of PSA on SCs significantly changes their biological properties and makes them more feasible for neural repair after neurotrauma.  相似文献   

15.
背景:目前研究多为骨髓间充质干细胞的体外培养及细胞移植对颅内疾病的治疗,对植入细胞在损伤脊髓中的成活、分化、迁移、结构重建等了解有限。 目的:探讨局部骨髓间充质干细胞移植在脊髓损伤修复中的作用和骨髓间充质干细胞替代治疗的可行性。 方法:成年健康雌性SD大鼠随机分为细胞移植组和对照组,建立SD大鼠脊髓横断损伤模型,伤后即刻分别向损伤区局部移植大鼠骨髓间充质干细胞悬液或无钙镁磷酸缓冲液。在术前和术后1 d,1周,2周,3周,4周和8周进行BBB评分,观测大鼠的运动功能,并于移植后1周免疫组织化学染色法观察BrdU标记的骨髓间充质干细胞在脊髓损伤处的存活情况,移植后4周进行损伤脊髓的大体观察和组织学检测。 结果与结论:移植后第1~8周细胞移植组BBB评分均髙于对照组;术后1周免疫组织化学染色结果显示在细胞移植组大鼠脊髓远端检测到BrdU阳性细胞,术后4周脊髓损伤处发现有神经纤维。证实通过损伤后立即局部注射的方式将骨髓间充质干细胞移植进大鼠脊髓损伤区,细胞可在损伤区存活;存活的骨髓间充质干细胞可分化为神经元,在损伤局部形成神经元通路,从而促进脊髓神经纤维传导功能的恢复,并促进高位脊髓损伤后大鼠后肢运动功能恢复。  相似文献   

16.
BACKGROUND: According to previous studies, the neuroprotective effect of the pedicled greater omentum may be attributed to the secretion of neurotrophic factors and stimulation of angiogenesis. The neurotrophic factors released from the pedicled greater omentum, such as brain-derived neurotrophic factor and neurotrophin 3/4/5 could exert a neuroprotective effect on the damaged host neural and glial cells, and also could induce the transdifferentiation of transplanted bone marrow mesenchymal stem cells (BMSCs) into neural cells. OBJECTIVE: Based on the functions of the omentum of neuro-protection and vascularization, we hypothesize that the transplantation of BMSCs and pedicled greater omentum into injured rat spinal cord might improve the survival rate and neural differentiation of transplanted BMSCs and consequently gain a better functional outcome. DESIGN, TIME AND SETFING: A randomized, controlled animal experiment. The experiments were carried out at the Department of Anatomy, the Secondary Military Medical University of Chinese PLA between June 2005 and June 2007. MATERIALS: Fifteen male inbred Wistar rats, weighing (200±20) g, provided by the Experimental Animal Center of the Secondary Military Medical University of Chinese PLA were used and met the animal ethical standards. Mouse anti-BrdU and mouse anti-NF200 monoclonal antibody were purchased from Boster, China. METHODS: Cell culture: We used inbred Sprague-Dawley rats to harvest bone marrow for culture of BMSCs and transplantation to avoid possible immune rejection. BMSCs were cultured via total bone marrow adherence. Experimental grouping and intervention: The rats were randomly divided into a control group, cell group and combined group, five rats per group. Rats in the control group underwent spinal cord injury (SCI) only, during which an artery clamp with pressure force of 30 g was employed to compress the spinal cord at the Tl0 level for 30 seconds to produce the SCI model. 5 μ L PBS containing 10^5 BMSCs was injected in  相似文献   

17.
Schwann cells (SCs) and olfactory ensheathing glia (OEG) have shown promise for spinal cord injury repair. We sought their in vivo identification following transplantation into the contused adult rat spinal cord at 1 week post-injury by: (i) DNA in situ hybridization (ISH) with a Y-chromosome specific probe to identify male transplants in female rats and (ii) lentiviral vector-mediated expression of EGFP. Survival, migration, and axon-glia association were quantified from 3 days to 9 weeks post-transplantation. At 3 weeks after transplantation into the lesion, a 60-90% loss of grafted cells was observed. OEG-only grafts survived very poorly within the lesion (<5%); injection outside the lesion led to a 60% survival rate, implying that the injury milieu was hostile to transplanted cells and or prevented their proliferation. At later times post-grafting, p75(+)/EGFP(-) cells in the lesion outnumbered EGFP(+) cells in all paradigms, evidence of significant host SC infiltration. SCs and OEG injected into the injury failed to migrate from the lesion. Injection of OEG outside of the injury resulted in their migration into the SC-injected injury site, not via normal-appearing host tissue but along the pia or via the central canal. In all paradigms, host axons were seen in association with or ensheathed by transplanted glia. Numerous myelinated axons were found within regions of grafted SCs but not OEG. The current study details the temporal survival, migration, axon association of SCs and OEG, and functional recovery after grafting into the contused spinal cord, research previously complicated due to a lack of quality, long-term markers for cell tracking in vivo.  相似文献   

18.
摘要 背景:传统观念认为,神经组织损伤后几乎不能再生,以往对SCI的治疗缺乏有效手段,致使本病致残率高,疗效差。干细胞治疗关键在于移植具有再生能力的干细胞,通过多种作用机制,可以重建中枢神经系统的结构和功能,近年来引起了广泛的关注。 目的:探讨立体定向移植骨髓间充质干细胞(MSCs)对大鼠脊髓损伤修复的影响并探讨其机制 设计、时间及地点:随机对照动物实验,于2007-10/2008-6在天津市环湖医院完成。 材料:1月龄SD大鼠20只,用于制备骨髓间充质干细胞;健康成年Wistar大鼠45只,雌性、同系,体质量280±20 g。将动物随机分为对照组、假手术组与移植组,每组各15只。 方法:密度梯度离心法结合贴壁筛选法分离骨髓间充质干细胞,经流式细胞仪鉴定为MSCs。以动脉瘤夹夹闭法制备大鼠脊髓损伤(SCI)模型,在SCI大鼠致伤后第7天,通过立体定向途径移植MSCs到移植组大鼠脊髓损伤中心,移植等量生理盐水至假手术组大鼠脊髓损伤中心,对照组大鼠不做处理。 主要观察指标:SCI大鼠损伤前及损伤后第7天、14天、30天、60天、90天的BBB评分;损伤后第90天处死大鼠,观察其脊髓组织中有无BrdU阳性细胞、Brdu+NSE、Brdu+GFAP、Brdu+bFGF、Brdu+BDNF免疫组化双染阳性细胞并观察NSE、GFAP、bFGF、BDNF单染阳性细胞。 结果: ①BBB评分发现,MSCs移植组大鼠BBB后肢功能评分恢复优于对照组(p<0.05);假手术组BBB评分在损伤后30天内恢复速度慢于对照组(p<0.05),至第90天与对照组比较无显著差异(P>0.05);②免疫组织化学染色发现,移植组大鼠脊髓内在损伤中心及头、尾端距离脊髓损伤中心1cm处均可见BrdU染色阳性细胞及Brdu+NSE、Brdu+GFAP、Brdu+bFGF、Brdu+BDNF免疫组化双染阳性细胞。移植组NSE、GFAP、bFGF、BDNF单染阳性细胞数明显高于对照组和假手术组(p<0.05)。 结论: MSCs移植可以促进SCI大鼠的神经功能的恢复,其机制可能与移植细胞分化为神经元样和神经胶质细胞样细胞,并分泌或促进宿主分泌神经营养因子有关。 关键词 脊髓损伤 骨髓间充质干细胞 立体定向 细胞移植  相似文献   

19.
Functional recovery after spinal cord lesion remains an important goal. A combination of inhibitory molecules and lack of appropriate permissive factors in the lesioned spinal cord results in failure of fiber tract reconnection and function. Experimental transplantation in rodent and primate models of CNS injuries has led to the idea that Schwann cells (SCs) are promising candidates for autologous transplantation to assist myelination of lesions and to deliver therapeutic agents in the CNS. In this study, we used retroviral transduction to genetically modify SCs from transgenic GFP-mice in order to overexpress the cell adhesion molecule L1, a protein promoting neurite outgrowth and implicated in myelination. SCs transduced to express L1 or its chimeric secreted form L1-Fc were mixed and grafted rostrally to the lesion site of adult mice immediately after spinal cord compression injury. Our results indicate that 3 weeks postoperatively, but not thereafter, mice transplanted with L1/L1-Fc-expressing SCs exhibited faster locomotor recovery as compared to animals which received SCs transduced with a control vector or no cells at all. Morphological analysis indicated that the accelerated functional recovery correlated with earlier and enhanced myelination by both grafted and host SCs. Moreover, increased sprouting of serotonergic fibers into and across the lesion site was observed in the L1/L1-Fc group as compared with controls. Our results suggest that transplantation of L1-overexpressing SCs enhances early events in spinal cord repair after injury and may be considered in combinatorial strategies together with other regeneration-promoting molecules.  相似文献   

20.
BD PuraMatrix peptide hydrogel, a three‐dimensional cell culture model of nanofiber scaffold derived from the self‐assembling peptide RADA16, has been applied to regenerative tissue repair in order to develop novel nanomedicine systems. In this study with PuraMatrix, self‐assembling nanofiber scaffold (SAPNS) and Schwann cells (SCs) were isolated from human fetal sciatic nerves, cultured within SAPNS, and then transplanted into the spinal cord after injury (SCI) in rats. First, the peptide nanofiber scaffold was evaluated via scanning electron microscopy and atomic force microscopy. With phase‐contrast microscopy, the appearance of representative human fetal SCs encapsulated in PuraMatrix on days 3, 5, and 7 in 12‐well plates was revealed. The Schwann cells in PuraMatrix were cultured for 2 days, and the SCs had active proliferative potential. Spinal cord injury was induced by placing a 35‐g weight on the dura of T9–T10 segments for 15 min, followed by in vivo treatment with SAPNS and human fetal SCs (100,000 cells/10 μl/injection) grafted into spinal cord 7 days after SCI. After treatment, the recovery of motor function was assessed periodically using the Basso, Beattie, and Bresnahan scoring system. Eight weeks after grafting, animals were perfusion fixed, and the survival of implanted cells was analyzed with antibody recognizing SCs. Immunohistochemical analysis of grafted lumber segments at 8 weeks after grafting revealed reduced asterogliosis and considerably increased infiltration of endogenous S100+ cells into the injury site, suggesting that PuraMatrix may play an important role in the repair observed after SAPNS and human fetal SC transplantation. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号